Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Bioactive Furanyl- or Thienyl-Substituted Nucleobases, Nucleosides and Their Analogues

Author(s): Tomasz Ostrowski*

Volume 23, Issue 5, 2023

Published on: 23 September, 2022

Page: [633 - 650] Pages: 18

DOI: 10.2174/1389557522666220812125205

Open Access Journals Promotions 2
Abstract

Five-membered heterocycles, including furan and thiophene, play a prominent role in drug design as structural units of bioactive molecules. This review is intended to demonstrate the importance of the furan-2-yl, furan-3-yl, thien-2-yl and thien-3-yl substituents in the medicinal chemistry of purine and pyrimidine nucleobases, nucleosides and selected analogues. Data presented in the article are limited to compounds containing heteroaromatic ring connected through a bond and not fused to other systems. The impact of bioisosteric replacement of aryl substituents with heteroaryl ones on activities was assessed by comparison of the title compounds with their aryl counterparts. A total of 135 heteroaryl-substituted and 35 aryl-substituted derivatives are mentioned in the text and shown in the figures. The following classes of compounds are included in the article: (i) 5-heteroaryl-2’-deoxyuridines and related compounds; (ii) 8-heteroaryl- 2,9-disubstituted adenine derivatives; (iii) O6-(heteroarylmethyl)guanines; (iv) 6-heteroaryl tricyclic guanine analogues; (v) 6-heteroaryl-9-benzylpurines and analogous compounds; (vi) N4- furfurylcytosine, N6-furfuryladenine, their derivatives and analogues; (vii) 6-heteroaryl purine and 7- deazapurine ribonucleosides; (viii) 7-heteroaryl-7-deazaadenosines, their derivatives and analogues; (ix) 4-heteroaryl fused 7-deazapurine nucleosides. In most cases various modifications of the lead compound structure performed in order to obtain the most favorable activity and selectivity are briefly discussed. The reviewed structure-activity relationship studies exemplify the search for compounds with optimized antiviral, antitumor, antimycobacterial or antiparkinsonian action.

Keywords: Nucleoside analogue, heteroaryl substituent, structure-activity relationship, antiviral activity, cytostatic activity, antimycobacterial activity, adenosine receptor antagonist.

« Previous
Graphical Abstract
[1]
Wigerinck, P.; Pannecouque, C.; Snoeck, R.; Claes, P.; De Clercq, E.; Herdewijn, P. 5-(5-Bromothien-2-yl)-2′-deoxyuridine and 5-(5-chlorothien-2-yl)-2′-deoxyuridine are equipotent to (E)-5-(2-bromovinyl)-2′-deoxyuridine in the inhibition of herpes simplex virus type I replication. J. Med. Chem., 1991, 34(8), 2383-2389.
[http://dx.doi.org/10.1021/jm00112a011] [PMID: 1652017]
[2]
Wigerinck, P.; Kerremans, L.; Claes, P.; Snoeck, R.; Maudgal, P.; De Clercq, E.; Herdewijn, P. Synthesis and antiviral activity of 5-thien-2-yl-2′-deoxyuridine analogues. J. Med. Chem., 1993, 36(5), 538-543.
[http://dx.doi.org/10.1021/jm00057a003] [PMID: 8388474]
[3]
Luyten, I.; Jie, L.; Van Aerschot, A.; Pannecouque, C.; Wigerinck, P.; Rozenski, J.; Hendrix, C.; Wang, C.; Wiebe, L.; Balzarini, J.; De Clercq, E.; Herdewijn, P. 2′-Deoxyuridines with a 5-heteroaromatic substituent: Synthesis and biological evaluation. Antivir. Chem. Chemother., 1995, 6(4), 262-270.
[http://dx.doi.org/10.1177/095632029500600409]
[4]
Liu, J.; Van Aerschot, A.; Luyten, I.; Wigerinck, P.; Pannecouque, C.; Balzarini, J.; De Clercq, E.; Herdewijn, P. Synthesis and antiviral activities of some new 5-heteroaromatic substituted derivatives of 2′-deoxyuridine. Nucleosides Nucleotides Nucleic Acids, 1995, 14(3), 525-528.
[http://dx.doi.org/10.1080/15257779508012418]
[5]
Andrei, G.; Snoeck, R.; Goubau, P.; Desmyter, J.; De Clercq, E. Comparative activity of various compounds against clinical strains of herpes simplex virus. Eur. J. Clin. Microbiol. Infect. Dis., 1992, 11(2), 143-151.
[http://dx.doi.org/10.1007/BF01967066] [PMID: 1327785]
[6]
Andrei, G.; Snoeck, R.; Reymen, D.; Liesnard, C.; Goubau, P.; Desmyter, J.; De Clercq, E. Comparative activity of selected antiviral compounds against clinical isolates of varicella-zoster virus. Eur. J. Clin. Microbiol. Infect. Dis., 1995, 14(4), 318-329.
[http://dx.doi.org/10.1007/BF02116525] [PMID: 7649195]
[7]
Bohman, C.; Balzarini, J.; Wigerinck, P.; Van Aerschot, A.; Herdewijn, P.; De Clercq, E. Mechanism of cytostatic action of novel 5-(thien-2-yl)- and 5-(furan-2-yl)-substituted pyrimidine nucleoside analogues against tumor cells transfected by the thymidine kinase gene of herpes simplex virus. J. Biol. Chem., 1994, 269(11), 8036-8043.
[http://dx.doi.org/10.1016/S0021-9258(17)37156-9] [PMID: 8132526]
[8]
Herdewijn, P.A.M.M. 5-Substituted-2′-deoxyuridines as anti-HSV-1 agents: Synthesis and structure activity relationship. Antivir. Chem. Chemother., 1994, 5(3), 131-146.
[http://dx.doi.org/10.1177/095632029400500301]
[9]
Wellmar, U.; Hornfeldt, A.-B.; Gronowitz, S.; Johansson, N.G. Synthesis of various 5-(3-substituted phenyl)-2′-deoxyuridines. Chem. Heterocycl. Compd., 1996, 32, 1312-1318.
[http://dx.doi.org/10.1007/BF01169963]
[10]
Wen, Z.; Suzol, S.H.; Peng, J.; Liang, Y.; Snoeck, R.; Andrei, G.; Liekens, S.; Wnuk, S.F. Antiviral and cytostatic evaluation of 5-(1-halo-2-sulfonylvinyl)- and 5-(2-furyl)uracil nucleosides. Arch. Pharm. (Weinheim), 2017, 350(3-4), e1700023.
[http://dx.doi.org/10.1002/ardp.201700023] [PMID: 28304114]
[11]
Ostrowski, T.; Wroblowski, B.; Busson, R.; Rozenski, J.; De Clercq, E.; Bennett, M.S.; Champness, J.N.; Summers, W.C.; Sanderson, M.R.; Herdewijn, P. 5-Substituted pyrimidines with a 1,5-anhydro-2, 3-dideoxy-D-arabino-hexitol moiety at N-1: Synthesis, antiviral activity, conformational analysis, and interaction with viral thymidine kinase. J. Med. Chem., 1998, 41(22), 4343-4353.
[http://dx.doi.org/10.1021/jm980287z] [PMID: 9784109]
[12]
Zimmermann, S.C.; Sadler, J.M.; Andrei, G.; Snoeck, R.; Balzarini, J.; Seley-Radtke, K.L. Carbocyclic 5′-nor “reverse” fleximers. Design, synthesis, and preliminary biological activity. MedChemComm, 2011, 2(7), 650-654.
[http://dx.doi.org/10.1039/c1md00094b] [PMID: 24312722]
[13]
Zimmermann, S.C.; Sadler, J.M.; O’Daniel, P.I.; Kim, N.T.; Seley-Radtke, K.L. “Reverse” carbocyclic fleximers: Synthesis of a new class of adenosine deaminase inhibitors. Nucleot. Nucl., 2013, 32(3), 137-154.
[http://dx.doi.org/10.1080/15257770.2013.771187] [PMID: 23473101]
[14]
Persson, T.; Hornfeldt, A-B.; Gronowitz, S.; Johansson, N.G. Thienyl-substituted nucleosides and their triphosphates. Antivir. Chem. Chemother., 1994, 5(6), 395-402.
[http://dx.doi.org/10.1177/095632029400500607]
[15]
Haouz, A.; Vanheusden, V.; Munier-Lehmann, H.; Froeyen, M.; Herdewijn, P.; Van Calenbergh, S.; Delarue, M. Enzymatic and structural analysis of inhibitors designed against Mycobacterium tuberculosis thymidylate kinase. New insights into the phosphoryl transfer mechanism. J. Biol. Chem., 2003, 278(7), 4963-4971.
[http://dx.doi.org/10.1074/jbc.M209630200] [PMID: 12454011]
[16]
Vanheusden, V.; Van Rompaey, P.; Munier-Lehmann, H.; Pochet, S.; Herdewijn, P.; Van Calenbergh, S. Thymidine and thymidine-5′-O-monophosphate analogues as inhibitors of Mycobacterium tuberculosis thymidylate kinase. Bioorg. Med. Chem. Lett., 2003, 13(18), 3045-3048.
[http://dx.doi.org/10.1016/S0960-894X(03)00643-7] [PMID: 12941330]
[17]
Meščić, A.; Harej, A.; Klobučar, M.; Glavač, D.; Cetina, M.; Pavelić, S.K.; Raić-Malić, S. Discovery of new acid ceramidase-targeted acyclic 5-alkynyl and 5-heteroaryl uracil nucleosides. ACS Med. Chem. Lett., 2015, 6(11), 1150-1155.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00298] [PMID: 26617970]
[18]
Gazivoda, T.; Raić-Malić, S.; Marjanović, M.; Kralj, M.; Pavelić, K.; Balzarini, J.; De Clercq, E.; Mintas, M. The novel C-5 aryl, alkenyl, and alkynyl substituted uracil derivatives of L-ascorbic acid: synthesis, cytostatic, and antiviral activity evaluations. Bioorg. Med. Chem., 2007, 15(2), 749-758.
[http://dx.doi.org/10.1016/j.bmc.2006.10.046] [PMID: 17092728]
[19]
Zhang, X.; Li, D.; Qin, J.; Xu, Y.; Ma, K. Synthesis of 4-thio-5-(2”-thienyl)uridine and cytotoxicity activity against colon cancer cells in vitro. RSC Advances, 2016, 6(74), 70099-70105.
[http://dx.doi.org/10.1039/C6RA14356C]
[20]
Pesnot, T.; Jørgensen, R.; Palcic, M.M.; Wagner, G.K. Structural and mechanistic basis for a new mode of glycosyltransferase inhibition. Nat. Chem. Biol., 2010, 6(5), 321-323.
[http://dx.doi.org/10.1038/nchembio.343] [PMID: 20364127]
[21]
Descroix, K.; Pesnot, T.; Yoshimura, Y.; Gehrke, S.S.; Wakarchuk, W.; Palcic, M.M.; Wagner, G.K. Inhibition of galactosyltransferases by a novel class of donor analogues. J. Med. Chem., 2012, 55(5), 2015-2024.
[http://dx.doi.org/10.1021/jm201154p] [PMID: 22356319]
[22]
Jiang, J.; Kanabar, V.; Padilla, B.; Man, F.; Pitchford, S.C.; Page, C.P.; Wagner, G.K. Uncharged nucleoside inhibitors of β-1,4-galactosyltransferase with activity in cells. Chem. Commun. (Camb.), 2016, 52(20), 3955-3958.
[http://dx.doi.org/10.1039/C5CC09289B] [PMID: 26882174]
[23]
Wagner, G.K.; Pesnot, T.; Palcic, M.M.; Jørgensen, R. Novel UDP-GalNAc derivative structures provide insight into the donor specificity of human blood group glycosyltransferase. J. Biol. Chem., 2015, 290(52), 31162-31172.
[http://dx.doi.org/10.1074/jbc.M115.681262] [PMID: 26527682]
[24]
Jørgensen, R.; Pesnot, T.; Lee, H.J.; Palcic, M.M.; Wagner, G.K. Base-modified donor analogues reveal novel dynamic features of a glycosyltransferase. J. Biol. Chem., 2013, 288(36), 26201-26208.
[http://dx.doi.org/10.1074/jbc.M113.465963] [PMID: 23836908]
[25]
Descroix, K.; Wagner, G.K. The first C-glycosidic analogue of a novel galactosyltransferase inhibitor. Org. Biomol. Chem., 2011, 9(6), 1855-1863.
[http://dx.doi.org/10.1039/c0ob00630k] [PMID: 21267505]
[26]
Van Poecke, S.; Barrett, M.O.; Santhosh Kumar, T.; Sinnaeve, D.; Martins, J.C.; Jacobson, K.A.; Kendall Harden, T.; Van Calenbergh, S. Synthesis and P2Y2 receptor agonist activities of uridine 5′-phosphonate analogues. Bioorg. Med. Chem., 2012, 20(7), 2304-2315.
[http://dx.doi.org/10.1016/j.bmc.2012.02.012] [PMID: 22386981]
[27]
Cristalli, G.; Lambertucci, C.; Marucci, G.; Volpini, R.; Dal Ben, D. A2A adenosine receptor and its modulators: Overview on a druggable GPCR and on structure-activity relationship analysis and binding requirements of agonists and antagonists. Curr. Pharm. Des., 2008, 14(15), 1525-1552.
[http://dx.doi.org/10.2174/138161208784480081] [PMID: 18537675]
[28]
Clementina, M.; Giuseppe, S. A2A receptor ligands: Past, present and future trends. Curr. Top. Med. Chem., 2010, 10(9), 902-922.
[http://dx.doi.org/10.2174/156802610791268765] [PMID: 20370660]
[29]
Pinna, A.; Volpini, R.; Cristalli, G.; Morelli, M. New adenosine A2A receptor antagonists: Actions on Parkinson’s disease models. Eur. J. Pharmacol., 2005, 512(2-3), 157-164.
[http://dx.doi.org/10.1016/j.ejphar.2005.01.057] [PMID: 15840400]
[30]
Volpini, R.; Dal Ben, D.; Lambertucci, C.; Marucci, G.; Mishra, R.C.; Ramadori, A.T.; Klotz, K.-N.; Trincavelli, M.L.; Martini, C.; Cristalli, G. Adenosine A2A receptor antagonists: new 8-substituted 9-ethyladenines as tools for in vivo rat models of Parkinson’s disease. ChemMedChem, 2009, 4(6), 1010-1019.
[http://dx.doi.org/10.1002/cmdc.200800434] [PMID: 19343763]
[31]
Lambertucci, C.; Buccioni, M.; Dal Ben, D.; Kachler, S.; Marucci, G.; Spinaci, A.; Thomas, A.; Klotz, K.-N.; Volpini, R. New substituted 9-propyladenine derivatives as A2A adenosine receptor antagonists. MedChemComm, 2015, 6(5), 963-970.
[http://dx.doi.org/10.1039/C5MD00034C]
[32]
Dal Ben, D.; Buccioni, M.; Lambertucci, C.; Thomas, A.; Klotz, K-N.; Federico, S.; Cacciari, B.; Spalluto, G.; Volpini, R. 8-(2-Furyl)adenine derivatives as A₂A adenosine receptor ligands. Eur. J. Med. Chem., 2013, 70, 525-535.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.006] [PMID: 24189496]
[33]
Endo, K.; Deguchi, K.; Matsunaga, H.; Tomaya, K.; Yamada, K. 8-Substituted 2-alkynyl-N(9)-propargyladenines as A2A adenosine receptor antagonists. Bioorg. Med. Chem., 2014, 22(12), 3072-3082.
[http://dx.doi.org/10.1016/j.bmc.2014.04.041] [PMID: 24815000]
[34]
Federico, S.; Ciancetta, A.; Porta, N.; Redenti, S.; Pastorin, G.; Cacciari, B.; Klotz, K.N.; Moro, S.; Spalluto, G. 5,7-Disubstituted-[1,2,4]triazolo[1,5-a][1,3,5]triazines as pharmacological tools to explore the antagonist selectivity profiles toward adenosine receptors. Eur. J. Med. Chem., 2016, 108, 529-541.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.019] [PMID: 26717203]
[35]
Müller, C.E.; Jacobson, K.A. Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim. Biophys. Acta, 2011, 1808(5), 1290-1308.
[http://dx.doi.org/10.1016/j.bbamem.2010.12.017] [PMID: 21185259]
[36]
Moro, S.; Gao, Z.-G.; Jacobson, K.A.; Spalluto, G. Progress in the pursuit of therapeutic adenosine receptor antagonists. Med. Res. Rev., 2006, 26(2), 131-159.
[http://dx.doi.org/10.1002/med.20048] [PMID: 16380972]
[37]
McElhinney, R.S.; Donnelly, D.J.; McCormick, J.E.; Kelly, J.; Watson, A.J.; Rafferty, J.A.; Elder, R.H.; Middleton, M.R.; Willington, M.A.; McMurry, T.B.H.; Margison, G.P. Inactivation of O6-alkylguanine-DNA alkyltransferase. 1. Novel O6-(hetarylmethyl)guanines having basic rings in the side chain. J. Med. Chem., 1998, 41(26), 5265-5271.
[http://dx.doi.org/10.1021/jm9708644] [PMID: 9857094]
[38]
McElhinney, R.S.; McMurry, T.B.H.; Margison, G.P. O6-alkylguanine-DNA alkyltransferase inactivation in cancer chemotherapy. Mini Rev. Med. Chem., 2003, 3(5), 471-485.
[http://dx.doi.org/10.2174/1389557033487980] [PMID: 12769698]
[39]
Khan, O.; Middleton, M.R. The therapeutic potential of O6-alkylguanine DNA alkyltransferase inhibitors. Expert Opin. Investig. Drugs, 2007, 16(10), 1573-1584.
[http://dx.doi.org/10.1517/13543784.16.10.1573] [PMID: 17922622]
[40]
Khan, O.A.; Ranson, M.; Michael, M.; Olver, I.; Levitt, N.C.; Mortimer, P.; Watson, A.J.; Margison, G.P.; Midgley, R.; Middleton, M.R. A phase II trial of lomeguatrib and temozolomide in metastatic colorectal cancer. Br. J. Cancer, 2008, 98(10), 1614-1618.
[http://dx.doi.org/10.1038/sj.bjc.6604366] [PMID: 18475294]
[41]
Watson, A.J.; Sabharwal, A.; Thorncroft, M.; McGown, G.; Kerr, R.; Bojanic, S.; Soonawalla, Z.; King, A.; Miller, A.; Waller, S.; Leung, H.; Margison, G.P.; Middleton, M.R. Tumor O(6)-methylguanine-DNA methyltransferase inactivation by oral lomeguatrib. Clin. Cancer Res., 2010, 16(2), 743-749.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1389] [PMID: 20068091]
[42]
Golankiewicz, B.; Ostrowski, T. Tricyclic nucleoside analogues as antiherpes agents. Antiviral Res., 2006, 71(2-3), 134-140.
[http://dx.doi.org/10.1016/j.antiviral.2006.05.004] [PMID: 16780965]
[43]
Ostrowski, T.; Golankiewicz, B.; De Clercq, E.; Andrei, G.; Snoeck, R. Synthesis and anti-VZV activity of 6-heteroaryl derivatives of tricyclic acyclovir and 9-[cis-1′2′-bis(hydroxymethyl)cycloprop-1′-yl]methylguanine analogues. Eur. J. Med. Chem., 2009, 44(8), 3313-3317.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.005] [PMID: 19339082]
[44]
Amblard, F.; Fromentin, E.; Detorio, M.; Obikhod, A.; Rapp, K.L.; McBrayer, T.R.; Whitaker, T.; Coats, S.J.; Schinazi, R.F. Synthesis, antiviral activity, and stability of nucleoside analogs containing tricyclic bases. Eur. J. Med. Chem., 2009, 44(10), 3845-3851.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.003] [PMID: 19433343]
[45]
Mohammed, A.F.; Andrei, G.; Hayallah, A.M.; Abdel-Moty, S.G.; Snoeck, R.; Simons, C. Synthesis and anti-HSV activity of tricyclic penciclovir and hydroxybutylguanine derivatives. Bioorg. Med. Chem., 2019, 27(6), 1023-1033.
[http://dx.doi.org/10.1016/j.bmc.2019.02.005] [PMID: 30738653]
[46]
Bakkestuen, A.K.; Gundersen, L-L.; Langli, G.; Liu, F.; Nolsøe, J.M.J. 9-Benzylpurines with inhibitory activity against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2000, 10(11), 1207-1210.
[http://dx.doi.org/10.1016/S0960-894X(00)00188-8] [PMID: 10866382]
[47]
Gundersen, L-L.; Nissen-Meyer, J.; Spilsberg, B. Synthesis and antimycobacterial activity of 6-arylpurines: The requirements for the N-9 substituent in active antimycobacterial purines. J. Med. Chem., 2002, 45(6), 1383-1386.
[http://dx.doi.org/10.1021/jm0110284] [PMID: 11882008]
[48]
Bakkestuen, A.K.; Gundersen, L-L.; Utenova, B.T. Synthesis, biological activity, and SAR of antimycobacterial 9-aryl-, 9-arylsulfonyl-, and 9-benzyl-6-(2-furyl)purines. J. Med. Chem., 2005, 48(7), 2710-2723.
[http://dx.doi.org/10.1021/jm0408924] [PMID: 15801862]
[49]
Braendvang, M.; Gundersen, L-L. Selective anti-tubercular purines: Synthesis and chemotherapeutic properties of 6-aryl- and 6-heteroaryl-9-benzylpurines. Bioorg. Med. Chem., 2005, 13(23), 6360-6373.
[http://dx.doi.org/10.1016/j.bmc.2005.06.054] [PMID: 16081292]
[50]
Braendvang, M.; Gundersen, L-L. Synthesis, biological activity, and SAR of antimycobacterial 2- and 8-substituted 6-(2-furyl)-9-(p-methoxybenzyl)purines. Bioorg. Med. Chem., 2007, 15(22), 7144-7165.
[http://dx.doi.org/10.1016/j.bmc.2007.07.034] [PMID: 17804243]
[51]
Khoje, A.D.; Kulendrn, A.; Charnock, C.; Wan, B.; Franzblau, S.; Gundersen, L.-L. Synthesis of non-purine analogs of 6-aryl-9-benzylpurines, and their antimycobacterial activities. Compounds modified in the imidazole ring. Bioorg. Med. Chem., 2010, 18(20), 7274-7282.
[http://dx.doi.org/10.1016/j.bmc.2010.08.016] [PMID: 20833056]
[52]
Khoje, A.D.; Charnock, C.; Wan, B.; Franzblau, S.; Gundersen, L.-L. Synthesis and antimycobacterial activities of non-purine analogs of 6-aryl-9-benzylpurines: Imidazopyridines, pyrrolopyridines, benzimidazoles, and indoles. Bioorg. Med. Chem., 2011, 19(11), 3483-3491.
[http://dx.doi.org/10.1016/j.bmc.2011.04.023] [PMID: 21546254]
[53]
Braendvang, M.; Charnock, C.; Gundersen, L.-L. Synthesis and antimycobacterial activity of 5-formylaminopyrimidines; analogs of antibacterial purines. Bioorg. Med. Chem. Lett., 2009, 19(12), 3297-3299.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.082] [PMID: 19427200]
[54]
Gillespie, R.J.; Cliffe, I.A.; Dawson, C.E.; Dourish, C.T.; Gaur, S.; Jordan, A.M.; Knight, A.R.; Lerpiniere, J.; Misra, A.; Pratt, R.M.; Roffey, J.; Stratton, G.C.; Upton, R.; Weiss, S.M.; Williamson, D.S. Antagonists of the human adenosine A2A receptor. Part 3: Design and synthesis of pyrazolo[3,4-d]pyrimidines, pyrrolo[2,3-d]pyrimidines and 6-arylpurines. Bioorg. Med. Chem. Lett., 2008, 18(9), 2924-2929.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.072] [PMID: 18411049]
[55]
Kiselgof, E.; Tulshian, D.B.; Arik, L.; Zhang, H.; Fawzi, A. 6-(2-Furanyl)-9H-purin-2-amine derivatives as A2A adenosine antagonists. Bioorg. Med. Chem. Lett., 2005, 15(8), 2119-2122.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.031] [PMID: 15808481]
[56]
Gillespie, R.J.; Bamford, S.J.; Botting, R.; Comer, M.; Denny, S.; Gaur, S.; Griffin, M.; Jordan, A.M.; Knight, A.R.; Lerpiniere, J.; Leonardi, S.; Lightowler, S.; McAteer, S.; Merrett, A.; Misra, A.; Padfield, A.; Reece, M.; Saadi, M.; Selwood, D.L.; Stratton, G.C.; Surry, D.; Todd, R.; Tong, X.; Ruston, V.; Upton, R.; Weiss, S.M. Antagonists of the human A(2A) adenosine receptor. 4. Design, synthesis, and preclinical evaluation of 7-aryltriazolo[4,5-d]pyrimidines. J. Med. Chem., 2009, 52(1), 33-47.
[http://dx.doi.org/10.1021/jm800961g] [PMID: 19072055]
[57]
Pinna, A. Adenosine A2A receptor antagonists in Parkinson’s disease: Progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs, 2014, 28(5), 455-474.
[http://dx.doi.org/10.1007/s40263-014-0161-7] [PMID: 24687255]
[58]
Willingham, S.B.; Ho, P.Y.; Hotson, A.; Hill, C.; Piccione, E.C.; Hsieh, J.; Liu, L.; Buggy, J.J.; McCaffery, I.; Miller, R.A. A2AR antagonism with CPI-444 induces antitumor responses and augments efficacy to anti-PD-(L)1 and anti-CTLA-4 in preclinical models. Cancer Immunol. Res., 2018, 6(10), 1136-1149.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0056] [PMID: 30131376]
[59]
Huck, B.R.; Kötzner, L.; Urbahns, K. Small molecules drive big improvements in immuno-oncology therapies. Angew. Chem. Int. Ed. Engl., 2018, 57(16), 4412-4428.
[http://dx.doi.org/10.1002/anie.201707816] [PMID: 28971564]
[60]
Plitta, B.; Adamska, E.; Giel-Pietraszuk, M.; Fedoruk-Wyszomirska, A.; Naskręt-Barciszewska, M.; Markiewicz, W.T.; Barciszewski, J. New cytosine derivatives as inhibitors of DNA methylation. Eur. J. Med. Chem., 2012, 55, 243-254.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.024] [PMID: 22854677]
[61]
Voller, J.; Beres, T.; Zatloukal, M.; Dzubak, P.; Hajduch, M.; Dolezal, K.; Schmulling, T.; Strnad, M. Anti-cancer activities of cytokinin ribosides. Phytochem. Rev., 2019, 18(4), 1101-1113.
[http://dx.doi.org/10.1007/s11101-019-09620-4]
[62]
Voller, J.; Zatloukal, M.; Lenobel, R.; Dolezal, K.; Béres, T.; Krystof, V.; Spíchal, L.; Niemann, P.; Dzubák, P.; Hajdúch, M.; Strnad, M. Anticancer activity of natural cytokinins: A structure-activity relationship study. Phytochemistry, 2010, 71(11-12), 1350-1359.
[http://dx.doi.org/10.1016/j.phytochem.2010.04.018] [PMID: 20553699]
[63]
Cappellacci, L.; Franchetti, P.; Vita, P.; Petrelli, R.; Lavecchia, A.; Jayaram, H.N.; Saiko, P.; Graser, G.; Szekeres, T.; Grifantini, M. Ribose-modified purine nucleosides as ribonucleotide reductase inhibitors. Synthesis, antitumor activity, and molecular modeling of N6-substituted 3′-C-methyladenosine derivatives. J. Med. Chem., 2008, 51(14), 4260-4269.
[http://dx.doi.org/10.1021/jm800205c] [PMID: 18588281]
[64]
Gao, Z-G.; Blaustein, J.B.; Gross, A.S.; Melman, N.; Jacobson, K.A.N. N6-Substituted adenosine derivatives: Selectivity, efficacy, and species differences at A3 adenosine receptors. Biochem. Pharmacol., 2003, 65(10), 1675-1684.
[http://dx.doi.org/10.1016/S0006-2952(03)00153-9] [PMID: 12754103]
[65]
Amiable, C.; Pochet, S.; Padilla, A.; Labesse, G.; Kaminski, P.A.N.N. (6)-substituted AMPs inhibit mammalian deoxynucleotide N-hydrolase DNPH1. PLoS One, 2013, 8(11), e80755.
[http://dx.doi.org/10.1371/journal.pone.0080755] [PMID: 24260472]
[66]
Orlicka-Płocka, M.; Fedoruk-Wyszomirska, A.; Gurda-Woźna, D.; Pawelczak, P.; Krawczyk, P.; Giel-Pietraszuk, M.; Framski, G.; Ostrowski, T.; Wyszko, E. Implications of oxidative stress in glioblastoma multiforme following treatment with purine derivatives. Antioxidants, 2021, 10(6), 950.
[http://dx.doi.org/10.3390/antiox10060950] [PMID: 34204594]
[67]
Choi, B-H.; Kim, W.; Wang, Q.C.; Kim, D-C.; Tan, S.N.; Yong, J.W.H.; Kim, K-T.; Yoon, H.S. Kinetin riboside preferentially induces apoptosis by modulating Bcl-2 family proteins and caspase-3 in cancer cells. Cancer Lett., 2008, 261(1), 37-45.
[http://dx.doi.org/10.1016/j.canlet.2007.11.014] [PMID: 18162289]
[68]
Cabello, C.M.; Bair, W.B., III; Ley, S.; Lamore, S.D.; Azimian, S.; Wondrak, G.T. The experimental chemotherapeutic N6-furfuryladenosine (kinetin-riboside) induces rapid ATP depletion, genotoxic stress, and CDKN1A(p21) upregulation in human cancer cell lines. Biochem. Pharmacol., 2009, 77(7), 1125-1138.
[http://dx.doi.org/10.1016/j.bcp.2008.12.002] [PMID: 19186174]
[69]
Dudzik, P.; Dulińska-Litewka, J.; Wyszko, E.; Jędrychowska, P.; Opałka, M.; Barciszewski, J.; Laidler, P. Effects of kinetin riboside on proliferation and proapoptotic activities in human normal and cancer cell lines. J. Cell. Biochem., 2011, 112(8), 2115-2124.
[http://dx.doi.org/10.1002/jcb.23132] [PMID: 21465535]
[70]
Drenichev, M.S.; Oslovsky, V.E.; Sun, L.; Tijsma, A.; Kurochkin, N.N.; Tararov, V.I.; Chizhov, A.O.; Neyts, J.; Pannecouque, C.; Leyssen, P.; Mikhailov, S.N. Modification of the length and structure of the linker of N(6)-benzyladenosine modulates its selective antiviral activity against enterovirus 71. Eur. J. Med. Chem., 2016, 111, 84-94.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.036] [PMID: 26854380]
[71]
Oslovsky, V.E.; Drenichev, M.S.; Sun, L.; Kurochkin, N.N.; Kunetsky, V.E.; Mirabelli, C.; Neyts, J.; Leyssen, P.; Mikhailov, S.N. Fluorination of naturally occurring N6-benzyladenosine remarkably increased its antiviral activity and selectivity. Molecules, 2017, 22(7), 1219.
[http://dx.doi.org/10.3390/molecules22071219] [PMID: 28726764]
[72]
Vistoli, G.; Brizzolari, A.; Faioni, E.; Razzari, C.; Santaniello, E. Naturally occurring N(6)-substituted adenosines (cytokinin ribosides) are in vitro inhibitors of platelet aggregation: An in silico evaluation of their interaction with the P2Y(12) receptor. Bioorg. Med. Chem. Lett., 2014, 24(24), 5652-5655.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.080] [PMID: 25467153]
[73]
Barciszewski, J.; Massino, F.; Clark, B.F.C. Kinetin - a multiactive molecule. Int. J. Biol. Macromol., 2007, 40(3), 182-192.
[http://dx.doi.org/10.1016/j.ijbiomac.2006.06.024] [PMID: 16899291]
[74]
Duszka, K.; Clark, B.F.C.; Massino, F.; Barciszewski, J. Biological activities of kinetin. In: Herbal Drugs: Ethnomedicine to Modern Medicine; Ramawat, K.G., Ed.; Springer-Verlag: Berlin, Heidelberg, 2009; pp. 369-380.
[http://dx.doi.org/10.1007/978-3-540-79116-4_20]
[75]
Hönig, M.; Plíhalová, L.; Husičková, A.; Nisler, J.; Doležal, K. Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int. J. Mol. Sci., 2018, 19(12), 4045.
[http://dx.doi.org/10.3390/ijms19124045] [PMID: 30558142]
[76]
Kadlecová, A.; Maková, B.; Artal-Sanz, M.; Strnad, M.; Voller, J. The plant hormone kinetin in disease therapy and healthy aging. Ageing Res. Rev., 2019, 55, 100958.
[http://dx.doi.org/10.1016/j.arr.2019.100958] [PMID: 31479763]
[77]
Mik, V.; Szüčová, L.; Smehilová, M.; Zatloukal, M.; Doležal, K.; Nisler, J.; Grúz, J.; Galuszka, P.; Strnad, M.; Spíchal, L. N9-substituted derivatives of kinetin: Effective anti-senescence agents. Phytochemistry, 2011, 72(8), 821-831.
[http://dx.doi.org/10.1016/j.phytochem.2011.02.002] [PMID: 21354583]
[78]
Hönig, M.; Plíhalová, L.; Spíchal, L.; Grúz, J.; Kadlecová, A.; Voller, J.; Svobodová, A.R.; Vostálová, J.; Ulrichová, J.; Doležal, K.; Strnad, M. New cytokinin derivatives possess UVA and UVB photoprotective effect on human skin cells and prevent oxidative stress. Eur. J. Med. Chem., 2018, 150, 946-957.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.043] [PMID: 29604584]
[79]
Maková, B.; Mik, V.; Lišková, B.; Gonzalez, G.; Vítek, D.; Medvedíková, M.; Monfort, B.; Ručilová, V.; Kadlecová, A.; Khirsariya, P.; Gándara Barreiro, Z.; Havlíček, L.; Zatloukal, M.; Soural, M.; Paruch, K.; D’Autréaux, B.; Hajdúch, M.; Strnad, M.; Voller, J. Cytoprotective activities of kinetin purine isosteres. Bioorg. Med. Chem., 2021, 33, 115993.
[http://dx.doi.org/10.1016/j.bmc.2021.115993] [PMID: 33497938]
[80]
Oshchepkov, M.S.; Kalistratova, A.V.; Savelieva, E.M.; Romanov, G.A.; Bystrova, N.A.; Kochetkov, K.A. Natural and synthetic cytokinins and their applications in biotechnology, agrochemistry and medicine. Russ. Chem. Rev., 2020, 89(8), 787-810.
[http://dx.doi.org/10.1070/RCR4921]
[81]
Hocek, M.; Holý, A.; Votruba, I.; Dvoráková, H. Synthesis and cytostatic activity of substituted 6-phenylpurine bases and nucleosides: Application of the Suzuki-Miyaura cross-coupling reactions of 6-chloropurine derivatives with phenylboronic acids. J. Med. Chem., 2000, 43(9), 1817-1825.
[http://dx.doi.org/10.1021/jm991167+] [PMID: 10794698]
[82]
Hocek, M.; Holy, A.; Votruba, I.; Dvorakova, H. Cytostatic 6-arylpurine nucleosides III. Synthesis and structure-activity relationship study in cytostatic activity of 6-aryl-, 6-hetaryl- and 6-benzylpurine ribonucleosides. Collect. Czech. Chem. Commun., 2001, 66(3), 483-499.
[http://dx.doi.org/10.1135/cccc20010483]
[83]
Hocek, M.; Naus, P.; Pohl, R.; Votruba, I.; Furman, P.A.; Tharnish, P.M.; Otto, M.J. Cytostatic 6-arylpurine nucleosides. 6. SAR in anti-HCV and cytostatic activity of extended series of 6-hetarylpurine ribonucleosides. J. Med. Chem., 2005, 48(18), 5869-5873.
[http://dx.doi.org/10.1021/jm050335x] [PMID: 16134952]
[84]
Kimoto, M.; Moriyama, K.; Yokoyama, S.; Hirao, I. Cytostatic evaluations of nucleoside analogs related to unnatural base pairs for a genetic expansion system. Bioorg. Med. Chem. Lett., 2007, 17(20), 5582-5585.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.088] [PMID: 17804231]
[85]
Hassan, A.E.A.; Abou-Elkhair, R.A.I.; Riordan, J.M.; Allan, P.W.; Parker, W.B.; Khare, R.; Waud, W.R.; Montgomery, J.A.; Secrist, J.A., III Synthesis and evaluation of the substrate activity of C-6 substituted purine ribosides with E. coli purine nucleoside phosphorylase: Palladium mediated cross-coupling of organozinc halides with 6-chloropurine nucleosides. Eur. J. Med. Chem., 2012, 47(1), 167-174.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.039] [PMID: 22112758]
[86]
Hocek, M.; Silhar, P.; Pohl, R. Cytostatic and antiviral 6-arylpurine ribonucleosides VIII. Synthesis and evaluation of 6-substituted purine 3′-deoxyribonucleosides. Collect. Czech. Chem. Commun., 2006, 71(10), 1484-1496.
[http://dx.doi.org/10.1135/cccc20061484]
[87]
Naus, P.; Kuchar, M.; Hocek, M. Cytostatic and antiviral 6-arylpurine ribonucleosides IX. Synthesis and evaluation of 6-substituted 3-deazapurine ribonucleosides. Collect. Czech. Chem. Commun., 2008, 73(5), 665-678.
[http://dx.doi.org/10.1135/cccc20080665]
[88]
Hocek, M.; Silhár, P.; Shih, I.H.; Mabery, E.; Mackman, R. Cytostatic and antiviral 6-arylpurine ribonucleosides. Part 7: Synthesis and evaluation of 6-substituted purine l-ribonucleosides. Bioorg. Med. Chem. Lett., 2006, 16(20), 5290-5293.
[http://dx.doi.org/10.1016/j.bmcl.2006.07.092] [PMID: 16905315]
[89]
Ding, Y.; Girardet, J-L.; Hong, Z.; Lai, V.C.H.; An, H.; Koh, Y-H.; Shaw, S.Z.; Zhong, W. Synthesis of 9-(2-β-C-methyl-β-d-ribofuranosyl)-6-substituted purine derivatives as inhibitors of HCV RNA replication. Bioorg. Med. Chem. Lett., 2005, 15(3), 709-713.
[http://dx.doi.org/10.1016/j.bmcl.2004.11.020] [PMID: 15664842]
[90]
Amiable, C.; Paoletti, J.; Haouz, A.; Padilla, A.; Labesse, G.; Kaminski, P-A.; Pochet, S. 6-(Hetero)Arylpurine nucleotides as inhibitors of the oncogenic target DNPH1: Synthesis, structural studies and cytotoxic activities. Eur. J. Med. Chem., 2014, 85, 418-437.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.110] [PMID: 25108359]
[91]
Perlíková, P.; Hocek, M. Pyrrolo[2,3-d]pyrimidine (7-deazapurine) as a privileged scaffold in design of antitumor and antiviral nucleosides. Med. Res. Rev., 2017, 37(6), 1429-1460.
[http://dx.doi.org/10.1002/med.21465] [PMID: 28834581]
[92]
Naus, P.; Pohl, R.; Votruba, I.; Dzubák, P.; Hajdúch, M.; Ameral, R.; Birkus, G.; Wang, T.; Ray, A.S.; Mackman, R.; Cihlar, T.; Hocek, M. 6-(Het)aryl-7-deazapurine ribonucleosides as novel potent cytostatic agents. J. Med. Chem., 2010, 53(1), 460-470.
[http://dx.doi.org/10.1021/jm901428k] [PMID: 19929004]
[93]
Perlíková, P.; Pohl, R.; Votruba, I.; Shih, R.; Birkuš, G.; Cihlář, T.; Hocek, M. Phosphoramidate pronucleotides of cytostatic 6-aryl-7-deazapurine ribonucleosides. Bioorg. Med. Chem., 2011, 19(1), 229-242.
[http://dx.doi.org/10.1016/j.bmc.2010.11.029] [PMID: 21134754]
[94]
Perlikova, P.; Konecny, P.; Naus, P.; Snasel, J.; Votruba, I.; Dzubak, P.; Pichova, I.; Hajduch, M.; Hocek, M. 6-Alkyl-, 6-aryl- or 6-hetaryl-7-deazapurine ribonucleosides as inhibitors of human or MTB adenosine kinase and potential antimycobacterial agents. MedChemComm, 2013, 4(11), 1497-1500.
[http://dx.doi.org/10.1039/c3md00232b]
[95]
Malnuit, V.; Slavětínská, L.P.; Nauš, P.; Džubák, P.; Hajdúch, M.; Stolaříková, J.; Snášel, J.; Pichová, I.; Hocek, M. 2-Substituted 6-(het)aryl-7-deazapurine ribonucleosides: Synthesis, inhibition of adenosine kinases, and antimycobacterial activity. ChemMedChem, 2015, 10(6), 1079-1093.
[http://dx.doi.org/10.1002/cmdc.201500081] [PMID: 25882678]
[96]
Bourderioux, A.; Naus, P.; Perlíková, P.; Pohl, R.; Pichová, I.; Votruba, I.; Dzubák, P.; Konecný, P.; Hajdúch, M.; Stray, K.M.; Wang, T.; Ray, A.S.; Feng, J.Y.; Birkus, G.; Cihlar, T.; Hocek, M. Synthesis and significant cytostatic activity of 7-hetaryl-7-deazaadenosines. J. Med. Chem., 2011, 54(15), 5498-5507.
[http://dx.doi.org/10.1021/jm2005173] [PMID: 21711054]
[97]
Klecka, M.; Postova Slavetinska, L.; Tloust’ova, E.; Dzubak, P.; Hajduch, M.; Hocek, M. Synthesis and cytostatic activity of 7-arylsulfanyl-7-deazapurine bases and ribonucleosides. MedChemComm, 2015, 6(4), 576-580.
[http://dx.doi.org/10.1039/C4MD00492B]
[98]
Perlíková, P.; Rylová, G.; Nauš, P.; Elbert, T.; Tloušťová, E.; Bourderioux, A.; Slavětínská, L.P.; Motyka, K.; Doležal, D.; Znojek, P.; Nová, A.; Harvanová, M.; Džubák, P.; Šiller, M.; Hlaváč, J.; Hajdúch, M.; Hocek, M. 7-(2-Thienyl)-7-deazaadenosine (AB61), a new potent nucleoside cytostatic with a complex mode of action. Mol. Cancer Ther., 2016, 15(5), 922-937.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0933] [PMID: 26819331]
[99]
Nauš, P.; Perlíková, P.; Bourderioux, A.; Pohl, R.; Slavětínská, L.; Votruba, I.; Bahador, G.; Birkuš, G.; Cihlář, T.; Hocek, M. Sugar-modified derivatives of cytostatic 7-(het)aryl-7-deazaadenosines: 2′-C-methylribonucleosides, 2′-deoxy-2′-fluoroarabinonucleosides, arabinonucleosides and 2′-deoxyribonucleosides. Bioorg. Med. Chem., 2012, 20(17), 5202-5214.
[http://dx.doi.org/10.1016/j.bmc.2012.07.003] [PMID: 22877872]
[100]
Nauš, P.; Caletková, O.; Perlíková, P.; Poštová Slavětínská, L.; Tloušťová, E.; Hodek, J.; Weber, J.; Džubák, P.; Hajdúch, M.; Hocek, M. Synthesis and biological profiling of 6- or 7-(het)aryl-7-deazapurine 4′-C-methylribonucleosides. Bioorg. Med. Chem., 2015, 23(23), 7422-7438.
[http://dx.doi.org/10.1016/j.bmc.2015.10.040] [PMID: 26558518]
[101]
Snášel, J.; Nauš, P.; Dostál, J.; Hnízda, A.; Fanfrlík, J.; Brynda, J.; Bourderioux, A.; Dušek, M.; Dvořáková, H.; Stolaříková, J.; Zábranská, H.; Pohl, R.; Konečný, P.; Džubák, P.; Votruba, I.; Hajdúch, M.; Rezáčová, P.; Veverka, V.; Hocek, M.; Pichová, I. Structural basis for inhibition of mycobacterial and human adenosine kinase by 7-substituted 7-(Het)aryl-7-deazaadenine ribonucleosides. J. Med. Chem., 2014, 57(20), 8268-8279.
[http://dx.doi.org/10.1021/jm500497v] [PMID: 25259627]
[102]
Nauš, P.; Caletková, O.; Konečný, P.; Džubák, P.; Bogdanová, K.; Kolář, M.; Vrbková, J.; Slavětínská, L.; Tloušt’ová, E.; Perlíková, P.; Hajdúch, M.; Hocek, M. Synthesis, cytostatic, antimicrobial, and anti-HCV activity of 6-substituted 7-(het)aryl-7-deazapurine ribonucleosides. J. Med. Chem., 2014, 57(3), 1097-1110.
[http://dx.doi.org/10.1021/jm4018948] [PMID: 24397620]
[103]
Milisavljevic, N.; Konkolová, E.; Kozák, J.; Hodek, J.; Veselovská, L.; Sýkorová, V.; Čížek, K.; Pohl, R.; Eyer, L.; Svoboda, P.; Růžek, D.; Weber, J.; Nencka, R.; Bouřa, E.; Hocek, M. Antiviral activity of 7-substituted 7-deazapurine ribonucleosides, monophosphate prodrugs, and triphosphates against emerging RNA viruses. ACS Infect. Dis., 2021, 7(2), 471-478.
[http://dx.doi.org/10.1021/acsinfecdis.0c00829] [PMID: 33395259]
[104]
Tichý, M.; Pohl, R.; Xu, H.Y.; Chen, Y.-L.; Yokokawa, F.; Shi, P.-Y.; Hocek, M. Synthesis and antiviral activity of 4,6-disubstituted pyrimido[4,5-b]indole ribonucleosides. Bioorg. Med. Chem., 2012, 20(20), 6123-6133.
[http://dx.doi.org/10.1016/j.bmc.2012.08.021] [PMID: 22985963]
[105]
Tokarenko, A.; Lišková, B.; Smoleń, S.; Táborská, N.; Tichý, M.; Gurská, S.; Perlíková, P.; Frydrych, I.; Tloušt’ová, E.; Znojek, P.; Mertlíková-Kaiserová, H.; Poštová Slavětínská, L.; Pohl, R.; Klepetářová, B.; Khalid, N.U.A.; Wenren, Y.; Laposa, R.R.; Džubák, P.; Hajdúch, M.; Hocek, M. Synthesis and cytotoxic and antiviral profiling of pyrrolo- and furo-fused 7-deazapurine ribonucleosides. J. Med. Chem., 2018, 61(20), 9347-9359.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01258] [PMID: 30281308]
[106]
Tichý, M.; Smoleń, S.; Tloušt’ová, E.; Pohl, R.; Oždian, T.; Hejtmánková, K.; Lišková, B.; Gurská, S.; Džubák, P.; Hajdúch, M.; Hocek, M. Synthesis and cytostatic and antiviral profiling of thieno-fused 7-deazapurine ribonucleosides. J. Med. Chem., 2017, 60(6), 2411-2424.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01766] [PMID: 28221790]
[107]
Veselovská, L.; Kudlová, N.; Gurská, S.; Lišková, B.; Medvedíková, M.; Hodek, O.; Tloušťová, E.; Milisavljevic, N.; Tichý, M.; Perlíková, P.; Mertlíková-Kaiserová, H.; Trylčová, J.; Pohl, R.; Klepetářová, B.; Džubák, P.; Hajdúch, M.; Hocek, M. Synthesis and cytotoxic and antiviral activity profiling of all-four isomeric series of pyrido-fused 7-deazapurine ribonucleosides. Chemistry, 2020, 26(57), 13002-13015.
[http://dx.doi.org/10.1002/chem.202001124] [PMID: 32275109]

© 2024 Bentham Science Publishers | Privacy Policy