Review Article

分子伴侣介导的自噬:代谢疾病的潜在靶标

卷 30, 期 16, 2023

发表于: 04 October, 2022

页: [1887 - 1899] 页: 13

弟呕挨: 10.2174/0929867329666220811141955

价格: $65

conference banner
摘要

自噬是细胞选择性去除受损细胞器或蛋白质的过程。分子伴侣介导的自噬(CMA)是一种降解细胞中含有KFERQ五肽的蛋白质的自噬。CMA可以降解受损或过量的蛋白质,因此在维持细胞内蛋白质平衡方面发挥着重要作用。CMA还可以通过降解生命活动中的关键蛋白质(如脂质和葡萄糖代谢)发挥调节作用。本文介绍了CMA过程,并描述了当前常用的CMA检测方法。此外,我们还描述了CMA在糖和脂质代谢中的作用。最后,我们总结了CMA在糖尿病肾病(DN)、酒精性肝病(ALD)和非酒精性脂肪性肝病(NAFLD)等代谢性疾病中的作用,并讨论了CMA作为代谢性疾病潜在治疗靶点的作用。

关键词: 分子伴侣介导的自噬(CMA)、代谢性疾病、自噬、糖尿病肾病(DN)、LAMP2A、HSC70。

« Previous
[1]
Kuma, A.; Komatsu, M.; Mizushima, N. Autophagy-monitoring and autophagy-deficient mice. Autophagy, 2017, 13(10), 1619-1628.
[http://dx.doi.org/10.1080/15548627.2017.1343770] [PMID: 28820286]
[2]
Kim, K.H.; Lee, M.S. Autophagy--a key player in cellular and body metabolism. Nat. Rev. Endocrinol., 2014, 10(6), 322-337.
[http://dx.doi.org/10.1038/nrendo.2014.35] [PMID: 24663220]
[3]
Feng, Y.; He, D.; Yao, Z.; Klionsky, D.J. The machinery of macroautophagy. Cell Res., 2014, 24(1), 24-41.
[http://dx.doi.org/10.1038/cr.2013.168] [PMID: 24366339]
[4]
Al-Huseini, I.; Sirasanagandla, S.R.; Babu, K.S.; Sofin, R.G.S.; Das, S. Kinase inhibitors involved in the regulation of autophagy: Molecular concepts and clinical implications. Curr. Med. Chem., 2022, 29
[http://dx.doi.org/10.2174/0929867329666220117114306] [PMID: 35078392]
[5]
Li, W.W.; Li, J.; Bao, J.K. Microautophagy: Lesser-known self-eating. Cell. Mol. Life Sci., 2012, 69(7), 1125-1136.
[http://dx.doi.org/10.1007/s00018-011-0865-5] [PMID: 22080117]
[6]
Jacomin, A.C.; Gohel, R.; Hussain, Z.; Varga, A.; Maruzs, T.; Eddison, M.; Sica, M.; Jain, A.; Moffat, K.G.; Johansen, T.; Jenny, A.; Juhasz, G.; Nezis, I.P. Degradation of arouser by endosomal microautophagy is essential for adaptation to starvation in Drosophila. Life Sci. Alliance, 2020, 4(2), 4.
[PMID: 33318080]
[7]
Garcia, E.J.; Liao, P.C.; Tan, G.; Vevea, J.D.; Sing, C.N.; Tsang, C.A.; McCaffery, J.M.; Boldogh, I.R.; Pon, L.A. Membrane dynamics and protein targets of lipid droplet microautophagy during ER stress-induced proteostasis in the budding yeast, Saccharomyces cerevisiae. Autophagy, 2021, 17(9), 2363-2383.
[http://dx.doi.org/10.1080/15548627.2020.1826691] [PMID: 33021864]
[8]
Bourdenx, M.; Martín-Segura, A.; Scrivo, A.; Rodriguez-Navarro, J.A.; Kaushik, S.; Tasset, I.; Diaz, A.; Storm, N.J.; Xin, Q.; Juste, Y.R.; Stevenson, E.; Luengo, E.; Clement, C.C.; Choi, S.J.; Krogan, N.J.; Mosharov, E.V.; Santambrogio, L.; Grueninger, F.; Collin, L.; Swaney, D.L.; Sulzer, D.; Gavathiotis, E.; Cuervo, A.M. Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome. Cell, 2021, 184(10), 2696-2714.e25.
[http://dx.doi.org/10.1016/j.cell.2021.03.048] [PMID: 33891876]
[9]
Nieto-Torres, J.L.; Hansen, M. Macroautophagy and aging: The impact of cellular recycling on health and longevity. Mol. Aspects Med., 2021, 82, 101020.
[http://dx.doi.org/10.1016/j.mam.2021.101020] [PMID: 34507801]
[10]
Münz, C. The macroautophagy machinery in endo- and exocytosis. J. Mol. Biol., 2017, 429(4), 473-485.
[http://dx.doi.org/10.1016/j.jmb.2016.11.028] [PMID: 27932293]
[11]
Onishi, M.; Yamano, K.; Sato, M.; Matsuda, N.; Okamoto, K. Molecular mechanisms and physiological functions of mitophagy. EMBO J., 2021, 40(3), e104705.
[http://dx.doi.org/10.15252/embj.2020104705] [PMID: 33438778]
[12]
Yang, M.; Luo, S.; Wang, X.; Li, C.; Yang, J.; Zhu, X.; Xiao, L.; Sun, L. ER-Phagy: A new regulator of ER homeostasis. Front. Cell Dev. Biol., 2021, 9, 684526.
[http://dx.doi.org/10.3389/fcell.2021.684526] [PMID: 34307364]
[13]
Germain, K.; Kim, P.K. Pexophagy: A model for selective autophagy. Int. J. Mol. Sci., 2020, 21(2), 21.
[http://dx.doi.org/10.3390/ijms21020578] [PMID: 31963200]
[14]
Schulze, R.J.; Sathyanarayan, A.; Mashek, D.G. Breaking fat: The regulation and mechanisms of lipophagy. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(10 Pt B), 1178-1187.
[http://dx.doi.org/10.1016/j.bbalip.2017.06.008] [PMID: 28642194]
[15]
Schuck, S. Microautophagy - distinct molecular mechanisms handle cargoes of many sizes. J. Cell Sci., 2020, 133(17), 133.
[http://dx.doi.org/10.1242/jcs.246322] [PMID: 32907930]
[16]
Mijaljica, D.; Prescott, M.; Devenish, R.J. Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum. Autophagy, 2011, 7(7), 673-682.
[http://dx.doi.org/10.4161/auto.7.7.14733] [PMID: 21646866]
[17]
Sato, M.; Seki, T.; Konno, A.; Hirai, H.; Kurauchi, Y.; Hisatsune, A.; Katsuki, H. Rapamycin activates mammalian microautophagy. J. Pharmacol. Sci., 2019, 140(2), 201-204.
[http://dx.doi.org/10.1016/j.jphs.2019.05.007] [PMID: 31178328]
[18]
Bourdenx, M.; Gavathiotis, E.; Cuervo, A.M. Chaperone-mediated autophagy: A gatekeeper of neuronal proteostasis. Autophagy, 2021, 17(8), 2040-2042.
[http://dx.doi.org/10.1080/15548627.2021.1935007] [PMID: 34110247]
[19]
Li, W.; Nie, T.; Xu, H.; Yang, J.; Yang, Q.; Mao, Z. Chaperone-mediated autophagy: Advances from bench to bedside. Neurobiol. Dis., 2019, 122, 41-48.
[http://dx.doi.org/10.1016/j.nbd.2018.05.010] [PMID: 29800676]
[20]
Handa, K.; Kanno, H.; Matsuda, M.; Sugaya, T.; Murakami, T.; Prudnikova, M.; Ozawa, H.; Itoi, E. Chaperone-mediated autophagy after spinal cord injury. J. Neurotrauma, 2020, 37(15), 1687-1695.
[http://dx.doi.org/10.1089/neu.2019.6820] [PMID: 32233738]
[21]
Catarino, S.; Pereira, P.; Girão, H. Molecular control of chaperone-mediated autophagy. Essays Biochem., 2017, 61(6), 663-674.
[http://dx.doi.org/10.1042/EBC20170057] [PMID: 29233876]
[22]
Nie, T.; Tao, K.; Zhu, L.; Huang, L.; Hu, S.; Yang, R.; Xu, P.; Mao, Z.; Yang, Q. Chaperone-mediated autophagy controls the turnover of E3 ubiquitin ligase MARCHF5 and regulates mitochondrial dynamics. Autophagy, 2021, 17(10), 2923-2938.
[http://dx.doi.org/10.1080/15548627.2020.1848128] [PMID: 33970775]
[23]
Andrade-Tomaz, M.; de Souza, I.; Rocha, C.; Gomes, L.R. The role of chaperone-mediated autophagy in cell cycle control and its implications in cancer. CELLS-BASEL, 2020, 9, 9.
[24]
Campbell, P.; Morris, H.; Schapira, A. Chaperone-mediated autophagy as a therapeutic target for Parkinson disease. Expert Opin. Ther. Targets, 2018, 22(10), 823-832.
[http://dx.doi.org/10.1080/14728222.2018.1517156] [PMID: 30185079]
[25]
Yang, R.; Gao, G.; Mao, Z.; Yang, Q. Chaperone-mediated autophagy and mitochondrial homeostasis in Parkinson’s disease. Parkinsons Dis., 2016, 2016, 2613401.
[http://dx.doi.org/10.1155/2016/2613401] [PMID: 27413575]
[26]
Dice, J.F. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem. Sci., 1990, 15(8), 305-309.
[http://dx.doi.org/10.1016/0968-0004(90)90019-8] [PMID: 2204156]
[27]
Kaushik, S.; Cuervo, A.M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol., 2018, 19(6), 365-381.
[http://dx.doi.org/10.1038/s41580-018-0001-6] [PMID: 29626215]
[28]
Ferreira, J.V.; Soares, A.R.; Ramalho, J.S.; Pereira, P.; Girao, H. K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-mediated autophagy. Sci. Rep., 2015, 5(1), 10210.
[http://dx.doi.org/10.1038/srep10210] [PMID: 25958982]
[29]
Bonam, S.R.; Ruff, M.; Muller, S. HSPA8/HSC70 in immune disorders: A molecular rheostat that adjusts Chaperone-mediated autophagy substrates. CELLS-BASEL, 2019, 8.
[30]
Issa, A.R.; Sun, J.; Petitgas, C.; Mesquita, A.; Dulac, A.; Robin, M.; Mollereau, B.; Jenny, A.; Chérif-Zahar, B.; Birman, S. The lysosomal membrane protein LAMP2A promotes autophagic flux and prevents SNCA-induced Parkinson disease-like symptoms in the Drosophila brain. Autophagy, 2018, 14(11), 1898-1910.
[http://dx.doi.org/10.1080/15548627.2018.1491489] [PMID: 29989488]
[31]
Ikami, Y.; Terasawa, K.; Sakamoto, K.; Ohtake, K.; Harada, H.; Watabe, T.; Yokoyama, S.; Hara-Yokoyama, M. The two-domain architecture of LAMP2A regulates its interaction with Hsc70. Exp. Cell Res., 2022, 411(1), 112986.
[http://dx.doi.org/10.1016/j.yexcr.2021.112986] [PMID: 34942188]
[32]
Losmanová, T.; Janser, F.A.; Humbert, M.; Tokarchuk, I.; Schläfli, A.M.; Neppl, C.; Schmid, R.A.; Tschan, M.P.; Langer, R.; Berezowska, S. Chaperone-Mediated autophagy markers LAMP2A and HSC70 are independent adverse prognostic markers in primary resected squamous cell carcinomas of the lung. Oxid. Med. Cell. Longev., 2020, 2020, 8506572.
[http://dx.doi.org/10.1155/2020/8506572] [PMID: 33029283]
[33]
Kacal, M.; Zhang, B.; Hao, Y.; Norberg, E.; Vakifahmetoglu-Norberg, H. Quantitative proteomic analysis of temporal lysosomal proteome and the impact of the KFERQ-like motif and LAMP2A in lysosomal targeting. Autophagy, 2021, 17(11), 3865-3874.
[http://dx.doi.org/10.1080/15548627.2021.1876343] [PMID: 33446043]
[34]
Tekirdag, K.; Cuervo, A.M. Chaperone-mediated autophagy and endosomal microautophagy: Joint by a chaperone. J. Biol. Chem., 2018, 293(15), 5414-5424.
[http://dx.doi.org/10.1074/jbc.R117.818237] [PMID: 29247007]
[35]
Caballero, B.; Bourdenx, M.; Luengo, E.; Diaz, A.; Sohn, P.D.; Chen, X.; Wang, C.; Juste, Y.R.; Wegmann, S.; Patel, B.; Young, Z.T.; Kuo, S.Y.; Rodriguez-Navarro, J.A.; Shao, H.; Lopez, M.G.; Karch, C.M.; Goate, A.M.; Gestwicki, J.E.; Hyman, B.T.; Gan, L.; Cuervo, A.M. Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice. Nat. Commun., 2021, 12(1), 2238.
[http://dx.doi.org/10.1038/s41467-021-22501-9] [PMID: 33854069]
[36]
Arias, E. Methods to study Chaperone-mediated autophagy. Methods Enzymol., 2017, 588, 283-305.
[http://dx.doi.org/10.1016/bs.mie.2016.10.009] [PMID: 28237106]
[37]
Patel, B.; Cuervo, A.M. Methods to study chaperone-mediated autophagy. Methods, 2015, 75, 133-140.
[http://dx.doi.org/10.1016/j.ymeth.2015.01.003] [PMID: 25595300]
[38]
Kaushik, S.; Cuervo, A.M. Methods to monitor chaperone-mediated autophagy. Methods Enzymol., 2009, 452, 297-324.
[http://dx.doi.org/10.1016/S0076-6879(08)03619-7] [PMID: 19200890]
[39]
Pajares, M.; Rojo, A.I.; Arias, E.; Díaz-Carretero, A.; Cuervo, A.M.; Cuadrado, A. Transcription factor NFE2L2/NRF2 modulates chaperone-mediated autophagy through the regulation of LAMP2A. Autophagy, 2018, 14(8), 1310-1322.
[http://dx.doi.org/10.1080/15548627.2018.1474992] [PMID: 29950142]
[40]
Cuervo, A.M.; Stefanis, L.; Fredenburg, R.; Lansbury, P.T.; Sulzer, D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science, 2004, 305(5688), 1292-1295.
[http://dx.doi.org/10.1126/science.1101738] [PMID: 15333840]
[41]
Koga, H.; Martinez-Vicente, M.; Macian, F.; Verkhusha, V.V.; Cuervo, A.M. A photoconvertible fluorescent reporter to track chaperone-mediated autophagy. Nat. Commun., 2011, 2(1), 386.
[http://dx.doi.org/10.1038/ncomms1393] [PMID: 21750540]
[42]
Xu, X.; Sun, Y.; Cen, X.; Shan, B.; Zhao, Q.; Xie, T.; Wang, Z.; Hou, T.; Xue, Y.; Zhang, M.; Peng, D.; Sun, Q.; Yi, C.; Najafov, A.; Xia, H. Metformin activates chaperone-mediated autophagy and improves disease pathologies in an Alzheimer disease mouse model. Protein Cell, 2021, 12(10), 769-787.
[http://dx.doi.org/10.1007/s13238-021-00858-3] [PMID: 34291435]
[43]
Oshima, M.; Seki, T.; Kurauchi, Y.; Hisatsune, A.; Katsuki, H. Reciprocal regulation of Chaperone-mediated autophagy/microautophagy and exosome release. Biol. Pharm. Bull., 2019, 42(8), 1394-1401.
[http://dx.doi.org/10.1248/bpb.b19-00316] [PMID: 31366874]
[44]
Xue, N.; Lai, F.; Du, T.; Ji, M.; Liu, D.; Yan, C.; Zhang, S.; Yu, X.; Jin, J.; Chen, X. Chaperone-mediated autophagy degradation of IGF-1Rβ induced by NVP-AUY922 in pancreatic cancer. Cell. Mol. Life Sci., 2019, 76(17), 3433-3447.
[http://dx.doi.org/10.1007/s00018-019-03080-x] [PMID: 30980109]
[45]
Allende-Vega, N.; Villalba, M. Metabolic stress controls mutant p53 R248Q stability in acute myeloid leukemia cells. Sci. Rep., 2019, 9(1), 5637.
[http://dx.doi.org/10.1038/s41598-019-42220-y] [PMID: 30948782]
[46]
Finn, P.F.; Mesires, N.T.; Vine, M.; Dice, J.F. Effects of small molecules on chaperone-mediated autophagy. Autophagy, 2005, 1(3), 141-145.
[http://dx.doi.org/10.4161/auto.1.3.2000] [PMID: 16874031]
[47]
Anguiano, J.; Garner, T.P.; Mahalingam, M.; Das, B.C.; Gavathiotis, E.; Cuervo, A.M. Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives. Nat. Chem. Biol., 2013, 9(6), 374-382.
[http://dx.doi.org/10.1038/nchembio.1230] [PMID: 23584676]
[48]
Ouchida, A.T.; Li, Y.; Geng, J.; Najafov, A.; Ofengeim, D.; Sun, X.; Yu, Q.; Yuan, J. Synergistic effect of a novel autophagy inhibitor and quizartinib enhances cancer cell death. Cell Death Dis., 2018, 9(2), 138.
[http://dx.doi.org/10.1038/s41419-017-0170-9] [PMID: 29374185]
[49]
Sato, M.; Ueda, E.; Konno, A.; Hirai, H.; Kurauchi, Y.; Hisatsune, A.; Katsuki, H.; Seki, T. Glucocorticoids negatively regulates chaperone mediated autophagy and microautophagy. Biochem. Biophys. Res. Commun., 2020, 528(1), 199-205.
[http://dx.doi.org/10.1016/j.bbrc.2020.04.132] [PMID: 32487317]
[50]
Macri, C.; Wang, F.; Tasset, I.; Schall, N.; Page, N.; Briand, J.P.; Cuervo, A.M.; Muller, S. Modulation of deregulated chaperone-mediated autophagy by a phosphopeptide. Autophagy, 2015, 11(3), 472-486.
[http://dx.doi.org/10.1080/15548627.2015.1017179] [PMID: 25719862]
[51]
Wing, S.S.; Chiang, H.L.; Goldberg, A.L.; Dice, J.F. Proteins containing peptide sequences related to Lys-Phe-Glu-Arg-Gln are selectively depleted in liver and heart, but not skeletal muscle, of fasted rats. Biochem. J., 1991, 275(Pt 1), 165-169.
[http://dx.doi.org/10.1042/bj2750165] [PMID: 2018472]
[52]
Tasset, I.; Cuervo, A.M. Role of chaperone-mediated autophagy in metabolism. FEBS J., 2016, 283(13), 2403-2413.
[http://dx.doi.org/10.1111/febs.13677] [PMID: 26854402]
[53]
Singh, R.; Kaushik, S.; Wang, Y.; Xiang, Y.; Novak, I.; Komatsu, M.; Tanaka, K.; Cuervo, A.M.; Czaja, M.J. Autophagy regulates lipid metabolism. Nature, 2009, 458(7242), 1131-1135.
[http://dx.doi.org/10.1038/nature07976] [PMID: 19339967]
[54]
Rodriguez-Navarro, J.A.; Kaushik, S.; Koga, H.; Dall’Armi, C.; Shui, G.; Wenk, M.R.; Di Paolo, G.; Cuervo, A.M. Inhibitory effect of dietary lipids on chaperone-mediated autophagy. Proc. Natl. Acad. Sci. USA, 2012, 109(12), E705-E714.
[http://dx.doi.org/10.1073/pnas.1113036109] [PMID: 22331875]
[55]
Cuervo, A.M.; Terlecky, S.R.; Dice, J.F.; Knecht, E. Selective binding and uptake of ribonuclease A and glyceraldehyde-3-phosphate dehydrogenase by isolated rat liver lysosomes. J. Biol. Chem., 1994, 269(42), 26374-26380.
[http://dx.doi.org/10.1016/S0021-9258(18)47204-3] [PMID: 7929357]
[56]
Kon, M.; Kiffin, R.; Koga, H.; Chapochnick, J.; Macian, F.; Varticovski, L.; Cuervo, A.M. Chaperone-mediated autophagy is required for tumor growth. Sci. Transl. Med., 2011, 3(109), 109ra117.
[http://dx.doi.org/10.1126/scitranslmed.3003182] [PMID: 22089453]
[57]
Schneider, J.L.; Suh, Y.; Cuervo, A.M. Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metab., 2014, 20(3), 417-432.
[http://dx.doi.org/10.1016/j.cmet.2014.06.009] [PMID: 25043815]
[58]
Lv, L.; Li, D.; Zhao, D.; Lin, R.; Chu, Y.; Zhang, H.; Zha, Z.; Liu, Y.; Li, Z.; Xu, Y.; Wang, G.; Huang, Y.; Xiong, Y.; Guan, K.L.; Lei, Q.Y. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol. Cell, 2011, 42(6), 719-730.
[http://dx.doi.org/10.1016/j.molcel.2011.04.025] [PMID: 21700219]
[59]
Pastorino, J.G.; Hoek, J.B.; Hexokinase, I.I. Hexokinase II: The integration of energy metabolism and control of apoptosis. Curr. Med. Chem., 2003, 10(16), 1535-1551.
[http://dx.doi.org/10.2174/0929867033457269] [PMID: 12871125]
[60]
Xia, H.G.; Najafov, A.; Geng, J.; Galan-Acosta, L.; Han, X.; Guo, Y.; Shan, B.; Zhang, Y.; Norberg, E.; Zhang, T.; Pan, L.; Liu, J.; Coloff, J.L.; Ofengeim, D.; Zhu, H.; Wu, K.; Cai, Y.; Yates, J.R.; Zhu, Z.; Yuan, J.; Vakifahmetoglu-Norberg, H. Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. J. Cell Biol., 2015, 210(5), 705-716.
[http://dx.doi.org/10.1083/jcb.201503044] [PMID: 26323688]
[61]
Balmer, D.; Emery, M.; Andreux, P.; Auwerx, J.; Ginet, V.; Puyal, J.; Schorderet, D.F.; Roduit, R. Autophagy defect is associated with low glucose-induced apoptosis in 661W photoreceptor cells. PLoS One, 2013, 8(9), e74162.
[http://dx.doi.org/10.1371/journal.pone.0074162] [PMID: 24066113]
[62]
Su, K.; Yi, B.; Yao, B.Q.; Xia, T.; Yang, Y.F.; Zhang, Z.H.; Chen, C. Liraglutide attenuates renal tubular ectopic lipid deposition in rats with diabetic nephropathy by inhibiting lipid synthesis and promoting lipolysis. Pharmacol. Res., 2020, 156, 104778.
[http://dx.doi.org/10.1016/j.phrs.2020.104778] [PMID: 32247822]
[63]
Trampel, D.W.; Sell, J.L.; Ahn, D.U.; Sebranek, J.G. Preharvest feed withdrawal affects liver lipid and liver color in broiler chickens. Poult. Sci., 2005, 84(1), 137-142.
[http://dx.doi.org/10.1093/ps/84.1.137] [PMID: 15685953]
[64]
Cejas, J.R.; Almansa, E.; Jérez, S.; Bolaños, A.; Samper, M.; Lorenzo, A. Lipid and fatty acid composition of muscle and liver from wild and captive mature female broodstocks of white seabream, Diplodus sargus. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2004, 138(1), 91-102.
[http://dx.doi.org/10.1016/j.cbpc.2004.03.003] [PMID: 15142540]
[65]
Qiao, L.; Wang, H.F.; Xiang, L.; Ma, J.; Zhu, Q.; Xu, D.; Zheng, H.; Peng, J.Q.; Zhang, S.; Lu, H.X.; Chen, W.Q.; Zhang, Y. Deficient Chaperone-mediated autophagy promotes lipid accumulation in macrophage. J. Cardiovasc. Transl. Res., 2021, 14(4), 661-669.
[http://dx.doi.org/10.1007/s12265-020-09986-3] [PMID: 32285315]
[66]
Tsai, T.H.; Chen, E.; Li, L.; Saha, P.; Lee, H.J.; Huang, L.S.; Shelness, G.S.; Chan, L.; Chang, B.H. The constitutive lipid droplet protein PLIN2 regulates autophagy in liver. Autophagy, 2017, 13(7), 1130-1144.
[http://dx.doi.org/10.1080/15548627.2017.1319544] [PMID: 28548876]
[67]
Zhou, L.; Song, Z.; Hu, J.; Liu, L.; Hou, Y.; Zhang, X.; Yang, X.; Chen, K. ACSS3 represses prostate cancer progression through downregulating lipid droplet-associated protein PLIN3. Theranostics, 2021, 11(2), 841-860.
[http://dx.doi.org/10.7150/thno.49384] [PMID: 33391508]
[68]
Kaushik, S.; Cuervo, A.M. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol., 2015, 17(6), 759-770.
[http://dx.doi.org/10.1038/ncb3166] [PMID: 25961502]
[69]
Endicott, S.J.; Monovich, A.C.; Huang, E.L.; Henry, E.I.; Boynton, D.N.; Beckmann, L.J.; MacCoss, M.J.; Miller, R.A. Lysosomal targetomics of ghr KO mice shows Chaperone-mediated autophagy degrades nucleocytosolic acetyl-coA enzymes. Autophagy, 2021, 2021, 1990670.
[http://dx.doi.org/10.1080/15548627.2021.1990670] [PMID: 34704522]
[70]
Portovedo, M.; Reginato, A.; Miyamoto, J.E.; Simino, L.A.; Hakim, M.P.; Campana, M.; Leal, R.F.; Ignácio-Souza, L.M.; Torsoni, M.A.; Magnan, C.; Le Stunff, H.; Torsoni, A.S.; Milanski, M. Lipid excess affects Chaperone-mediated autophagy in hypothalamus. Biochimie, 2020, 176, 110-116.
[http://dx.doi.org/10.1016/j.biochi.2020.06.008] [PMID: 32623049]
[71]
Suzuki, A.; Iwata, J. Amino acid metabolism and autophagy in skeletal development and homeostasis. Bone, 2021, 146, 115881.
[http://dx.doi.org/10.1016/j.bone.2021.115881] [PMID: 33578033]
[72]
Hildebrandt, T.M.; Nunes Nesi, A.; Araújo, W.L.; Braun, H.P. Amino acid catabolism in plants. Mol. Plant, 2015, 8(11), 1563-1579.
[http://dx.doi.org/10.1016/j.molp.2015.09.005] [PMID: 26384576]
[73]
Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; Smith-Ryan, A.E.; Stout, J.R.; Arciero, P.J.; Ormsbee, M.J.; Taylor, L.W.; Wilborn, C.D.; Kalman, D.S.; Kreider, R.B.; Willoughby, D.S.; Hoffman, J.R.; Krzykowski, J.L.; Antonio, J. International society of sports nutrition position stand: Protein and exercise. J. Int. Soc. Sports Nutr., 2017, 14(1), 20.
[http://dx.doi.org/10.1186/s12970-017-0177-8] [PMID: 28642676]
[74]
Muhammad, N.; Lee, H.M.; Kim, J. Oncology therapeutics targeting the metabolism of amino acids. Cells, 2020, 9(8), 1904.
[75]
Bejarano, E.; Rodríguez-Navarro, J.A. Autophagy and amino acid metabolism in the brain: Implications for epilepsy. Amino Acids, 2015, 47(10), 2113-2126.
[http://dx.doi.org/10.1007/s00726-014-1822-z] [PMID: 25145921]
[76]
Nicklin, P.; Bergman, P.; Zhang, B.; Triantafellow, E.; Wang, H.; Nyfeler, B.; Yang, H.; Hild, M.; Kung, C.; Wilson, C.; Myer, V.E.; MacKeigan, J.P.; Porter, J.A.; Wang, Y.K.; Cantley, L.C.; Finan, P.M.; Murphy, L.O. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell, 2009, 136(3), 521-534.
[http://dx.doi.org/10.1016/j.cell.2008.11.044] [PMID: 19203585]
[77]
Wei, Z.; Liu, X.; Cheng, C.; Yu, W.; Yi, P. Metabolism of amino acids in cancer. Front. Cell Dev. Biol., 2021, 8, 603837.
[http://dx.doi.org/10.3389/fcell.2020.603837] [PMID: 33511116]
[78]
Han, J.M.; Jeong, S.J.; Park, M.C.; Kim, G.; Kwon, N.H.; Kim, H.K.; Ha, S.H.; Ryu, S.H.; Kim, S. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell, 2012, 149(2), 410-424.
[http://dx.doi.org/10.1016/j.cell.2012.02.044] [PMID: 22424946]
[79]
Demetriades, C.; Doumpas, N.; Teleman, A.A. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell, 2014, 156(4), 786-799.
[http://dx.doi.org/10.1016/j.cell.2014.01.024] [PMID: 24529380]
[80]
Yang, M.; Han, Y.; Luo, S.; Xiong, X.; Zhu, X.; Zhao, H.; Jiang, N.; Xiao, Y.; Wei, L.; Li, C.; Yang, J.; Sun, L. MAMs protect against ectopic fat deposition and lipid-related kidney damage in DN patients. Front. Endocrinol. (Lausanne), 2021, 12, 609580.
[http://dx.doi.org/10.3389/fendo.2021.609580] [PMID: 33679616]
[81]
Zhang, Z.; Ni, L.; Zhang, L.; Zha, D.; Hu, C.; Zhang, L.; Feng, H.; Wei, X.; Wu, X. Empagliflozin regulates the AdipoR1/p-AMPK/p-ACC pathway to alleviate lipid deposition in diabetic nephropathy. Diabetes Metab. Syndr. Obes., 2021, 14, 227-240.
[http://dx.doi.org/10.2147/DMSO.S289712] [PMID: 33500643]
[82]
Chen, X.; Han, Y.; Gao, P.; Yang, M.; Xiao, L.; Xiong, X.; Zhao, H.; Tang, C.; Chen, G.; Zhu, X.; Yuan, S.; Liu, F.; Dong, L.Q.; Liu, F.; Kanwar, Y.S.; Sun, L. Disulfide-bond a oxidoreductase-like protein protects against ectopic fat deposition and lipid-related kidney damage in diabetic nephropathy. Kidney Int., 2019, 95(4), 880-895.
[http://dx.doi.org/10.1016/j.kint.2018.10.038] [PMID: 30791996]
[83]
Sooparb, S.; Price, S.R.; Shaoguang, J.; Franch, H.A. Suppression of chaperone-mediated autophagy in the renal cortex during acute diabetes mellitus. Kidney Int., 2004, 65(6), 2135-2144.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00639.x] [PMID: 15149326]
[84]
Luo, Y.; Wu, M.Y.; Deng, B.Q.; Huang, J.; Hwang, S.H.; Li, M.Y.; Zhou, C.Y.; Zhang, Q.Y.; Yu, H.B.; Zhao, D.K.; Zhang, G.; Qin, L.; Peng, A.; Hammock, B.D.; Liu, J.Y. Inhibition of soluble epoxide hydrolase attenuates a high-fat diet-mediated renal injury by activating PAX2 and AMPK. Proc. Natl. Acad. Sci. USA, 2019, 116(11), 5154-5159.
[http://dx.doi.org/10.1073/pnas.1815746116] [PMID: 30804206]
[85]
Sun, W.; Liu, C.; Chen, Q.; Liu, N.; Yan, Y.; Liu, B. SIRT3: A new regulator of cardiovascular diseases. Oxid. Med. Cell. Longev., 2018, 2018, 7293861.
[http://dx.doi.org/10.1155/2018/7293861] [PMID: 29643974]
[86]
Salvatori, I.; Valle, C.; Ferri, A.; Carrì, M.T. SIRT3 and mitochondrial metabolism in neurodegenerative diseases. Neurochem. Int., 2017, 109, 184-192.
[http://dx.doi.org/10.1016/j.neuint.2017.04.012] [PMID: 28449871]
[87]
Yi, X.; Guo, W.; Shi, Q.; Yang, Y.; Zhang, W.; Chen, X.; Kang, P.; Chen, J.; Cui, T.; Ma, J.; Wang, H.; Guo, S.; Chang, Y.; Liu, L.; Jian, Z.; Wang, L.; Xiao, Q.; Li, S.; Gao, T.; Li, C. SIRT3-dependent mitochondrial dynamics remodeling contributes to oxidative Stress-Induced melanocyte degeneration in vitiligo. Theranostics, 2019, 9(6), 1614-1633.
[http://dx.doi.org/10.7150/thno.30398] [PMID: 31037127]
[88]
Hirschey, M.D.; Shimazu, T.; Goetzman, E.; Jing, E.; Schwer, B.; Lombard, D.B.; Grueter, C.A.; Harris, C.; Biddinger, S.; Ilkayeva, O.R.; Stevens, R.D.; Li, Y.; Saha, A.K.; Ruderman, N.B.; Bain, J.R.; Newgard, C.B.; Farese, R.V., Jr; Alt, F.W.; Kahn, C.R.; Verdin, E. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature, 2010, 464(7285), 121-125.
[http://dx.doi.org/10.1038/nature08778] [PMID: 20203611]
[89]
Zhang, T.; Liu, J.; Shen, S.; Tong, Q.; Ma, X.; Lin, L. SIRT3 promotes lipophagy and chaperon-mediated autophagy to protect hepatocytes against lipotoxicity. Cell Death Differ., 2020, 27(1), 329-344.
[http://dx.doi.org/10.1038/s41418-019-0356-z] [PMID: 31160717]
[90]
Ma, S.Y.; Sun, K.S.; Zhang, M.; Zhou, X.; Zheng, X.H.; Tian, S.Y.; Liu, Y.S.; Chen, L.; Gao, X.; Ye, J.; Zhou, X.M.; Wang, J.B.; Han, Y. Disruption of Plin5 degradation by CMA causes lipid homeostasis imbalance in NAFLD. Liver Int., 2020, 40(10), 2427-2438.
[http://dx.doi.org/10.1111/liv.14492] [PMID: 32339374]
[91]
Angelini, G.; Castagneto Gissey, L.; Del Corpo, G.; Giordano, C.; Cerbelli, B.; Severino, A.; Manco, M.; Basso, N.; Birkenfeld, A.L.; Bornstein, S.R.; Genco, A.; Mingrone, G.; Casella, G. New insight into the mechanisms of ectopic fat deposition improvement after bariatric surgery. Sci. Rep., 2019, 9(1), 17315.
[http://dx.doi.org/10.1038/s41598-019-53702-4] [PMID: 31754142]
[92]
You, Y.; Li, W.Z.; Zhang, S.; Hu, B.; Li, Y.X.; Li, H.D.; Tang, H.H.; Li, Q.W.; Guan, Y.Y.; Liu, L.X.; Bao, W.L.; Shen, X. SNX10 mediates alcohol-induced liver injury and steatosis by regulating the activation of chaperone-mediated autophagy. J. Hepatol., 2018, 69(1), 129-141.
[http://dx.doi.org/10.1016/j.jhep.2018.01.038] [PMID: 29452206]
[93]
Wu, H.; Chen, S.; Ammar, A.B.; Xu, J.; Wu, Q.; Pan, K.; Zhang, J.; Hong, Y. Crosstalk between macroautophagy and Chaperone-mediated autophagy: Implications for the treatment of neurological diseases. Mol. Neurobiol., 2015, 52(3), 1284-1296.
[http://dx.doi.org/10.1007/s12035-014-8933-0] [PMID: 25330936]
[94]
Ho, P.W.; Leung, C.T.; Liu, H.; Pang, S.Y.; Lam, C.S.; Xian, J.; Li, L.; Kung, M.H.; Ramsden, D.B.; Ho, S.L. Age-dependent accumulation of oligomeric SNCA/α-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: Role for therapeutic activation of chaperone-mediated autophagy (CMA). Autophagy, 2020, 16(2), 347-370.
[http://dx.doi.org/10.1080/15548627.2019.1603545] [PMID: 30983487]
[95]
Rios, J.; Sequeida, A.; Albornoz, A.; Budini, M. Chaperone mediated autophagy substrates and components in cancer. Front. Oncol., 2021, 10, 614677.
[http://dx.doi.org/10.3389/fonc.2020.614677] [PMID: 33643916]
[96]
Gómez-Sintes, R.; Arias, E. Chaperone-mediated autophagy and disease: Implications for cancer and neurodegeneration. Mol. Aspects Med., 2021, 82, 101025.
[http://dx.doi.org/10.1016/j.mam.2021.101025] [PMID: 34629183]
[97]
Hou, T.; Fan, Y.; Dan, W.; Liu, B.; Wang, Z.; Zeng, J.; Li, L. Chaperone-mediated autophagy in cancer: Advances from bench to bedside. Histol. Histopathol., 2020, 35(7), 637-644.
[PMID: 31965560]
[98]
Cuervo, A.M.; Wong, E. Chaperone-mediated autophagy: Roles in disease and aging. Cell Res., 2014, 24(1), 92-104.
[http://dx.doi.org/10.1038/cr.2013.153] [PMID: 24281265]
[99]
Auzmendi-Iriarte, J.; Matheu, A. Impact of Chaperone-mediated autophagy in brain aging: Neurodegenerative diseases and glioblastoma. Front. Aging Neurosci., 2021, 12, 630743.
[http://dx.doi.org/10.3389/fnagi.2020.630743] [PMID: 33633561]
[100]
Massey, A.C.; Zhang, C.; Cuervo, A.M. Chaperone-mediated autophagy in aging and disease. Curr. Top. Dev. Biol., 2006, 73, 205-235.
[http://dx.doi.org/10.1016/S0070-2153(05)73007-6] [PMID: 16782460]
[101]
Zhang, Y.; Sowers, J.R.; Ren, J. Targeting autophagy in obesity: From pathophysiology to management. Nat. Rev. Endocrinol., 2018, 14(6), 356-376.
[http://dx.doi.org/10.1038/s41574-018-0009-1] [PMID: 29686432]
[102]
Tan, Y.; Gong, Y.; Dong, M.; Pei, Z.; Ren, J. Role of autophagy in inherited metabolic and endocrine myopathies. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(1), 48-55.
[http://dx.doi.org/10.1016/j.bbadis.2018.10.023] [PMID: 30343140]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy