Mini-Review Article

对抗COVID-19后死亡率的见解:并发症及其生物标志物

卷 23, 期 8, 2023

发表于: 08 September, 2022

页: [712 - 725] 页: 14

弟呕挨: 10.2174/1566524022666220812111830

价格: $65

Open Access Journals Promotions 2
摘要

背景:COVID-19 是一种严重的急性呼吸道综合症,已成为世界各地发病率和死亡率的重要来源。随着全球有数百万人感染了 COVID-19 疫情,对 COVID-19 幸存者的长期护理已成为全球关注的问题。因此,对新冠肺炎的长期肺部和肺外后果及并发症的研究是绝对必要的。目标:为了更好地了解和降低恢复后死亡率,早期发现恢复后并发症可能会预防并发症的严重性并可以康复。根据病例报告,新冠肺炎后肺外并发症多于肺部并发症。然而,在大多数情况下,新冠肺炎后的肺部并发症比肺外并发症更具致命性且不可恢复。 方法:本综述试图揭示与新冠肺炎后严重肺部并发症相关的生物标志物的作用和重要性。 COVID-19 与新冠肺炎后肺纤维化、肺内皮功能障碍、肺曲霉病、肺毛霉菌病、生物标志物和 WHO 相关,因为关键词用于检索更新信息。 PubMed 和 Google Scholar 被用作此方面的搜索引擎。 结果:必须从系统病理生理学结果方面更好地了解 COVID-19 后的肺部问题,以创建多学科诊所来解决长期症状和潜在的长期后果。这可以通过揭示可以通过某些生物标志物和各种诊断技术验证的分子发病机制来实现。因此,可以设计临床方案来早期治疗和有效管理新冠肺炎后肺部并发症,以预防死亡。 结论:为了解决大流行情况带来的具体后勤问题,有效的跨学科合作模式借鉴了大流行早期阶段的经验。

关键词: COVID-19、分子发病机制、生物标志物、肺毛霉菌病、肺纤维化、肺曲霉菌病。

[1]
Sobral MFF, Duarte GB, da Penha Sobral AIG, Marinho MLM, de Souza Melo A. Association between climate variables and global transmission oF SARS-CoV-2. Sci Total Environ 2020; 729: 138997.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138997] [PMID: 32353724]
[2]
Park SE. Epidemiology, virology, and clinical features of Severe Acute Respiratory Syndrome -Coronavirus-2 (SARS-CoV-2; coronavirus disease-19). Clin Exp Pediatr 2020; 63(4): 119-24.
[http://dx.doi.org/10.3345/cep.2020.00493] [PMID: 32252141]
[3]
Jones DL, Baluja MQ, Graham DW, et al. Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19. Sci Total Environ 2020; 749: 141364.
[http://dx.doi.org/10.1016/j.scitotenv.2020.141364] [PMID: 32836117]
[4]
Ferretti L, Wymant C, Kendall M, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 2020; 368(6491): eabb6936.
[http://dx.doi.org/10.1126/science.abb6936] [PMID: 32234805]
[5]
Achak M, Alaoui Bakri S, Chhiti Y, M’hamdi Alaoui FE, Barka N, Boumya W. SARS-CoV-2 in hospital wastewater during outbreak of COVID-19: A review on detection, survival and disinfection technologies. Sci Total Environ 2021; 761: 143192.
[http://dx.doi.org/10.1016/j.scitotenv.2020.143192] [PMID: 33153744]
[6]
Asselah T, Durantel D, Pasmant E, Lau G, Schinazi RF. COVID-19: Discovery, diagnostics and drug development. J Hepatol 2021; 74(1): 168-84.
[http://dx.doi.org/10.1016/j.jhep.2020.09.031] [PMID: 33038433]
[7]
Rahimi H, Salehiabar M, Barsbay M, et al. CRISPR systems for COVID-19 diagnosis. ACS Sens 2021; 6(4): 1430-45.
[http://dx.doi.org/10.1021/acssensors.0c02312] [PMID: 33502175]
[8]
Aziz A, Asif M, Ashraf G, Yang Q, Wang S. COVID-19 impacts, diagnosis and possible therapeutic techniques: A comprehensive review. Curr Pharm Des 2021; 27(9): 1170-84.
[http://dx.doi.org/10.2174/1874467213666201204154239] [PMID: 33280586]
[9]
Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol 2021; 93(1): 250-6.
[http://dx.doi.org/10.1002/jmv.26232] [PMID: 32592501]
[10]
Yang L, Xie X, Tu Z, Fu J, Xu D, Zhou Y. The signal pathways and treatment of cytokine storm in COVID-19 [published correction appears in signal transduct target ther. Signal Transduct Target Ther 2021; 6(1): 255-326.
[http://dx.doi.org/10.1038/s41392-021-00679-0]
[11]
Sims JT, Krishnan V, Chang CY, et al. Characterization of the cytokine storm reflects hyperinflammatory endothelial dysfunction in COVID-19. J Allergy Clin Immunol 2021; 147(1): 107-11.
[http://dx.doi.org/10.1016/j.jaci.2020.08.031] [PMID: 32920092]
[12]
Mehta P, Fajgenbaum DC. Is severe COVID-19 a cytokine storm syndrome: A hyperinflammatory debate. Curr Opin Rheumatol 2021; 33(5): 419-30.
[http://dx.doi.org/10.1097/BOR.0000000000000822] [PMID: 34264880]
[13]
Korompoki E, Gavriatopoulou M, Fotiou D, Ntanasis-Stathopoulos I, Dimopoulos MA, Terpos E. Late-onset hematological complications post COVID-19: An emerging medical problem for the hematologist. Am J Hematol 2022; 97(1): 119-28.
[http://dx.doi.org/10.1002/ajh.26384] [PMID: 34687462]
[14]
Aul DR, Gates DJ, Draper DA, et al. Complications after discharge with COVID-19 infection and risk factors associated with development of post-COVID pulmonary fibrosis. Respir Med 2021; 188: 106602.
[http://dx.doi.org/10.1016/j.rmed.2021.106602] [PMID: 34536697]
[15]
Al-Ramadan A, Rabab'h O, Shah J, Gharaibeh A. Acute and post-acute neurological complications of COVID-19. Neurol Int 2021; 13(1): 102-19.
[http://dx.doi.org/10.3390/neurolint13010010]
[16]
Garg RK, Paliwal VK. Spectrum of neurological complications following COVID-19 vaccination. Neurol Sci 2022; 43(1): 3-40.
[http://dx.doi.org/10.1007/s10072-021-05662-9] [PMID: 34719776]
[17]
Rahman A, Niloofa R, Jayarajah U, De Mel S, Abeysuriya V, Seneviratne SL. Hematological abnormalities in COVID-19: A narrative review. Am J Trop Med Hyg 2021; 104(4): 1188-201. [published online ahead of print, 2021 Feb 19].
[http://dx.doi.org/10.4269/ajtmh.20-1536] [PMID: 33606667]
[18]
Verma DP, Dandu H, Yadav G, Verma SP. Complicated case of COVID-19 disease with overlapping features of thrombotic thrombocytopenic purpura and haemophagocytic lymphohistiocytosis. BMJ Case Rep 2021; 14(5): e242202.
[http://dx.doi.org/10.1136/bcr-2021-242202] [PMID: 34011641]
[19]
McGonagle D, Bridgewood C, Meaney JFM. A tricompartmental model of lung oxygenation disruption to explain pulmonary and systemic pathology in severe COVID-19. Lancet Respir Med 2021; 9(6): 665-72.
[http://dx.doi.org/10.1016/S2213-2600(21)00213-7] [PMID: 34000237]
[20]
Srivastava R, Parveen R, Mishra P, Saha N, Bajpai R, Agarwal NB. Venous thromboembolism is linked to severity of disease in COVID-19 patients: A systematic literature review and exploratory meta-analysis. Int J Clin Pract 2021; 75(12): e14910.
[http://dx.doi.org/10.1111/ijcp.14910] [PMID: 34549867]
[21]
Silva Andrade B, Siqueira S, De Assis Soares WR, et al. Long-COVID and post-COVID health complications: An up-to-date review on clinical conditions and their possible molecular mechanisms Viruses 2021; 13(4): 700.
[http://dx.doi.org/10.3390/v13040700]
[22]
Fröhlich E. Acute respiratory distress syndrome: Focus on viral origin and role of pulmonary lymphatics. Biomedicines 2021; 9(11): 20.
[http://dx.doi.org/10.3390/biomedicines9111732] [PMID: 34829961]
[23]
Sartorius R, Trovato M, Manco R, D'Apice L, De Berardinis P. Exploiting viral sensing mediated by toll-like receptors to design innovative vaccines. NPJ Vaccines 2021; 6(1): 127.
[http://dx.doi.org/10.1038/s41541-021-00391-8]
[24]
Ogawa Y, Kinoshita M, Kawamura T, Shimada S. Intracellular TLRs of mast cells in innate and acquired immunity. Handb Exp Pharmacol 2021. [published online ahead of print, 2021 Sep 10].
[http://dx.doi.org/10.1007/164_2021_540] [PMID: 34505203]
[25]
Lis-López L, Bauset C, Seco-Cervera M, Cosín-Roger J. Is the macrophage phenotype determinant for fibrosis development? Biomedicines 2021; 9(12): 23.
[http://dx.doi.org/10.3390/biomedicines9121747] [PMID: 34944564]
[26]
Parasher A. COVID-19: Current understanding of its pathophysiology, clinical presentation and treatment. Postgrad Med J 2021; 97(1147): 312-20.
[http://dx.doi.org/10.1136/postgradmedj-2020-138577] [PMID: 32978337]
[27]
Tang NL, Chan PK, Wong CK, et al. Early enhanced expression of interferon-inducible protein-10 (CXCL-10) and other chemokines predicts adverse outcome in severe acute respiratory syndrome. Clin Chem 2005; 51(12): 2333-40.
[http://dx.doi.org/10.1373/clinchem.2005.054460] [PMID: 16195357]
[28]
Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J 2020; 55(4): 2000607.
[http://dx.doi.org/10.1183/13993003.00607-2020]
[29]
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[30]
WHO. Clinical Management of COVID-19. Available from: https://www.who.int/publications/i/item/clinicalmanagement-of-covid-19
[31]
Zhang J, Zhao D, Zhang J, Hu Z, Tao Z. Clinical characteristics of COVID-19 patients infected by the omicron variant of SARS-CoV-2. Front Med 2022; 9: 912367.
[32]
Diao B, Wang C, Wang R, et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection. Nat Commun 2021; 12(1): 2506.
[http://dx.doi.org/10.1038/s41467-021-22781-1]
[33]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506. [published correction appears in Lancet. 2020 Jan 30;].
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[34]
CDC. CDC COVID-19 response team. Severe outcomes among patients with Coronavirus Disease 2019 (COVID-19)- United States, February 12-March 16, 2020. MMWR Morb Mortal Wkly Rep 2020; 69(12): 343-6.
[http://dx.doi.org/10.15585/mmwr.mm6912e2]
[35]
Damarla M, Zaeh S, Niedermeyer S, et al. Prone positioning of nonintubated patients with COVID-19. Am J Respir Crit Care Med 2020; 202(4): 604-6.
[http://dx.doi.org/10.1164/rccm.202004-1331LE] [PMID: 32551807]
[36]
Falcoz PE, Monnier A, Puyraveau M, et al. Extracorporeal membrane oxygenation for critically ill patients with covid-19-related acute respiratory distress syndrome: Worth the effort? Am J Respir Crit Care Med 2020; 202(3): 460-3.
[http://dx.doi.org/10.1164/rccm.202004-1370LE] [PMID: 32543208]
[37]
Lutchmansingh DD, Knauert MP, Antin-Ozerkis DE, et al. A clinic blueprint for post-coronavirus disease 2019 RECOVERY: Learning from the past, looking to the future. Chest 2021; 159(3): 949-58.
[http://dx.doi.org/10.1016/j.chest.2020.10.067] [PMID: 33159907]
[38]
Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020; 55: 102763.
[http://dx.doi.org/10.1016/j.ebiom.2020.102763] [PMID: 32361250]
[39]
Burnham EL, Janssen WJ, Riches DW, Moss M, Downey GP. The fibroproliferative response in acute respiratory distress syndrome: Mechanisms and clinical significance. Eur Respir J 2014; 43(1): 276-85.
[http://dx.doi.org/10.1183/09031936.00196412] [PMID: 23520315]
[40]
Liu J, Zheng X, Tong Q, et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J Med Virol 2020; 92(5): 491-4.
[http://dx.doi.org/10.1002/jmv.25709] [PMID: 32056249]
[41]
George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: The potential role for antifibrotic therapy. Lancet Respir Med 2020; 8(8): 807-15.
[http://dx.doi.org/10.1016/S2213-2600(20)30225-3] [PMID: 32422178]
[42]
Rai DK, Sharma P, Kumar R. Post covid 19 pulmonary fibrosis. Is it real threat? Indian J Tuberc 2021; 68(3): 330-3.
[http://dx.doi.org/10.1016/j.ijtb.2020.11.003] [PMID: 34099197]
[43]
Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013; 368(23): 2159-68.
[http://dx.doi.org/10.1056/NEJMoa1214103] [PMID: 23688302]
[44]
Liu X, Zhou H, Zhou Y, et al. Risk factors associated with disease severity and length of hospital stay in COVID-19 patients. J Infect 2020; 81(1): e95-7.
[http://dx.doi.org/10.1016/j.jinf.2020.04.008] [PMID: 32305490]
[45]
Zhou Y, Han T, Chen J, et al. Clinical and autoimmune characteristics of severe and critical cases of COVID-19. Clin Transl Sci 2020; 13(6): 1077-86.
[http://dx.doi.org/10.1111/cts.12805] [PMID: 32315487]
[46]
Kollias A, Kyriakoulis KG, Dimakakos E, Poulakou G, Stergiou GS, Syrigos K. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: Emerging evidence and call for action. Br J Haematol 2020; 189(5): 846-7.
[http://dx.doi.org/10.1111/bjh.16727] [PMID: 32304577]
[47]
Makatsariya AD, Grigoreva KN, Mingalimov MA. Coronavirus disease (COVID-19) and disseminated intravascular coagulation syndrome. Obstet Gynecol Reprod 2020; 14: 123-31.
[http://dx.doi.org/10.17749/2313-7347.132]
[48]
Klok FA, Kruip MJHA, van der Meer NJM, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb Res 2020; 191: 148-50.
[http://dx.doi.org/10.1016/j.thromres.2020.04.041] [PMID: 32381264]
[49]
Llitjos JF, Leclerc M, Chochois C, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost 2020; 18(7): 1743-6.
[http://dx.doi.org/10.1111/jth.14869] [PMID: 32320517]
[50]
Deshpande C. Thromboembolic findings in COVID-19 autopsies: Pulmonary thrombosis or embolism? Ann Intern Med 2020; 173(5): 394-5.
[http://dx.doi.org/10.7326/M20-3255] [PMID: 32422061]
[51]
Wichmann D, Sperhake JP, Lütgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: A prospective cohort study. Ann Intern Med 2020; 173(4): 268-77.
[http://dx.doi.org/10.7326/M20-2003] [PMID: 32374815]
[52]
Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020; 135(23): 2033-40.
[http://dx.doi.org/10.1182/blood.2020006000] [PMID: 32339221]
[53]
Han H, Yang L, Liu R, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med 2020; 58(7): 1116-20.
[http://dx.doi.org/10.1515/cclm-2020-0188] [PMID: 32172226]
[54]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[55]
Förstermann U, Sessa WC. Nitric oxide synthases: Regulation and function. Eur Heart J 2012; 33(7): 829-837, 837a-837d.
[http://dx.doi.org/10.1093/eurheartj/ehr304] [PMID: 21890489]
[56]
Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost 2020; 18(7): 1747-51.
[http://dx.doi.org/10.1111/jth.14854] [PMID: 32302448]
[57]
Rodríguez C, Luque N, Blanco I, et al. Pulmonary endothelial dysfunction and thrombotic complications in patients with COVID-19. Am J Respir Cell Mol Biol 2021; 64(4): 407-15.
[http://dx.doi.org/10.1165/rcmb.2020-0359PS] [PMID: 33180562]
[58]
Peng M, Meng H, Sun Y, et al. Clinical features of pulmonary mucormycosis in patients with different immune status. J Thorac Dis 2019; 11(12): 5042-52.
[http://dx.doi.org/10.21037/jtd.2019.12.53] [PMID: 32030220]
[59]
Fernandez JF, Maselli DJ, Simpson T, Restrepo MI. Pulmonary mucormycosis: What is the best strategy for therapy? Respir Care 2013; 58(5): e60-3.
[http://dx.doi.org/10.4187/respcare.02106] [PMID: 23107233]
[60]
Pasero D, Sanna S, Liperi C, et al. A challenging complication following SARS-CoV-2 infection: A case of pulmonary mucormycosis. Infection 2021; 49(5): 1055-60.
[http://dx.doi.org/10.1007/s15010-020-01561-x] [PMID: 33331988]
[61]
Ragesh R, Ray A, Mian A, Vyas S, Sharma SK. Cavitary lung lesions in a difficult-to-treat asthma patient. J Assoc Physicians India 2016; 64(4): 73-6.
[PMID: 27734646]
[62]
Kim SY, Lee KS, Han J, et al. Semiinvasive pulmonary aspergillosis: CT and pathologic findings in six patients. AJR Am J Roentgenol 2000; 174(3): 795-8.
[http://dx.doi.org/10.2214/ajr.174.3.1740795] [PMID: 10701627]
[63]
Binder RE, Faling LJ, Pugatch RD, Mahasaen C, Snider GL. Chronic necrotizing pulmonary aspergillosis: A discrete clinical entity. Medicine (Baltimore) 1982; 61(2): 109-24.
[http://dx.doi.org/10.1097/00005792-198203000-00005] [PMID: 7038373]
[64]
Macartney JN. Pulmonary aspergillosis: A review and a description of three new cases. Thorax 1964; 19: 287-97.
[http://dx.doi.org/10.1136/thx.19.4.287] [PMID: 14214917]
[65]
Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 2020; 71(15): 762-8.
[http://dx.doi.org/10.1093/cid/ciaa248] [PMID: 32161940]
[66]
Swain S, Ray A, Sarda R, et al. COVID-19-associated subacute invasive pulmonary aspergillosis. Mycoses 2022; 65(1): 57-64.
[http://dx.doi.org/10.1111/myc.13369] [PMID: 34541719]
[67]
Schauwvlieghe AFAD, Rijnders BJA, Philips N, et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: A retrospective cohort study. Lancet Respir Med 2018; 6(10): 782-92.
[http://dx.doi.org/10.1016/S2213-2600(18)30274-1] [PMID: 30076119]
[68]
Blot SI, Taccone FS, Van den Abeele AM, et al. A clinical algorithm to diagnose invasive pulmonary aspergillosis in critically ill patients. Am J Respir Crit Care Med 2012; 186(1): 56-64. [published correction appears in Am J Respir Crit Care Med. 2012 Oct 15;186(8):808].
[http://dx.doi.org/10.1164/rccm.201111-1978OC] [PMID: 22517788]
[69]
Alanio A, Dellière S, Fodil S, Bretagne S, Mégarbane B. Prevalence of putative invasive pulmonary aspergillosis in critically ill patients with COVID-19. Lancet Respir Med 2020; 8(6): e48-9.
[http://dx.doi.org/10.1016/S2213-2600(20)30237-X] [PMID: 32445626]
[70]
Becker RC. Anticipating the long-term cardiovascular effects of COVID-19. J Thromb Thrombolysis 2020; 50(3): 512-24.
[http://dx.doi.org/10.1007/s11239-020-02266-6] [PMID: 32880795]
[71]
Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med 2022; 28(3): 583-90.
[http://dx.doi.org/10.1038/s41591-022-01689-3] [PMID: 35132265]
[72]
Chilazi M, Duffy EY, Thakkar A, Michos ED. COVID and cardiovascular disease: What we know in 2021. Curr Atheroscler Rep 2021; 23(7): 37.
[http://dx.doi.org/10.1007/s11883-021-00935-2] [PMID: 33983522]
[73]
Lewek J, Jatczak-Pawlik I, Maciejewski M, Jankowski P, Banach M. COVID-19 and cardiovascular complications - preliminary results of the LATE-COVID study. Arch Med Sci 2021; 17(3): 818-22.
[http://dx.doi.org/10.5114/aoms/134211] [PMID: 34025853]
[74]
Kumar S, Veldhuis A, Malhotra T. Neuropsychiatric and cognitive sequelae of COVID-19. Front Psychol 2021; 12: 577529.
[http://dx.doi.org/10.3389/fpsyg.2021.577529] [PMID: 33737894]
[75]
Damiano RF, Guedes BF, de Rocca CC, et al. Cognitive decline following acute viral infections: Literature review and projections for post-COVID-19. Eur Arch Psychiatry Clin Neurosci 2021; 272(1): 139-54.
[PMID: 34173049]
[76]
Alonso-Lana S, Marquié M, Ruiz A, Boada M. Cognitive and neuropsychiatric manifestations of COVID-19 and effects on elderly individuals with dementia. Front Aging Neurosci 2020; 12: 588872.
[http://dx.doi.org/10.3389/fnagi.2020.588872] [PMID: 33192483]
[77]
Calabria M, García-Sánchez C, Grunden N, et al. Post-COVID-19 fatigue: The contribution of cognitive and neuropsychiatric symptoms. J Neurol. 2022; pp. 1-10.
[http://dx.doi.org/10.1007/s00415-022-11141-8] [PMID: 35488918]
[78]
Méndez R, Balanzá-Martínez V, Luperdi SC, et al. Long-term neuropsychiatric outcomes in COVID-19 survivors: A 1-year longitudinal study. J Intern Med 2022; 291(2): 247-51.
[http://dx.doi.org/10.1111/joim.13389] [PMID: 34569681]
[79]
Klaser K, Thompson EJ, Nguyen LH, et al. Anxiety and depression symptoms after COVID-19 infection: Results from the COVID symptom study app. J Neurol Neurosurg Psychiatry 2021; 92(12): 1254-8.
[http://dx.doi.org/10.1136/jnnp-2021-327565] [PMID: 34583944]
[80]
Jahrami H, BaHammam AS, Bragazzi NL, Saif Z, Faris M, Vitiello MV. Sleep problems during the COVID-19 pandemic by population: A systematic review and meta-analysis. J Clin Sleep Med 2021; 17(2): 299-313.
[http://dx.doi.org/10.5664/jcsm.8930] [PMID: 33108269]
[81]
Gupta R, Pandi-Perumal SR. COVID-somnia: How the pandemic affects sleep/wake regulation and how to deal with it? Sleep Vigil 2020; 4(2): 1-3.
[http://dx.doi.org/10.1007/s41782-020-00118-0] [PMID: 33289005]
[82]
Menni C, Valdes AM, Freidin MB, et al. Loss of smell and taste in combination with other symptoms is a strong predictor of COVID-19 infection. MedRxiv. 2020; pp. 1-23.
[http://dx.doi.org/10.1101/2020.04.05.20048421]
[83]
Hopkins C, Kumar N. Loss of sense of smell as marker of COVID-19 infection. Ent Uk 2020; 26(03): 2020.
[84]
Iacobucci G, Deary V, Smith B, Kelly C. Sixty seconds on anosmia. BMJ 2020; 368: m1202.
[http://dx.doi.org/10.1136/bmj.m1202] [PMID: 32209546]
[85]
Parma V, Ohla K, Veldhuizen MG, et al. More than smell: COVID-19 is associated with severe impairment of smell, taste, and chemesthesis. Chem Senses 2020; 45(7): 609-22.
[http://dx.doi.org/10.1093/chemse/bjaa041] [PMID: 32564071]
[86]
Hopkins C, Burges Watson DL, Kelly C, Leary V, Smith BC. Managing long covid: Don’t overlook olfactory dysfunction. BMJ 2020; 370: m3736.
[http://dx.doi.org/10.1136/bmj.m3736] [PMID: 32978178]
[87]
Das L, Dutta P, Walia R, et al. Spectrum of endocrine dysfunction and association with disease severity in patients with COVID-19: Insights from a cross-sectional, observational study. Front Endocrinol (Lausanne) 2021; 12: 645787.
[http://dx.doi.org/10.3389/fendo.2021.645787] [PMID: 34276556]
[88]
Yong SJ. Long COVID or post-COVID-19 syndrome: Putative pathophysiology, risk factors, and treatments. Infect Dis (Lond) 2021; 53(10): 737-54.
[http://dx.doi.org/10.1080/23744235.2021.1924397] [PMID: 34024217]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy