Review Article

化疗或放疗与神经激肽-1受体拮抗剂阿普里普坦的联合治疗:一种新的抗肿瘤策略?

卷 30, 期 16, 2023

发表于: 03 October, 2022

页: [1798 - 1812] 页: 15

弟呕挨: 10.2174/0929867329666220811152602

价格: $65

conference banner
摘要

背景:虽然化疗主要用于癌症治疗,但它可能无效,并可能产生严重的副作用,导致化疗耐药。有必要发现新的药物,既能增强抗肿瘤活性,又能抵消化疗的严重副作用。已知P物质(SP)/神经激肽-1受体(NK-1R)相互作用系统在癌症的发病机制中起关键作用。对NK-1R拮抗剂(如aprepitant)的研究表明,NK-1R是治疗癌症的潜在靶点。Aprepitant(阿瑞匹坦)与主要化疗药物联合使用已显示出增加抗肿瘤活性和减少副作用的潜力。 目的:由于恶性肿瘤癌症细胞过度表达NK-1R,这种联合治疗是治疗各种癌症的一种有希望的方法。由于该药物显示出广泛的抗肿瘤药物的潜力,因此有必要将这种NK-1R拮抗剂重新用作抗肿瘤药物。本综述还将概述与阿普列汀/放疗联合治疗相关的研究。本综述的目的是提供与癌症化疗/放疗和NK-1R拮抗剂相关的联合研究的最新进展。 结论:这种联合策略一旦得到证实,可能为化疗和放疗开辟一个新的时代,具有更大的抗肿瘤活性和更少的副作用。这种治疗策略可能转化为癌症患者更高的治愈率、更好的生活质量和更少的后遗症。

关键词: 阿瑞匹坦(Aprepitant), NK-1拮抗剂1, 化疗、放疗、P物质、联合治疗、抗肿瘤、癌症。

[1]
Ferlay, J.E.M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M. Global cancer observatory: Cancer today. Lyon: International Agency for Research on Cancer. Available from: https://gco.iarc.fr/today (Accessed on: June 9th, 2022).
[2]
Morgan, G.; Ward, R.; Barton, M. The contribution of cytotoxic chemotherapy to 5-year survival in adult malignancies. Clin. Oncol. (R. Coll. Radiol.), 2004, 16(8), 549-560.
[http://dx.doi.org/10.1016/j.clon.2004.06.007] [PMID: 15630849]
[3]
Muñoz, M.; Coveñas, R. The neurokinin-1 receptor antagonist aprepitant: An intelligent bullet against cancer? Cancers (Basel), 2020, 12(9), 2682.
[http://dx.doi.org/10.3390/cancers12092682] [PMID: 32962202]
[4]
García-Recio, S.; Gascón, P. Biological and pharmacological aspects of the NK-1receptor. BioMed Res. Int., 2015, 2015, 1-14.
[http://dx.doi.org/10.1155/2015/495704] [PMID: 26421291]
[5]
Girish, C.; Manikandan, S. Aprepitant: A substance P antagonist for chemotherapy induced nausea and vomiting. Indian J. Cancer, 2007, 44(1), 25-30.
[http://dx.doi.org/10.4103/0019-509X.31164] [PMID: 17401221]
[6]
González-Moles, M.Á.; Ramos-García, P.; Esteban, F. Significance of the overexpression of substance P and its receptor NK-1R in head and neck carcinogenesis: A systematic review and meta-analysis. Cancers (Basel), 2021, 13(6), 1349.
[http://dx.doi.org/10.3390/cancers13061349] [PMID: 33802704]
[7]
Beirith, I.; Renz, B.W.; Mudusetti, S.; Ring, N.S.; Kolorz, J.; Koch, D.; Bazhin, A.V.; Berger, M.; Wang, J.; Angele, M.K.; D’Haese, J.G.; Guba, M.O.; Niess, H.; Andrassy, J.; Werner, J.; Ilmer, M. Identification of the neurokinin-1 receptor as targetable stratification factor for drug repurposing in pancreatic cancer. Cancers (Basel), 2021, 13(11), 2703.
[http://dx.doi.org/10.3390/cancers13112703] [PMID: 34070805]
[8]
Rodriguez, P.L.; Jiang, S.; Fu, Y.; Avraham, S.; Avraham, H.K. The proinflammatory peptide substance P promotes blood–brain barrier breaching by breast cancer cells through changes in microvascular endothelial cell tight junctions. Int. J. Cancer, 2014, 134(5), 1034-1044.
[http://dx.doi.org/10.1002/ijc.28433] [PMID: 23934616]
[9]
Nizam, E.; Erin, N. Differential consequences of neurokinin receptor 1 and 2 antagonists in metastatic breast carcinoma cells; Effects independent of Substance P. Biomed. Pharmacother., 2018, 108, 263-270.
[http://dx.doi.org/10.1016/j.biopha.2018.09.013] [PMID: 30223097]
[10]
Zhou, Y.; Zhao, L.; Xiong, T.; Chen, X.; Zhang, Y.; Yu, M.; Yang, J.; Yao, Z. Roles of full-length and truncated neurokinin-1 receptors on tumor progression and distant metastasis in human breast cancer. Breast Cancer Res. Treat., 2013, 140(1), 49-61.
[http://dx.doi.org/10.1007/s10549-013-2599-6] [PMID: 23807418]
[11]
Ge, C.; Huang, H.; Huang, F.; Yang, T.; Zhang, T.; Wu, H.; Zhou, H.; Chen, Q.; Shi, Y.; Sun, Y.; Liu, L.; Wang, X.; Pearson, R.B.; Cao, Y.; Kang, J.; Fu, C. Neurokinin-1 receptor is an effective target for treating leukemia by inducing oxidative stress through mitochondrial calcium overload. Proc. Natl. Acad. Sci. USA, 2019, 116(39), 19635-19645.
[http://dx.doi.org/10.1073/pnas.1908998116] [PMID: 31488714]
[12]
Wang, F.; Liu, S.; Liu, J.; Feng, F.; Guo, Y.; Zhang, W.; Zheng, G.; Wang, Q.; Cai, L.; Guo, M.; Lian, X.; Xu, G.; Zhang, H. SP promotes cell proliferation in esophageal squamous cell carcinoma through the NK1R/Hes1 axis. Biochem. Biophys. Res. Commun., 2019, 514(4), 1210-1216.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.092] [PMID: 31109645]
[13]
Muñoz, M.; Coveñas, R. Involvement of substance P and the NK-1 receptor in cancer progression. Peptides, 2013, 48, 1-9.
[http://dx.doi.org/10.1016/j.peptides.2013.07.024] [PMID: 23933301]
[14]
Ziche, M.; Morbidelli, L.; Pacini, M.; Geppetti, P.; Alessandri, G.; Maggi, C.A. Substance P stimulates neovascularization in vivo and proliferation of cultured endothelial cells. Microvasc. Res., 1990, 40(2), 264-278.
[http://dx.doi.org/10.1016/0026-2862(90)90024-L] [PMID: 1701206]
[15]
DeFea, K.A.; Vaughn, Z.D.; O’Bryan, E.M.; Nishijima, D.; Déry, O.; Bunnett, N.W. The proliferative and antiapoptotic effects of substance P are facilitated by formation of a β-arrestin-dependent scaffolding complex. Proc. Natl. Acad. Sci. USA, 2000, 97(20), 11086-11091.
[http://dx.doi.org/10.1073/pnas.190276697] [PMID: 10995467]
[16]
Koon, H.W.; Zhao, D.; Zhan, Y.; Moyer, M.P.; Pothoulakis, C. Substance P mediates antiapoptotic responses in human colonocytes by Akt activation. Proc. Natl. Acad. Sci. USA, 2007, 104(6), 2013-2018.
[http://dx.doi.org/10.1073/pnas.0610664104] [PMID: 17264209]
[17]
Muñoz, M.; Berger, M.; Rosso, M.; González-Ortega, A.; Carranza, A.; Coveñas, R. Antitumor activity of neurokinin-1 receptor antagonists in MG-63 human osteosarcoma xenografts. Int. J. Oncol., 2014, 44(1), 137-146.
[http://dx.doi.org/10.3892/ijo.2013.2164] [PMID: 24190675]
[18]
Berger, M.; Neth, O.; Ilmer, M.; Garnier, A.; Salinas-Martín, M.V.; de Agustín Asencio, J.C.; von Schweinitz, D.; Kappler, R.; Muñoz, M. Hepatoblastoma cells express truncated neurokinin-1 receptor and can be growth inhibited by aprepitant in vitro and in vivo. J. Hepatol., 2014, 60(5), 985-994.
[http://dx.doi.org/10.1016/j.jhep.2013.12.024] [PMID: 24412605]
[19]
Lee, M.; McCloskey, M.; Staples, S. Prolonged use of aprepitant in metastatic breast cancer and a reduction in CA153 tumour marker levels. Int. J. Cancer Clin. Res., 2016, 3, 071.
[http://dx.doi.org/10.23937/2378-3419/3/6/1071]
[20]
Castro-Obregón, S.; Rao, R.V.; del Rio, G.; Chen, S.F.; Poksay, K.S.; Rabizadeh, S.; Vesce, S.; Zhang, X.; Swanson, R.A.; Bredesen, D.E. Alternative, nonapoptotic programmed cell death: mediation by arrestin 2, ERK2, and Nur77. J. Biol. Chem., 2004, 279(17), 17543-17553.
[http://dx.doi.org/10.1074/jbc.M312363200] [PMID: 14769794]
[21]
Lim, J.E.; Chung, E.; Son, Y. A neuropeptide, Substance-P, directly induces tissue-repairing M2 like macrophages by activating the PI3K/Akt/mTOR pathway even in the presence of IFNγ. Sci. Rep., 2017, 7(1), 9417.
[http://dx.doi.org/10.1038/s41598-017-09639-7] [PMID: 28842601]
[22]
Zhang, M.; Zhang, X.; Zhao, S.; Wang, Y.; Di, W.; Zhao, G.; Yang, M.; Zhang, Q. Prognostic value of survivin and EGFR protein expression in triple-negative breast cancer (TNBC) patients. Target. Oncol., 2014, 9(4), 349-357.
[http://dx.doi.org/10.1007/s11523-013-0300-y] [PMID: 24233638]
[23]
Mehner, C.; Hockla, A.; Miller, E.; Ran, S.; Radisky, D.C.; Radisky, E.S. Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer. Oncotarget, 2014, 5(9), 2736-2749.
[http://dx.doi.org/10.18632/oncotarget.1932] [PMID: 24811362]
[24]
Mercogliano, M.F.; Bruni, S.; Elizalde, P.V.; Schillaci, R. Tumor necrosis factor alpha blockade: An opportunity to tackle breast cancer. Front. Oncol., 2020, 10, 584.
[http://dx.doi.org/10.3389/fonc.2020.00584] [PMID: 32391269]
[25]
Wang, J.; Ye, C.; Lu, D.; Chen, Y.; Jia, Y.; Ying, X.; Xiong, H.; Zhao, W.; Zhou, J.; Wang, L. Matrix metalloproteinase-1 expression in breast carcinoma: a marker for unfavorable prognosis. Oncotarget, 2017, 8(53), 91379-91390.
[http://dx.doi.org/10.18632/oncotarget.20557] [PMID: 29207651]
[26]
Chen, X.; Iliopoulos, D.; Zhang, Q.; Tang, Q.; Greenblatt, M.B.; Hatziapostolou, M.; Lim, E.; Tam, W.L.; Ni, M.; Chen, Y.; Mai, J.; Shen, H.; Hu, D.Z.; Adoro, S.; Hu, B.; Song, M.; Tan, C.; Landis, M.D.; Ferrari, M.; Shin, S.J.; Brown, M.; Chang, J.C.; Liu, X.S.; Glimcher, L.H. XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature, 2014, 508(7494), 103-107.
[http://dx.doi.org/10.1038/nature13119] [PMID: 24670641]
[27]
Bernardi, R.; Gianni, L. Hallmarks of triple negative breast cancer emerging at last? Cell Res., 2014, 24(8), 904-905.
[http://dx.doi.org/10.1038/cr.2014.61] [PMID: 24810303]
[28]
Park, Y.Y.; Jung, S.Y.; Jennings, N.B.; Rodriguez-Aguayo, C.; Peng, G.; Lee, S.R.; Kim, S.B.; Kim, K.; Leem, S.H.; Lin, S.Y.; López-Berestein, G.; Sood, A.K.; Lee, J.S. FOXM1 mediates Dox resistance in breast cancer by enhancing DNA repair. Carcinogenesis, 2012, 33(10), 1843-1853.
[http://dx.doi.org/10.1093/carcin/bgs167] [PMID: 22581827]
[29]
Gartel, A.L. A new target for proteasome inhibitors: FoxM1. Expert Opin. Investig. Drugs, 2010, 19(2), 235-242.
[http://dx.doi.org/10.1517/13543780903563364] [PMID: 20074015]
[30]
Jiang, L.; Wu, X.; Wang, P.; Wen, T.; Yu, C.; Wei, L.; Chen, H. Targeting FoxM1 by thiostrepton inhibits growth and induces apoptosis of laryngeal squamous cell carcinoma. J. Cancer Res. Clin. Oncol., 2015, 141(6), 971-981.
[http://dx.doi.org/10.1007/s00432-014-1872-3] [PMID: 25391371]
[31]
Mohammadi, F.; Javid, H.; Afshari, A.R.; Mashkani, B.; Hashemy, S.I. Substance P accelerates the progression of human esophageal squamous cell carcinoma via MMP-2, MMP-9, VEGF-A, and VEGFR1 overexpression. Mol. Biol. Rep., 2020, 47(6), 4263-4272.
[http://dx.doi.org/10.1007/s11033-020-05532-1] [PMID: 32436041]
[32]
Javid, H.; Asadi, J.; Zahedi Avval, F.; Afshari, A.R.; Hashemy, S.I. The role of substance P/neurokinin 1 receptor in the pathogenesis of esophageal squamous cell carcinoma through constitutively active PI3K/Akt/NF-κB signal transduction pathways. Mol. Biol. Rep., 2020, 47(3), 2253-2263.
[http://dx.doi.org/10.1007/s11033-020-05330-9] [PMID: 32072401]
[33]
Fulenwider, H.D.; Smith, B.M.; Nichenko, A.S.; Carpenter, J.M.; Nennig, S.E.; Cheng, K.; Rice, K.C.; Schank, J.R. Cellular and behavioral effects of lipopolysaccharide treatment are dependent upon neurokinin-1 receptor activation. J. Neuroinflammation, 2018, 15(1), 60.
[http://dx.doi.org/10.1186/s12974-018-1098-4] [PMID: 29486768]
[34]
Wierstra, I. The transcription factor FOXM1c is activated by protein kinase CK2, protein kinase A (PKA), c-Src and Raf-1. Biochem. Biophys. Res. Commun., 2011, 413(2), 230-235.
[http://dx.doi.org/10.1016/j.bbrc.2011.08.075] [PMID: 21875579]
[35]
Walczak-Drzewiecka, A.; Ratajewski, M.; Wagner, W.; Dastych, J. HIF-1alpha is up-regulated in activated mast cells by a process that involves calcineurin and NFAT. J. Immunol., 2008, 181(3), 1665-1672.
[http://dx.doi.org/10.4049/jimmunol.181.3.1665] [PMID: 18641302]
[36]
Muñoz, M.; Rosso, M. The NK-1 receptor antagonist aprepitant as a broad spectrum antitumor drug. Invest. New Drugs, 2010, 28(2), 187-193.
[http://dx.doi.org/10.1007/s10637-009-9218-8] [PMID: 19148578]
[37]
Muñoz, M.; Rosso, M.; Robles-Frías, M.J.; Salinas-Martín, M.V.; Coveñas, R. Immunolocalization of the neurokinin-1 receptor: A new target in the treatment of human malignant melanoma. Lab. Invest., 2010, 2010(90), 1259-1269.
[http://dx.doi.org/10.1038/labinvest.2010.92] [PMID: 20458280]
[38]
Muñoz, M.; Coveñas, R. Safety of neurokinin-1 receptor antagonists. Expert Opin. Drug Saf., 2013, 12(5), 673-685.
[http://dx.doi.org/10.1517/14740338.2013.804059] [PMID: 23706125]
[39]
Tebas, P.; Spitsin, S.; Barrett, J.S.; Tuluc, F.; Elci, O.; Korelitz, J.J.; Wagner, W.; Winters, A.; Kim, D.; Catalano, R.; Evans, D.L.; Douglas, S.D. Reduction of soluble CD163, substance P, programmed death 1 and inflammatory markers. AIDS, 2015, 29(8), 931-939.
[http://dx.doi.org/10.1097/QAD.0000000000000638] [PMID: 25915168]
[40]
Ito, Y.; Karayama, M.; Inui, N.; Kuroishi, S.; Nakano, H.; Nakamura, Y.; Yokomura, K.; Toyoshima, M.; Shirai, T.; Masuda, M.; Yamada, T.; Yasuda, K.; Hayakawa, H.; Suda, T.; Chida, K. Efficacy and safety of high dose aprepitant treatment in patients with advanced non-small cell lung cancer. Lung Cancer, 2014, 84(3), 259-264.
[http://dx.doi.org/10.1016/j.lungcan.2014.03.017] [PMID: 24746177]
[41]
Kast, R.E.; Ramiro, S.; Lladó, S.; Toro, S.; Coveñas, R.; Muñoz, M. Antitumor action of temozolomide, ritonavir and aprepitant against human glioma cells. J. Neurooncol., 2016, 126(3), 425-431.
[http://dx.doi.org/10.1007/s11060-015-1996-6] [PMID: 26603162]
[42]
Ständer, S.; Siepmann, D.; Herrgott, I.; Sunderkötter, C.; Luger, T.A. Targeting the neurokinin receptor 1 with aprepitant: a novel antipruritic strategy. PLoS One, 2010, 5(6), e10968.
[http://dx.doi.org/10.1371/journal.pone.0010968] [PMID: 20532044]
[43]
Un, H.; Ugan, R.A.; Kose, D.; Bayir, Y.; Cadirci, E.; Selli, J.; Halici, Z. A novel effect of Aprepitant: Protection for cisplatin-induced nephrotoxicity and hepatotoxicity. Eur. J. Pharmacol., 2020, 880, 173168.
[http://dx.doi.org/10.1016/j.ejphar.2020.173168] [PMID: 32423870]
[44]
Spitsin, S.; Tebas, P.; Barrett, J.S.; Pappa, V.; Kim, D.; Taylor, D.; Evans, D.L.; Douglas, S.D. Antiinflammatory effects of aprepitant coadministration with cART regimen containing ritonavir in HIV-infected adults. JCI Insight, 2017, 2(19), e95893.
[http://dx.doi.org/10.1172/jci.insight.95893] [PMID: 28978797]
[45]
Chmielinska, J.J.; Kramer, J.H.; Mak, I.T.; Spurney, C.F.; Weglicki, W.B. Substance P receptor blocker, aprepitant, inhibited cutaneous and other neurogenic inflammation side effects of the EGFR1-TKI, erlotinib. Mol. Cell. Biochem., 2020, 465(1-2), 175-185.
[http://dx.doi.org/10.1007/s11010-019-03677-7] [PMID: 31853800]
[46]
Roila, F.; Rolski, J.; Ramlau, R.; Dediu, M.; Russo, M.W.; Bandekar, R.R.; Grunberg, S.M. Randomized, double-blind, dose-ranging trial of the oral neurokinin-1 receptor antagonist casopitant mesylate for the prevention of cisplatin-induced nausea and vomiting. Ann. Oncol., 2009, 20(11), 1867-1873.
[http://dx.doi.org/10.1093/annonc/mdp194] [PMID: 19541792]
[47]
Molinos-Quintana, A.; Trujillo-Hacha, P.; Piruat, J.I.; Bejarano-García, J.A.; García-Guerrero, E.; Pérez-Simón, J.A.; Muñoz, M. Human acute myeloid leukemia cells express Neurokinin-1 receptor, which is involved in the antileukemic effect of Neurokinin-1 receptor antagonists. Invest. New Drugs, 2019, 37(1), 17-26.
[http://dx.doi.org/10.1007/s10637-018-0607-8] [PMID: 29721755]
[48]
Patel, B.; Downie, J.; Bayliss, J.; Stephenson, A.; Bluebond-Langner, M. Long-term daily administration of aprepitant for the management of intractable nausea and vomiting in children with life-limiting conditions: A case series. J. Pain Symptom Manage., 2021, 62(3), e225-e231.
[http://dx.doi.org/10.1016/j.jpainsymman.2021.02.007] [PMID: 33587995]
[49]
Muñoz, M.; Parrilla, J.; Rosso, M.; Coveñas, R. Antipruritic vs. antitumour action of aprepitant: A question of dose. Acta Derm. Venereol., 2019, 99(6), 620-621.
[http://dx.doi.org/10.2340/00015555-3148] [PMID: 30734049]
[50]
Bashash, D.; Safaroghli-Azar, A.; Bayati, S.; Razani, E.; Pourbagheri-Sigaroodi, A.; Gharehbaghian, A.; Momeny, M.; Sanjadi, M.; Rezaie-Tavirani, M.; Ghaffari, S.H. Neurokinin-1 receptor (NK1R) inhibition sensitizes APL cells to anti-tumor effect of arsenic trioxide via restriction of NF-κB axis: Shedding new light on resistance to Aprepitant. Int. J. Biochem. Cell Biol., 2018, 103, 105-114.
[http://dx.doi.org/10.1016/j.biocel.2018.08.010] [PMID: 30145367]
[51]
Florea, A.M.; Büsselberg, D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel), 2011, 3(1), 1351-1371.
[http://dx.doi.org/10.3390/cancers3011351] [PMID: 24212665]
[52]
Rodriguez, E.; Pei, G.; Zhao, Z.; Kim, S.T.; German, A.; Robinson, P. Substance P antagonism as a novel therapeutic option to enhance efficacy of cisplatin in triple negative breast cancer and protect PC12 cells against cisplatin-induced oxidative stress and apoptosis. Cancers (Basel), 2021, 13(20), 5178.
[http://dx.doi.org/10.3390/cancers13205178] [PMID: 34680400]
[53]
Huang, C.; Zhang, X.; Ramil, J.M.; Rikka, S.; Kim, L.; Lee, Y.; Gude, N.A.; Thistlethwaite, P.A.; Sussman, M.A.; Gottlieb, R.A.; Gustafsson, Å.B. Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation, 2010, 121(5), 675-683.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.902221] [PMID: 20100968]
[54]
Lindsey, M.L.; Lange, R.A.; Parsons, H.; Andrews, T.; Aune, G.J. The tell-tale heart: molecular and cellular responses to childhood anthracycline exposure. Am. J. Physiol. Heart Circ. Physiol., 2014, 307(10), H1379-H1389.
[http://dx.doi.org/10.1152/ajpheart.00099.2014] [PMID: 25217655]
[55]
Paulides, M.; Kremers, A.; Stöhr, W.; Bielack, S.; Jürgens, H.; Treuner, J.; Beck, J.D.; Langer, T. Prospective longitudinal evaluation of doxorubicin-induced cardiomyopathy in sarcoma patients: A report of the late effects surveillance system (LESS). Pediatr. Blood Cancer, 2006, 46(4), 489-495.
[http://dx.doi.org/10.1002/pbc.20492] [PMID: 16333817]
[56]
Smith, L.A.; Cornelius, V.R.; Plummer, C.J.; Levitt, G.; Verrill, M.; Canney, P.; Jones, A. Cardiotoxicity of anthracycline agents for the treatment of cancer: Systematic review and meta-analysis of randomised controlled trials. BMC Cancer, 2010, 10(1), 337.
[http://dx.doi.org/10.1186/1471-2407-10-337] [PMID: 20587042]
[57]
Bhagat, A.; Kleinerman, E.S. Anthracycline-induced cardiotoxicity: Causes, mechanisms, and prevention. Adv. Exp. Med. Biol., 2020, 1257, 181-192.
[http://dx.doi.org/10.1007/978-3-030-43032-0_15] [PMID: 32483740]
[58]
Robinson, P.; Kasembeli, M.; Bharadwaj, U.; Engineer, N.; Eckols, K.T.; Tweardy, D.J. Substance P receptor signaling mediates doxorubicin-induced cardiomyocyte apoptosis and triple-negative breast cancer chemoresistance. BioMed Res. Int., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/1959270] [PMID: 26981525]
[59]
Legi, A.; Rodriguez, E.; Eckols, T.K.; Mistry, C.; Robinson, P. Substance P antagonism prevents chemotherapy-induced cardiotoxicity. Cancers (Basel), 2021, 13(7), 1732.
[http://dx.doi.org/10.3390/cancers13071732] [PMID: 33917491]
[60]
Henssen, A.G.; Odersky, A.; Szymansky, A.; Seiler, M.; Althoff, K.; Beckers, A.; Speleman, F.; Schäfers, S.; De Preter, K.; Astrahanseff, K.; Struck, J.; Schramm, A.; Eggert, A.; Bergmann, A.; Schulte, J.H. Targeting tachykinin receptors in neuroblastoma. Oncotarget, 2017, 8(1), 430-443.
[http://dx.doi.org/10.18632/oncotarget.13440] [PMID: 27888795]
[61]
Kitchens, C.A.; McDonald, P.R.; Pollack, I.F.; Wipf, P.; Lazo, J.S. Synergy between microtubule destabilizing agents and neurokinin 1 receptor antagonists identified by an siRNA synthetic lethal screen. FASEB J., 2009, 23(S1), 756.
[http://dx.doi.org/10.1096/fasebj.23.1_supplement.756.13]
[62]
Döhner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute myeloid leukemia. N. Engl. J. Med., 2015, 373(12), 1136-1152.
[http://dx.doi.org/10.1056/NEJMra1406184] [PMID: 26376137]
[63]
Wu, H.; Cheng, X.; Huang, F.; Shao, G.; Meng, Y.; Wang, L.; Wang, T.; Jia, X.; Yang, T.; Wang, X.; Fu, C. Aprepitant sensitizes acute myeloid leukemia cells to the cytotoxic effects of cytosine arabinoside in vitro and in vivo. Drug Des. Devel. Ther., 2020, 14, 2413-2422.
[http://dx.doi.org/10.2147/DDDT.S244648] [PMID: 32606608]
[64]
Zhang, P.W.S.Y.; Hu, L.H. Studies on the clinical practice and mechanisms of 713 (As2O3) in the treatment of 117 cases of APL. J. Harbin Med. Univ., 1995, 29, 243.
[65]
Zhang, P. On arsenic trioxide in the clinical treatment of acute promyelocytic leukemia. Leuk. Res. Rep., 2017, 7, 29-32.
[http://dx.doi.org/10.1016/j.lrr.2017.03.001] [PMID: 28462082]
[66]
Bayati, S.; Razani, E.; Bashash, D.; Safaroghli-Azar, A.; Safa, M.; Ghaffari, S.H. Antileukemic effects of neurokinin-1 receptor inhibition on hematologic malignant cells. Anticancer Drugs, 2018, 29(3), 243-252.
[http://dx.doi.org/10.1097/CAD.0000000000000591] [PMID: 29389803]
[67]
Shi, Y.; Wang, X.; Meng, Y.; Ma, J.; Zhang, Q.; Shao, G.; Wang, L.; Cheng, X.; Hong, X.; Wang, Y.; Yan, Z.; Cao, Y.; Kang, J.; Fu, C. A novel mechanism of endoplasmic reticulum stress- and c-myc-degradation-mediated therapeutic benefits of antineurokinin-1 receptor drugs in colorectal cancer. Adv. Sci. (Weinh.), 2021, 8(21), 2101936.
[http://dx.doi.org/10.1002/advs.202101936] [PMID: 34605226]
[68]
Mak, I.T.; Kramer, J.H.; Chmielinska, J.J.; Spurney, C.F.; Weglicki, W.B. EGFR-TKI, erlotinib, causes hypomagnesemia, oxidative stress, and cardiac dysfunction: attenuation by NK-1 receptor blockade. J. Cardiovasc. Pharmacol., 2015, 65(1), 54-61.
[http://dx.doi.org/10.1097/FJC.0000000000000163] [PMID: 25343568]
[69]
Seki, N.; Ochiai, R.; Haruyama, T.; Ishihara, M.; Natsume, M.; Fukasawa, Y.; Sakamoto, T.; Tanzawa, S.; Usui, R.; Honda, T.; Ota, S.; Ichikawa, Y.; Watanabe, K. Need for flexible adjustment of the treatment schedule for aprepitant administration against erlotinib-induced refractory pruritus and skin rush. Case Rep. Oncol., 2019, 12(1), 84-90.
[http://dx.doi.org/10.1159/000493256] [PMID: 30792647]
[70]
Mir, O.; Blanchet, B.; Goldwasser, F. More on aprepitant for erlotinib-induced pruritus. N. Engl. J. Med., 2011, 364(5), 486-487.
[http://dx.doi.org/10.1056/NEJMc1013027] [PMID: 21288111]
[71]
Vincenzi, B.; Trower, M.; Duggal, A.; Guglielmini, P.; Harris, P.; Jackson, D.; Lacouture, M.E.; Ratti, E.; Tonini, G.; Wood, A.; Ständer, S. Neurokinin-1 antagonist orvepitant for EGFRI-induced pruritus in patients with cancer: a randomised, placebo-controlled phase II trial. BMJ Open, 2020, 10(2), e030114.
[http://dx.doi.org/10.1136/bmjopen-2019-030114] [PMID: 32034016]
[72]
Muñoz, M.; Crespo, J.C.; Crespo, J.P.; Coveñas, R. Neurokinin-1 receptor antagonist aprepitant and radiotherapy, a successful combination therapy in a patient with lung cancer: A case report. Mol. Clin. Oncol., 2019, 11(1), 50-54.
[http://dx.doi.org/10.3892/mco.2019.1857] [PMID: 31289677]
[73]
Alfieri, A.C.L.X. Efectos de los antagonistas de los receptores NK1 y de la dexametasona sobre la inflamación neurogénica inducida por ciclofosfamida y por radiación X, en la rata. AVFT, 2004, 23, 61-66.
[74]
Robinson, P.; Garza, E. Substance P antagonism enhances responses to chemotherapy in cancer. Cancers (Basel), 2021, 13(7), 1732.
[http://dx.doi.org/10.3390/cancers13071732] [PMID: 33917491]
[75]
Majkowska-Pilip, A.; Halik, P.K.; Gniazdowska, E. The significance of NK-1 receptor ligands and their application in targeted radionuclide tumour therapy. Pharmaceutics, 2019, 11(9), 443.
[http://dx.doi.org/10.3390/pharmaceutics11090443] [PMID: 31480582]
[76]
Halik, P.K.; Lipiński, P.F.J.; Matalińska, J.; Koźmiński, P.; Misicka, A.; Gniazdowska, E. Radiochemical synthesis and evaluation of novel radioconjugates of neurokinin-1 receptor antagonist aprepitant dedicated for NK1R-positive tumors. Molecules, 2020, 25(16), 3756.
[http://dx.doi.org/10.3390/molecules25163756] [PMID: 32824729]
[77]
Baum, R.P. Therapeutic Nuclear Medicine; Springer Publisher: Heidelberg, 2014.
[http://dx.doi.org/10.1007/978-3-540-36719-2]
[78]
Dimitriou, P.; Basunia, S.; Bernstein, L.; Chen, J.; Elekes, Z.; Huang, X.; Hurst, A.; Limura, H.; Jain, A.K.; Kelley, J.; Kibédi, T. International atomic energy agency NDS, live chart of nuclides, nuclear structure and decay data. Available from: https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html (Accessed on: June 9th, 2022).
[79]
Majkowska-Pilip, A.; Koźmiński, P.; Wawrzynowska, A.; Budlewski, T.; Kostkiewicz, B.; Gniazdowska, E. Application of neurokinin-1 receptor in targeted strategies for glioma treatment. Part I: Synthesis and evaluation of substance P fragments labeled with 99m Tc and 177 Lu as potential receptor radiopharmaceuticals. Molecules, 2018, 23(10), 2542.
[http://dx.doi.org/10.3390/molecules23102542] [PMID: 30301182]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy