Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Bioactivities of Dietary Polyphenols and Their Effects on Intestinal Microbiota

Author(s): Xiaoping Zhang, Junjing Shao, Qinghua Cui*, Wenting Ni, Ying Yang and Beibei Yan

Volume 23, Issue 3, 2023

Published on: 13 September, 2022

Page: [361 - 377] Pages: 17

DOI: 10.2174/1389557522666220811123115

Price: $65

Open Access Journals Promotions 2
Abstract

The human gut is a complex but stable micro-ecosystem in which the intestinal microbiota play a key role in human health, the health of the intestine and also affect the ability of the host to metabolize nutrients. Intestinal microbiota can affect human physiological functions by regulating host metabolism, immunity and intestinal barrier function. Dysbiosis in the intestinal microbiota is a crucial stimulus for the development of various diseases, which is associated with a variety of diseases in the body. The composition and function of intestinal microbiota depend on the host’s physiological status, genetic makeup, dietary habits, age, and environment, which are the risk factors for obesity, diabetes, cardiovascular diseases and tumors. Polyphenols are important plant secondary metabolites with many physiological functions like anti-oxidation, antitumor, bacteriostasis, cardiovascular and cerebrovascular prevention, and protection of liver and kidney and so on. A large number of studies have confirmed the benefits of dietary polyphenols to human health. Polyphenols and their associated metabolites affect intestinal health and the balance of intestinal microbiota by stimulating the growth of beneficial bacteria and inhibiting the proliferation of pathogens. This review aims to update the current knowledge and highlight how the bioactivities of polyphenols can modulate the intestinal microbiota and regulate the mechanisms of the microbiota, providing a theoretical basis and reference for the scientific and overall use of polyphenols to prevent and treat intestinal diseases and maintain human intestinal health.

Keywords: Dietary polyphenols, intestinal microbiota, bioactivity, dysbiosis, diseases, health benefits.

« Previous
Graphical Abstract
[1]
Jiang, N.; Wang, M.; Wei, D. Research progress on plant polyphenols. J. Food Saf. Qual. Inspect., (in chinees) 2016, 7(2), 439-444.
[2]
Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int., 2017, 101, 1-16.
[http://dx.doi.org/10.1016/j.foodres.2017.09.026] [PMID: 28941672]
[3]
Przybyłek, I.; Karpiński, T.M. Antibacterial properties of propolis. Molecules, 2019, 24(11), 2047.
[http://dx.doi.org/10.3390/molecules24112047] [PMID: 31146392]
[4]
Mhatre, S.; Srivastava, T.; Naik, S.; Patravale, V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine, 2021, 85, 153286.
[http://dx.doi.org/10.1016/j.phymed.2020.153286] [PMID: 32741697]
[5]
Fourati, M.; Smaoui, S.; Hlima, H.B.; Elhadef, K.; Braïek, O.B.; Ennouri, K.; Mtibaa, A.C.; Mellouli, L. Bioactive compounds and pharmacological potential of pomegranate (Punica granatum) seeds-A review. Plant Foods Hum. Nutr., 2020, 75(4), 477-486.
[http://dx.doi.org/10.1007/s11130-020-00863-7] [PMID: 33040298]
[6]
Sajadimajd, S.; Bahramsoltani, R.; Iranpanah, A.; Kumar Patra, J.; Das, G.; Gouda, S.; Rahimi, R.; Rezaeiamiri, E.; Cao, H.; Giampieri, F.; Battino, M.; Tundis, R.; Campos, M.G.; Farzaei, M.H.; Xiao, J. Advances on natural polyphenols as anticancer agents for skin cancer. Pharmacol. Res., 2020, 151, 104584.
[http://dx.doi.org/10.1016/j.phrs.2019.104584] [PMID: 31809853]
[7]
Meng, S.; Cao, J.; Feng, Q.; Peng, J.; Hu, Y. Roles of chlorogenic Acid on regulating glucose and lipids metabolism: A review. Evid. Based Complement. Alternat. Med., 2013, 2013, 801457.
[http://dx.doi.org/10.1155/2013/801457] [PMID: 24062792]
[8]
Bibbò, S.; Ianiro, G.; Giorgio, V.; Scaldaferri, F.; Masucci, L.; Gasbarrini, A.; Cammarota, G. The role of diet on gut microbiota composition. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(22), 4742-4749.
[PMID: 27906427]
[9]
Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(10), 605-616.
[http://dx.doi.org/10.1038/s41575-019-0173-3] [PMID: 31296969]
[10]
Moorthy, M.; Sundralingam, U.; Palanisamy, U.D. Polyphenols as prebiotics in the management of high-fat diet-induced obesity: A systematic review of animal Studies. Foods, 2021, 10(2), 299.
[http://dx.doi.org/10.3390/foods10020299] [PMID: 33540692]
[11]
Amiot, M.J.; Riva, C.; Vinet, A. Effects of dietary polyphenols on metabolic syndrome features in humans: A systematic review. Obes. Rev., 2016, 17(7), 573-586.
[http://dx.doi.org/10.1111/obr.12409] [PMID: 27079631]
[12]
Koch, W. Dietary polyphenols-important non-nutrients in the prevention of chronic noncommunicable diseases. A systematic review. Nutrients, 2019, 11(5), 1039.
[http://dx.doi.org/10.3390/nu11051039] [PMID: 31075905]
[13]
Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. (Amst.), 2019, 24, e00370.
[http://dx.doi.org/10.1016/j.btre.2019.e00370] [PMID: 31516850]
[14]
Rashmi, H.B.; Negi, P.S. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res. Int., 2020, 136, 109298.
[http://dx.doi.org/10.1016/j.foodres.2020.109298] [PMID: 32846511]
[15]
Liu, J.; Du, C.; Beaman, H.T.; Monroe, M.B.B. Characterization of phenolic acid antimicrobial and antioxidant structure-Property relationships. Pharmaceutics, 2020, 12(5), E419.
[http://dx.doi.org/10.3390/pharmaceutics12050419] [PMID: 32370227]
[16]
Slimestad, R.; Fossen, T.; Brede, C. Flavonoids and other phenolics in herbs commonly used in Norwegian commercial kitchens. Food Chem., 2020, 309(309), 125678.
[http://dx.doi.org/10.1016/j.foodchem.2019.125678] [PMID: 31670125]
[17]
Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct., 2021, 12(1), 14-29.
[http://dx.doi.org/10.1039/D0FO02324H] [PMID: 33242057]
[18]
Peluso, I.; Miglio, C.; Morabito, G.; Ioannone, F.; Serafini, M. Flavonoids and immune function in human: A systematic review. Crit. Rev. Food Sci. Nutr., 2015, 55(3), 383-395.
[http://dx.doi.org/10.1080/10408398.2012.656770] [PMID: 24915384]
[19]
Cao, Y.; Xie, L.; Liu, K.; Liang, Y.; Dai, X.; Wang, X.; Lu, J.; Zhang, X.; Li, X. The antihypertensive potential of flavonoids from Chinese herbal medicine: A review. Pharmacol. Res., 2021, 174, 105919.
[http://dx.doi.org/10.1016/j.phrs.2021.105919] [PMID: 34601080]
[20]
Somerville, V.S.; Braakhuis, A.J.; Hopkins, W.G. Effect of flavonoids on upper respiratory tract infections and immune function: A systematic review and meta-analysis. Adv. Nutr., 2016, 7(3), 488-497.
[http://dx.doi.org/10.3945/an.115.010538] [PMID: 27184276]
[21]
Dabeek, W.M.; Marra, M.V. Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients, 2019, 11(10), 2288.
[http://dx.doi.org/10.3390/nu11102288] [PMID: 31557798]
[22]
Hibi, Y.; Yanase, E. Oxidation of procyanidins with various degrees of condensation: Influence on the color-deepening phenomenon. J. Agric. Food Chem., 2019, 67(17), 4940-4946.
[http://dx.doi.org/10.1021/acs.jafc.9b02085] [PMID: 30994340]
[23]
Valencia-Hernandez, L.J.; Wong-Paz, J.E.; Ascacio-Valdés, J.A.; Chávez-González, M.L.; Contreras-Esquivel, J.C.; Aguilar, C.N. Procyanidins: From agro-industrial waste to food as bioactive molecules. Foods, 2021, 10(12), 3152.
[http://dx.doi.org/10.3390/foods10123152] [PMID: 34945704]
[24]
Delimont, N.M.; Carlson, B.N. Prevention of dental caries by grape seed extract supplementation: A systematic review. Nutr. Health, 2020, 26(1), 43-52.
[http://dx.doi.org/10.1177/0260106019887890] [PMID: 31760860]
[25]
Olivas-Aguirre, F.J.; Wall-Medrano, A.; González-Aguilar, G.A.; López-Díaz, J.A.; Álvarez-Parrilla, E.; de la Rosa, L.A.; Ramos-Jimenez, A. Hydrolyzable tannins; biochemistry, nutritional & analytical aspects and health effects. Nutr. Hosp., 2014, 31(1), 55-66.
[PMID: 25561098]
[26]
Cai, T.; Luo, L.; Negati, S. Effects of tannic acid on feed utilization, milk production and antioxidant status of dairy cows. China Feed, 2021, (4), 44-47.
[27]
Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition, 2014, 30(2), 134-144.
[http://dx.doi.org/10.1016/j.nut.2013.04.007] [PMID: 24012283]
[28]
Sieniawska, E. Activities of tannins - From in vitro studies to clinical trials. Nat. Prod. Commun., 2015, 10(11), 1877-1884.
[http://dx.doi.org/10.1177/1934578X1501001118] [PMID: 26749816]
[29]
Xie, X. Study on the synthesis and antifungal activity of stilbenes. School of Chemistry and Chemical Engineering, (in Chineese), 2017.
[30]
Tian, B.; Liu, J. Resveratrol: A review of plant sources, synthesis, stability, modification and food application. J. Sci. Food Agric., 2020, 100(4), 1392-1404.
[http://dx.doi.org/10.1002/jsfa.10152] [PMID: 31756276]
[31]
Galiniak, S.; Aebisher, D.; Bartusik-Aebisher, D. Health benefits of resveratrol administration. Acta Biochim. Pol., 2019, 66(1), 13-21.
[PMID: 30816367]
[32]
Vinardell, M.P.; Mitjans, M. Lignins and their derivatives with beneficial effects on human health. Int. J. Mol. Sci., 2017, 18(6), 1219.
[http://dx.doi.org/10.3390/ijms18061219] [PMID: 28590454]
[33]
Feng, H.; Tu, Y. Research on lignin biosynthesis., 2018, 31(1), 1089.
[34]
Blesso, C.N. Dietary Anthocyanins and human health. Nutrients, 2019, 11(9), 2107.
[http://dx.doi.org/10.3390/nu11092107] [PMID: 31491856]
[35]
Lee, Y.M.; Yoon, Y.; Yoon, H.; Park, H.M.; Song, S.; Yeum, K.J. Dietary anthocyanins against obesity and inflammation. Nutrients, 2017, 9(10), 1089.
[http://dx.doi.org/10.3390/nu9101089] [PMID: 28974032]
[36]
Matsuzaki, K.; Ohizumi, Y. Beneficial effects of citrus-derived polymethoxylated flavones for central nervous system disorders. Nutrients, 2021, 13(1), 145.
[http://dx.doi.org/10.3390/nu13010145] [PMID: 33406641]
[37]
Shu, C.; Zhao, H.; Jiao, W. Research progress on the bioactivity of plant origin tannins. Science and technology of food industry, 2018, 39(17), 328-334.
[38]
Barańska, A.; Błaszczuk, A.; Kanadys, W.; Baczewska, B.; Jędrych, M.; Wawryk-Gawda, E.; Polz-Dacewicz, M. Effects of soy protein containing of isoflavones and isoflavones extract on plasma lipid profile in postmenopausal women as a potential prevention factor in cardiovascular diseases: Systematic review and meta-analysis of randomized controlled trials. Nutrients, 2021, 13(8), 2531.
[http://dx.doi.org/10.3390/nu13082531] [PMID: 34444691]
[39]
Barańska, A.; Błaszczuk, A.; Polz-Dacewicz, M.; Kanadys, W.; Malm, M.; Janiszewska, M.; Jędrych, M. Effects of soy isoflavones on glycemic control and lipid profile in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Nutrients, 2021, 13(6), 1886.
[http://dx.doi.org/10.3390/nu13061886] [PMID: 34072748]
[40]
Brito, J.C.M.; Lima, W.G.; Cordeiro, L.P.B.; da Cruz Nizer, W.S. Effectiveness of supplementation with quercetin-type flavonols for treatment of viral lower respiratory tract infections: Systematic review and meta-analysis of preclinical studies. Phytother. Res., 2021, 35(9), 4930-4942.
[http://dx.doi.org/10.1002/ptr.7122] [PMID: 33864310]
[41]
Kubina, R.; Iriti, M. Kabała-Dzik, A. Anticancer potential of selected flavonols: Fisetin, kaempferol, and quercetin on head and neck cancers. Nutrients, 2021, 13(3), 845.
[http://dx.doi.org/10.3390/nu13030845] [PMID: 33807530]
[42]
Nawrot-Hadzik, I.; Matkowski, A.; Hadzik, J.; Dobrowolska-Czopor, B.; Olchowy, C.; Dominiak, M.; Kubasiewicz-Ross, P. Proanthocyanidins and flavan-3-ols in the prevention and treatment of periodontitis-antibacterial effects. Nutrients, 2021, 13(1), 165.
[http://dx.doi.org/10.3390/nu13010165] [PMID: 33430257]
[43]
Ahles, S.; Joris, P.J.; Plat, J. Effects of berry anthocyanins on cognitive performance, vascular function and cardiometabolic risk markers: A systematic review of randomized placebo-controlled intervention studies in humans. Int. J. Mol. Sci., 2021, 22(12), 6482.
[http://dx.doi.org/10.3390/ijms22126482] [PMID: 34204250]
[44]
Tan, T.Y.C.; Lim, X.Y.; Yeo, J.H.H.; Lee, S.W.H.; Lai, N.M. The health effects of chocolate and cocoa: A systematic review. Nutrients, 2021, 13(9), 2909.
[http://dx.doi.org/10.3390/nu13092909] [PMID: 34578786]
[45]
Fitzgerald, E.; Lambert, K.; Stanford, J.; Neale, E.P. The effect of nut consumption (tree nuts and peanuts) on the gut microbiota of humans: A systematic review. Br. J. Nutr., 2021, 125(5), 508-520.
[http://dx.doi.org/10.1017/S0007114520002925] [PMID: 32713355]
[46]
Shi, N.; Li, N.; Duan, X.; Niu, H. Interaction between the gut microbiome and mucosal immune system. Mil. Med. Res., 2017, 4(14), 14.
[http://dx.doi.org/10.1186/s40779-017-0122-9] [PMID: 28465831]
[47]
Weersma, R.K.; Zhernakova, A.; Fu, J. Interaction between drugs and the gut microbiome. Gut, 2020, 69(8), 1510-1519.
[http://dx.doi.org/10.1136/gutjnl-2019-320204] [PMID: 32409589]
[48]
Schmidt, T.S.B.; Raes, J.; Bork, P. The Human gut microbiome: From association to modulation. Cell, 2018, 172(6), 1198-1215.
[http://dx.doi.org/10.1016/j.cell.2018.02.044] [PMID: 29522742]
[49]
Badal, V.D.; Vaccariello, E.D.; Murray, E.R.; Yu, K.E.; Knight, R.; Jeste, D.V.; Nguyen, T.T. The gut microbiome, aging, and longevity: A systematic review. Nutrients, 2020, 12(12), 3759.
[http://dx.doi.org/10.3390/nu12123759] [PMID: 33297486]
[50]
Losno, E.A.; Sieferle, K.; Perez-Cueto, F.J.A.; Ritz, C. Vegan diet and the gut microbiota composition in healthy adults. Nutrients, 2021, 13(7), 2402.
[http://dx.doi.org/10.3390/nu13072402] [PMID: 34371912]
[51]
Brown, E.M.; Ke, X.; Hitchcock, D.; Jeanfavre, S.; Avila-Pacheco, J.; Nakata, T.; Arthur, T.D.; Fornelos, N.; Heim, C.; Franzosa, E.A.; Watson, N.; Huttenhower, C.; Haiser, H.J.; Dillow, G.; Graham, D.B.; Finlay, B.B.; Kostic, A.D.; Porter, J.A.; Vlamakis, H.; Clish, C.B.; Xavier, R.J. Bacteroides-derived sphingolipids are critical for maintaining intestinal homeostasis and symbiosis. Cell Host Microbe, 2019, 25(5), 668-680.e7.
[http://dx.doi.org/10.1016/j.chom.2019.04.002] [PMID: 31071294]
[52]
Delday, M.; Mulder, I.; Logan, E.T.; Grant, G. Bacteroides thetaiotaomicron ameliorates colon inflammation in preclinical models of Crohn’s disease. Inflamm. Bowel Dis., 2019, 25(1), 85-96.
[http://dx.doi.org/10.1093/ibd/izy281] [PMID: 30215718]
[53]
Gibiino, G.; Lopetuso, L.R.; Scaldaferri, F.; Rizzatti, G.; Binda, C.; Gasbarrini, A. Exploring Bacteroidetes: Metabolic key points and immunological tricks of our gut commensals. Dig. Liver Dis., 2018, 50(7), 635-639.
[http://dx.doi.org/10.1016/j.dld.2018.03.016] [PMID: 29650468]
[54]
Lapébie, P.; Lombard, V.; Drula, E.; Terrapon, N.; Henrissat, B. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat. Commun., 2019, 10(1), 2043.
[http://dx.doi.org/10.1038/s41467-019-10068-5] [PMID: 31053724]
[55]
Megrian, D.; Taib, N.; Witwinowski, J.; Beloin, C.; Gribaldo, S. One or two membranes? Diderm firmicutes challenge the gram-positive/gram-negative divide. Mol. Microbiol., 2020, 113(3), 659-671.
[http://dx.doi.org/10.1111/mmi.14469] [PMID: 31975449]
[56]
Al-Hadidi, A.; Navarro, J.; Goodman, S.D.; Bailey, M.T.; Besner, G.E. Lactobacillus reuteri in its biofilm state improves protection from experimental necrotizing enterocolitis. Nutrients, 2021, 13(3), 918.
[http://dx.doi.org/10.3390/nu13030918] [PMID: 33809097]
[57]
Slattery, C.; Cotter, P.D.; O’Toole, P.W. Analysis of health benefits conferred by lactobacillus species from kefir. Nutrients, 2019, 11(6), 1252.
[http://dx.doi.org/10.3390/nu11061252] [PMID: 31159409]
[58]
Tomova, A.; Bukovsky, I.; Rembert, E.; Yonas, W.; Alwarith, J.; Barnard, N.D.; Kahleova, H. The effects of vegetarian and vegan diets on gut microbiota. Front. Nutr., 2019, 6(47), 47.
[http://dx.doi.org/10.3389/fnut.2019.00047] [PMID: 31058160]
[59]
Buton, A.; Bobay, L.M. Evolution of chi motifs in proteobacteria. G3-Genes Genomes Genetics, 2021, 11(1)
[60]
Li, W.; Zhang, Y.; Mao, W.; Wang, C.; Yin, S. Functional potential differences between Firmicutes and Proteobacteria in response to manure amendment in a reclaimed soil. Can. J. Microbiol., 2020, 66(12), 689-697.
[http://dx.doi.org/10.1139/cjm-2020-0143] [PMID: 32717168]
[61]
Cheng, J.H.T.; Bredow, M.; Monaghan, J.; diCenzo, G.C. Proteobacteria contain diverse flg22 epitopes that elicit varying immune responses in arabidopsis thaliana. Mol. Plant Microbe Interact., 2021, 34(5), 504-510.
[http://dx.doi.org/10.1094/MPMI-11-20-0314-SC] [PMID: 33560865]
[62]
Litvak, Y.; Mon, K.K.Z.; Nguyen, H.; Chanthavixay, G.; Liou, M.; Velazquez, E.M.; Kutter, L.; Alcantara, M.A.; Byndloss, M.X.; Tiffany, C.R.; Walker, G.T.; Faber, F.; Zhu, Y.; Bronner, D.N.; Byndloss, A.J.; Tsolis, R.M.; Zhou, H.; Bäumler, A.J. Commensal enterobacteriaceae protect against salmonella colonization through oxygen competition. Cell Host Microbe, 2019, 25(1), 128-139.e5.
[http://dx.doi.org/10.1016/j.chom.2018.12.003] [PMID: 30629913]
[63]
Gao, Q.; Chen, H.; Wang, W.; Huang, J.; Tao, Y.; Lin, B. Menaquinone-7 production in engineered Escherichia coli. World J. Microbiol. Biotechnol., 2020, 36(9), 132.
[http://dx.doi.org/10.1007/s11274-020-02880-9] [PMID: 32737601]
[64]
Leimbach, A.; Hacker, J.; Dobrindt, U.E. coli as an all-rounder: The thin line between commensalism and pathogenicity. Curr. Top. Microbiol. Immunol., 2013, 358, 3-32.
[http://dx.doi.org/10.1007/82_2012_303] [PMID: 23340801]
[65]
Magruder, M.; Edusei, E.; Zhang, L.; Albakry, S.; Satlin, M.J.; Westblade, L.F.; Malha, L.; Sze, C.; Lubetzky, M.; Dadhania, D.M.; Lee, J.R. Gut commensal microbiota and decreased risk for Enterobacteriaceae bacteriuria and urinary tract infection. Gut Microbes, 2020, 12(1), 1805281.
[http://dx.doi.org/10.1080/19490976.2020.1805281] [PMID: 32865119]
[66]
Silva, J.C.; Ponte, A.; Mota, M.; Pinho, R.; Vieira, N.; Oliveira, R.; Mota-Carvalho, N.; Gomes, A.C.; Afecto, E.; Carvalho, J. Fecal microbiota transplantation in the intestinal decolonization of carbapenamase-producing enterobacteriaceae. Rev. Esp. Enferm. Dig., 2020, 112(12), 925-928.
[http://dx.doi.org/10.17235/reed.2020.7150/2020] [PMID: 33118360]
[67]
Ramirez, N.A.; Das, A.; Ton-That, H. New Paradigms of pilus assembly mechanisms in gram-positive actinobacteria. Trends Microbiol., 2020, 28(12), 999-1009.
[http://dx.doi.org/10.1016/j.tim.2020.05.008] [PMID: 32499101]
[68]
Hidalgo-Cantabrana, C.; Delgado, S.; Ruiz, L.; Ruas-Madiedo, P.; Sánchez, B.; Margolles, A. Bifidobacteria and their health-promoting effects. Microbiol. Spectr., 2017, 5(3), 5.3.21.
[http://dx.doi.org/10.1128/microbiolspec.BAD-0010-2016] [PMID: 28643627]
[69]
Robles-Vera, I.; de la Visitación, N.; Toral, M.; Sánchez, M.; Romero, M.; Gómez-Guzmán, M.; Yang, T.; Izquierdo-García, J.L.; Guerra-Hernández, E.; Ruiz-Cabello, J.; Raizada, M.K.; Pérez-Vizcaíno, F.; Jiménez, R.; Duarte, J. Probiotic Bifidobacterium breve prevents DOCA-salt hypertension. FASEB J., 2020, 34(10), 13626-13640.
[http://dx.doi.org/10.1096/fj.202001532R] [PMID: 32780919]
[70]
Kim, M.J.; Ku, S.; Kim, S.Y.; Lee, H.H.; Jin, H.; Kang, S.; Li, R.; Johnston, T.V.; Park, M.S.; Ji, G.E. Safety evaluations of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI. Int. J. Mol. Sci., 2018, 19(5), 1422.
[http://dx.doi.org/10.3390/ijms19051422] [PMID: 29747442]
[71]
Abboud, M.; Rizk, R.; AlAnouti, F.; Papandreou, D.; Haidar, S.; Mahboub, N. The health effects of vitamin d and probiotic co-supplementation: A systematic review of randomized controlled trials. Nutrients, 2020, 13(1), 111.
[http://dx.doi.org/10.3390/nu13010111] [PMID: 33396898]
[72]
Peirotén, Á.; Gaya, P.; Álvarez, I. Mª Landete, J. Production of O-desmethylangolensin, tetrahydrodaidzein, 6′-hydroxy-O-desmethylangolensin and 2-(4-hydroxyphenyl)-propionic acid in fermented soy beverage by lactic acid bacteria and Bifidobacterium strains. Food Chem., 2020, 318, 126521.
[http://dx.doi.org/10.1016/j.foodchem.2020.126521] [PMID: 32151927]
[73]
Staudacher, H.M.; Lomer, M.C.E.; Farquharson, F.M.; Louis, P.; Fava, F.; Franciosi, E.; Scholz, M.; Tuohy, K.M.; Lindsay, J.O.; Irving, P.M.; Whelan, K. A diet low in fodmaps reduces symptoms in patients with irritable bowel syndrome and a probiotic restores Bifidobacterium species: A randomized controlled trial. Gastroenterology, 2017, 153(4), 936-947.
[http://dx.doi.org/10.1053/j.gastro.2017.06.010] [PMID: 28625832]
[74]
Kan, Z.; Luo, B.; Cai, J.; Zhang, Y.; Tian, F.; Ni, Y. Genotyping and plant-derived glycan utilization analysis of Bifidobacterium strains from mother-infant pairs. BMC Microbiol., 2020, 20(1), 277.
[http://dx.doi.org/10.1186/s12866-020-01962-w] [PMID: 32912151]
[75]
Zeybek, N.; Rastall, R.A.; Buyukkileci, A.O. Utilization of xylan-type polysaccharides in co-culture fermentations of Bifidobacterium and Bacteroides species. Carbohydr. Polym., 2020, 236, 116076.
[http://dx.doi.org/10.1016/j.carbpol.2020.116076] [PMID: 32172889]
[76]
Lim, H.J.; Shin, H.S. Antimicrobial and immunomodulatory effects of Bifidobacterium strains: A review. J. Microbiol. Biotechnol., 2020, 30(12), 1793-1800.
[http://dx.doi.org/10.4014/jmb.2007.07046] [PMID: 33144551]
[77]
Nogacka, A.M.; Oddi, S.; Salazar, N.; Reinheimer, J.A.; Gueimonde, M.; Vinderola, G.; de Los Reyes-Gavilán, C.G. Intestinal immunomodulation and shifts on the gut microbiota of balb/c mice promoted by two Bifidobacterium and Lactobacillus strains isolated from human samples. BioMed Res. Int., 2019, 2019, 2323540.
[http://dx.doi.org/10.1155/2019/2323540] [PMID: 31119156]
[78]
Quaresma, M.; Damasceno, S.; Monteiro, C.; Lima, F.; Mendes, T.; Lima, M.; Justino, P.; Barbosa, A.; Souza, M.; Souza, E.; Soares, P. Probiotic mixture containing Lactobacillus spp. and Bifidobacterium spp. attenuates 5-fluorouracil-induced intestinal mucositis in mice. Nutr. Cancer, 2020, 72(8), 1355-1365.
[http://dx.doi.org/10.1080/01635581.2019.1675719] [PMID: 31608714]
[79]
Esaiassen, E.; Hjerde, E.; Cavanagh, J.P.; Simonsen, G.S.; Klingenberg, C. Norwegian Study Grp Invasive, B., Bifidobacterium bacteremia: Clinical characteristics and a genomic approach to assess pathogenicity. J. Clin. Microbiol., 2017, 55(7), 2234-2248.
[http://dx.doi.org/10.1128/JCM.00150-17] [PMID: 28490487]
[80]
Mahmoodpoor, A.; Hamishehkar, H.; Asghari, R.; Abri, R.; Shadvar, K.; Sanaie, S. Effect of a probiotic preparation on ventilator-associated pneumonia in critically ill patients admitted to the intensive care unit: A prospective double-blind randomized controlled trial. Nutr. Clin. Pract., 2019, 34(1), 156-162.
[http://dx.doi.org/10.1002/ncp.10191] [PMID: 30088841]
[81]
Pinto-Sanchez, M.I.; Hall, G.B.; Ghajar, K.; Nardelli, A.; Bolino, C.; Lau, J.T.; Martin, F.P.; Cominetti, O.; Welsh, C.; Rieder, A.; Traynor, J.; Gregory, C.; De Palma, G.; Pigrau, M.; Ford, A.C.; Macri, J.; Berger, B.; Bergonzelli, G.; Surette, M.G.; Collins, S.M.; Moayyedi, P.; Bercik, P. Probiotic Bifidobacterium longum NCC3001 reduces depression scores and alters brain activity: A Pilot study in patients with irritable bowel syndrome. Gastroenterology, 2017, 153(2), 448-459.e8.
[http://dx.doi.org/10.1053/j.gastro.2017.05.003] [PMID: 28483500]
[82]
Skrzydło-Radomańska, B.; Prozorow-Król, B.; Cichoż-Lach, H.; Majsiak, E.; Bierła, J.B.; Kosikowski, W.; Szczerbiński, M.; Gantzel, J.; Cukrowska, B. The effectiveness of synbiotic preparation containing Lactobacillus and Bifidobacterium probiotic strains and short chain fructooligosaccharides in patients with diarrhea predominant irritable bowel syndrome-A randomized double-blind, placebo-controlled study. Nutrients, 2020, 12(7), 1999.
[http://dx.doi.org/10.3390/nu12071999] [PMID: 32635661]
[83]
Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr., 2018, 57(1), 1-24.
[http://dx.doi.org/10.1007/s00394-017-1445-8] [PMID: 28393285]
[84]
Wan, M.L.Y.; Co, V.A.; El-Nezami, H. Dietary polyphenol impact on gut health and microbiota. Crit. Rev. Food Sci. Nutr., 2021, 61(4), 690-711.
[http://dx.doi.org/10.1080/10408398.2020.1744512] [PMID: 32208932]
[85]
Khan, N.; Mukhtar, H. Tea polyphenols in promotion of human health. Nutrients, 2018, 11(1), 39.
[http://dx.doi.org/10.3390/nu11010039] [PMID: 30585192]
[86]
Chen, T.; Yang, C.S. Biological fates of tea polyphenols and their interactions with microbiota in the gastrointestinal tract: Implications on health effects. Crit. Rev. Food Sci. Nutr., 2020, 60(16), 2691-2709.
[http://dx.doi.org/10.1080/10408398.2019.1654430] [PMID: 31446775]
[87]
Hajiaghaalipour, F.; Kanthimathi, M.S.; Sanusi, J.; Rajarajeswaran, J. White tea (Camellia sinensis) inhibits proliferation of the colon cancer cell line, HT-29, activates caspases and protects DNA of normal cells against oxidative damage. Food Chem., 2015, 169, 401-410.
[http://dx.doi.org/10.1016/j.foodchem.2014.07.005] [PMID: 25236244]
[88]
Bernatoniene, J.; Kopustinskiene, D.M. The role of catechins in cellular responses to oxidative stress. Molecules, 2018, 23(4), 965.
[http://dx.doi.org/10.3390/molecules23040965] [PMID: 29677167]
[89]
Annunziata, G.; Maisto, M.; Schisano, C.; Ciampaglia, R.; Daliu, P.; Narciso, V.; Tenore, G.C.; Novellino, E. Colon bioaccessibility and antioxidant activity of white, green and black tea polyphenols extract after in vitro simulated gastrointestinal digestion. Nutrients, 2018, 10(11), 1711.
[http://dx.doi.org/10.3390/nu10111711] [PMID: 30413043]
[90]
Kusunoki, Y.; Ikarashi, N.; Hayakawa, Y.; Ishii, M.; Kon, R.; Ochiai, W.; Machida, Y.; Sugiyama, K. Hepatic early inflammation induces downregulation of hepatic cytochrome P450 expression and metabolic activity in the dextran sulfate sodium-induced murine colitis. Eur. J. Pharm. Sci., 2014, 54, 17-27.
[http://dx.doi.org/10.1016/j.ejps.2013.12.019] [PMID: 24413062]
[91]
Liu, Y.C.; Li, X.Y.; Shen, L. Modulation effect of tea consumption on gut microbiota. Appl. Microbiol. Biotechnol., 2020, 104(3), 981-987.
[http://dx.doi.org/10.1007/s00253-019-10306-2] [PMID: 31853562]
[92]
Zhao, Y.; Zhang, X. Interactions of tea polyphenols with intestinal microbiota and their implication for anti-obesity. J. Sci. Food Agric., 2020, 100(3), 897-903.
[http://dx.doi.org/10.1002/jsfa.10049] [PMID: 31588996]
[93]
Wang, S.T.; Cui, W.Q.; Pan, D.; Jiang, M.; Chang, B.; Sang, L.X. Tea polyphenols and their chemopreventive and therapeutic effects on colorectal cancer. World J. Gastroenterol., 2020, 26(6), 562-597.
[http://dx.doi.org/10.3748/wjg.v26.i6.562] [PMID: 32103869]
[94]
Liu, Y.; Luo, L.; Luo, Y.; Zhang, J.; Wang, X.; Sun, K.; Zeng, L. Prebiotic properties of green and dark tea contribute to protective effects in chemical-induced colitis in mice: A fecal microbiota transplantation study. J. Agric. Food Chem., 2020, 68(23), 6368-6380.
[http://dx.doi.org/10.1021/acs.jafc.0c02336] [PMID: 32419454]
[95]
Cheng, M.; Zhang, X.; Guo, X.; Wu, Z.; Weng, P. The interaction effect and mechanism between tea polyphenols and intestinal microbiota: Role in human health. J. Food Biochem., 2017, 41(6), e12415.
[http://dx.doi.org/10.1111/jfbc.12415]
[96]
Li, Y.; Gao, X.; Lou, Y. Interactions of tea polyphenols with intestinal microbiota and their implication for cellular signal conditioning mechanism. J. Food Biochem., 2019, 43(8), e12953.
[http://dx.doi.org/10.1111/jfbc.12953] [PMID: 31368563]
[97]
Sánchez-Patán, F.; Barroso, E.; van de Wiele, T.; Jiménez-Girón, A.; Martín-Alvarez, P.J.; Moreno-Arribas, M.V.; Martínez-Cuesta, M.C.; Peláez, C.; Requena, T.; Bartolomé, B. Comparative in vitro fermentations of cranberry and grape seed polyphenols with colonic microbiota. Food Chem., 2015, 183, 273-282.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.061] [PMID: 25863636]
[98]
Cueva, C.; Gil-Sánchez, I.; Ayuda-Durán, B.; González-Manzano, S.; González-Paramás, A.M.; Santos-Buelga, C.; Bartolomé, B.; Moreno-Arribas, M.V. An integrated view of the effects of wine polyphenols and their relevant metabolites on gut and host health. Molecules, 2017, 22(1), 99.
[http://dx.doi.org/10.3390/molecules22010099] [PMID: 28067835]
[99]
Haghighatdoost, F.; Gholami, A.; Hariri, M. Effect of grape polyphenols on selected inflammatory mediators: A systematic review and meta-analysis randomized clinical trials. EXCLI J., 2020, 19, 251-267.
[PMID: 32327953]
[100]
Sarkhosh-Khorasani, S.; Hosseinzadeh, M. The effect of grape products containing polyphenols on C-reactive protein levels: A systematic review and meta-analysis of randomised controlled trials. Br. J. Nutr., 2021, 125(11), 1230-1245.
[http://dx.doi.org/10.1017/S0007114520003591] [PMID: 32921322]
[101]
Nash, V.; Ranadheera, C.S.; Georgousopoulou, E.N.; Mellor, D.D.; Panagiotakos, D.B.; McKune, A.J.; Kellett, J.; Naumovski, N. The effects of grape and red wine polyphenols on gut microbiota - A systematic review. Food Res. Int., 2018, 113, 277-287.
[http://dx.doi.org/10.1016/j.foodres.2018.07.019] [PMID: 30195522]
[102]
Queipo-Ortuño, M.I.; Boto-Ordóñez, M.; Murri, M.; Gomez-Zumaquero, J.M.; Clemente-Postigo, M.; Estruch, R.; Cardona Diaz, F.; Andrés-Lacueva, C.; Tinahones, F.J. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am. J. Clin. Nutr., 2012, 95(6), 1323-1334.
[http://dx.doi.org/10.3945/ajcn.111.027847] [PMID: 22552027]
[103]
Guo, X.J.; Cheng, M.; Zhang, X.; Cao, J.X.; Wu, Z.F.; Weng, P.F. Green tea polyphenols reduce obesity in high-fat diet-induced mice by modulating intestinal microbiota composition. Int. J. Food Sci. Technol., 2017, 52(8), 1723-1730.
[http://dx.doi.org/10.1111/ijfs.13479]
[104]
Zhou, L.; Wang, W.; Huang, J.; Ding, Y.; Pan, Z.; Zhao, Y.; Zhang, R.; Hu, B.; Zeng, X. In vitro extraction and fermentation of polyphenols from grape seeds (Vitis vinifera) by human intestinal microbiota. Food Funct., 2016, 7(4), 1959-1967.
[http://dx.doi.org/10.1039/C6FO00032K] [PMID: 26980065]
[105]
Yang, C.; Xiao, Y.; Wu, Q. Preventive effect of proanthocyanidin on gut microbiome in dyslipidemic mice. Shipin Kexue, 2020, 41(13), 120-126.
[106]
Bird, J.K.; Raederstorff, D.; Weber, P.; Steinert, R.E. Cardiovascular and antiobesity effects of resveratrol mediated through the gut microbiota. Adv. Nutr., 2017, 8(6), 839-849.
[http://dx.doi.org/10.3945/an.117.016568] [PMID: 29141969]
[107]
Qiao, Y.; Sun, J.; Xia, S.; Tang, X.; Shi, Y.; Le, G. Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food Funct., 2014, 5(6), 1241-1249.
[http://dx.doi.org/10.1039/c3fo60630a] [PMID: 24722352]
[108]
Larrosa, M.; Yañéz-Gascón, M.J.; Selma, M.V.; González-Sarrías, A.; Toti, S.; Cerón, J.J.; Tomás-Barberán, F.; Dolara, P.; Espín, J.C. Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model. J. Agric. Food Chem., 2009, 57(6), 2211-2220.
[http://dx.doi.org/10.1021/jf803638d] [PMID: 19228061]
[109]
Stahl, W.; van den Berg, H.; Arthur, J.; Bast, A.; Dainty, J.; Faulks, R.M.; Gärtner, C.; Haenen, G.; Hollman, P.; Holst, B.; Kelly, F.J.; Polidori, M.C.; Rice-Evans, C.; Southon, S.; van Vliet, T.; Viña-Ribes, J.; Williamson, G.; Astley, S.B. Bioavailability and metabolism. Mol. Aspects Med., 2002, 23(1-3), 39-100.
[http://dx.doi.org/10.1016/S0098-2997(02)00016-X] [PMID: 12079770]
[110]
Rai, D.K.; Tzima, K. A review on chromatography-mass spectrometry applications on anthocyanin and ellagitannin metabolites of blackberries and raspberries. Foods, 2021, 10(9), 2150.
[http://dx.doi.org/10.3390/foods10092150] [PMID: 34574260]
[111]
Lavefve, L.; Howard, L.R.; Carbonero, F. Berry polyphenols metabolism and impact on human gut microbiota and health. Food Funct., 2020, 11(1), 45-65.
[http://dx.doi.org/10.1039/C9FO01634A] [PMID: 31808762]
[112]
Wang, F.; Zhao, C.; Tian, G. Research progress of interactions between functional components of fruits/vegetables and gut microbiota. Biotechnol. Busin., (in chinese) 2017, 4, 53-61.
[113]
Dou, Z.; Chen, C.; Huang, Q.; Fu, X. In vitro digestion of the whole blackberry fruit: Bioaccessibility, bioactive variation of active ingredients and impacts on human gut microbiota. Food Chem., 2022, 370, 131001.
[http://dx.doi.org/10.1016/j.foodchem.2021.131001] [PMID: 34509148]
[114]
Núñez-Gómez, V.; Periago, M.J.; Navarro-González, I.; Campos-Cava, M.P.; Baenas, N.; González-Barrio, R. Influence of raspberry and its dietary fractions on the in vitro activity of the colonic microbiota from normal and overweight subjects. Plant Foods Hum. Nutr., 2021, 76(4), 494-500.
[http://dx.doi.org/10.1007/s11130-021-00923-6] [PMID: 34697672]
[115]
Liu, J.; Hao, W.; He, Z.; Kwek, E.; Zhu, H.; Ma, N.; Ma, K.Y.; Chen, Z.Y. Blueberry and cranberry anthocyanin extracts reduce bodyweight and modulate gut microbiota in C57BL/6 J mice fed with a high-fat diet. Eur. J. Nutr., 2021, 60(5), 2735-2746.
[http://dx.doi.org/10.1007/s00394-020-02446-3] [PMID: 33392758]
[116]
Cladis, D.P.; Simpson, A.M.R.; Cooper, K.J.; Nakatsu, C.H.; Ferruzzi, M.G.; Weaver, C.M. Blueberry polyphenols alter gut microbiota & phenolic metabolism in rats. Food Funct., 2021, 12(6), 2442-2456.
[http://dx.doi.org/10.1039/D0FO03457F] [PMID: 33629093]
[117]
Renaud, V.; Houde, V.P.; Pilon, G.; Varin, T.V.; Roblet, C.; Marette, A.; Boutin, Y.; Bazinet, L. The concentration of organic acids in cranberry juice modulates the gut microbiota in mice. Int. J. Mol. Sci., 2021, 22(21), 11537.
[http://dx.doi.org/10.3390/ijms222111537] [PMID: 34768966]
[118]
Diotallevi, C.; Fontana, M.; Latimer, C.; Ternan, N.G.; Pourshahidi, L.K.; Lawther, R.; O’Connor, G.; Conterno, L.; Gasperotti, M.; Angeli, A.; Lotti, C.; Bianchi, M.; Vrhovsek, U.; Fava, F.; Gobbetti, M.; Gill, C.I.R.; Tuohy, K.M. Ex vivo fecal fermentation of human ileal fluid collected after wild strawberry consumption modulates human microbiome community structure and metabolic output and protects against DNA damage in colonic epithelial cells. Mol. Nutr. Food Res., 2022, 66(3), e2100405.
[http://dx.doi.org/10.1002/mnfr.202100405] [PMID: 34821456]
[119]
Thumann, T.A.; Pferschy-Wenzig, E.M.; Moissl-Eichinger, C.; Bauer, R. The role of gut microbiota for the activity of medicinal plants traditionally used in the European Union for gastrointestinal disorders. J. Ethnopharmacol., 2019, 245, 112153.
[http://dx.doi.org/10.1016/j.jep.2019.112153] [PMID: 31408679]
[120]
Milutinović, M.; Dimitrijević-Branković, S.; Rajilić-Stojanović, M. Plant extracts rich in polyphenols as potent modulators in the growth of probiotic and pathogenic intestinal microorganisms. Front. Nutr., 2021, 8, 688843.
[http://dx.doi.org/10.3389/fnut.2021.688843] [PMID: 34409062]
[121]
Shen, L.; Liu, L.; Ji, H.F. Regulative effects of curcumin spice administration on gut microbiota and its pharmacological implications. Food Nutr. Res., 2017, 61(1), 1361780.
[http://dx.doi.org/10.1080/16546628.2017.1361780] [PMID: 28814952]
[122]
Wang, J.; Ghosh, S.S.; Ghosh, S. Curcumin improves intestinal barrier function: Modulation of intracellular signaling, and organization of tight junctions. Am. J. Physiol. Cell Physiol., 2017, 312(4), C438-C445.
[http://dx.doi.org/10.1152/ajpcell.00235.2016] [PMID: 28249988]
[123]
Shabbir, U.; Rubab, M.; Daliri, E.B.M.; Chelliah, R.; Javed, A.; Oh, D.H. Curcumin, quercetin, catechins and metabolic diseases: The role of gut microbiota. Nutrients, 2021, 13(1), 206.
[http://dx.doi.org/10.3390/nu13010206] [PMID: 33445760]
[124]
Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial properties of green tea catechins. Int. J. Mol. Sci., 2020, 21(5), 1744.
[http://dx.doi.org/10.3390/ijms21051744] [PMID: 32143309]
[125]
Bancirova, M. Comparison of the antioxidant capacity and the antimicrobial activity of black and green tea. Food Res. Int., 2010, 43(5), 1379-1382.
[http://dx.doi.org/10.1016/j.foodres.2010.04.020]
[126]
Zhang, X.; Zhu, X.L.; Sun, Y.K.; Hu, B.; Sun, Y.; Jabbar, S.; Zeng, X.X. Fermentation in vitro of EGCG, GCG and EGCG3 ” Me isolated from Oolong tea by human intestinal microbiota. Food Res. Int., 2013, 54(2), 1589-1595.
[http://dx.doi.org/10.1016/j.foodres.2013.10.005]
[127]
Sandoval-Ramírez, B.A.; Catalán, Ú.; Pedret, A.; Valls, R.M.; Motilva, M.J.; Rubió, L.; Solà, R. Exploring the effects of phenolic compounds to reduce intestinal damage and improve the intestinal barrier integrity: A systematic review of in vivo animal studies. Clin. Nutr., 2021, 40(4), 1719-1732.
[http://dx.doi.org/10.1016/j.clnu.2020.09.027] [PMID: 33187773]
[128]
Fredotović Ž; Puizina, J.; Nazlić, M.; Maravić, A.; Ljubenkov, I.; Soldo, B.; Vuko, E.; Bajić, D. Phytochemical characterization and screening of antioxidant, antimicrobial and antiproliferative properties of allium x cornutum clementi and two varieties of allium cepa L. peel extracts. Plants, 2021, 10(5), 832.
[http://dx.doi.org/10.3390/plants10050832] [PMID: 33919423]
[129]
Metrani, R.; Singh, J.; Acharya, P.; K. Jayaprakasha, G.; S. Patil, B. Comparative metabolomics profiling of polyphenols, nutrients and antioxidant activities of two red onion (Allium cepa L.) cultivars. Plants, 2020, 9(9), 1077.
[http://dx.doi.org/10.3390/plants9091077] [PMID: 32825622]
[130]
Roldán-Marín, E.; Krath, B.N.; Poulsen, M.; Binderup, M.L.; Nielsen, T.H.; Hansen, M.; Barri, T.; Langkilde, S.; Cano, M.P.; Sánchez-Moreno, C.; Dragsted, L.O. Effects of an onion by-product on bioactivity and safety markers in healthy rats. Br. J. Nutr., 2009, 102(11), 1574-1582.
[http://dx.doi.org/10.1017/S0007114509990870] [PMID: 19682402]
[131]
Kaulmann, A.; Planchon, S.; Renaut, J.; Schneider, Y.J.; Hoffmann, L.; Bohn, T. Proteomic response of inflammatory stimulated intestinal epithelial cells to in vitro digested plums and cabbages rich in carotenoids and polyphenols. Food Funct., 2016, 7(10), 4388-4399.
[http://dx.doi.org/10.1039/C6FO00674D] [PMID: 27711906]
[132]
Sost, M.M.; Ahles, S.; Verhoeven, J.; Verbruggen, S.; Stevens, Y.; Venema, K. A citrus fruit extract high in polyphenols beneficially modulates the gut microbiota of healthy human volunteers in a validated in vitro model of the colon. Nutrients, 2021, 13(11), 3915.
[http://dx.doi.org/10.3390/nu13113915] [PMID: 34836169]
[133]
Guo, F.; Tsao, R.; Li, C.; Wang, X.; Zhang, H.; Jiang, L.; Sun, Y.; Xiong, H. Green pea (pisum sativum l.) hull polyphenol extracts ameliorate DSS-induced colitis through Keap1/Nrf2 pathway and gut microbiota modulation. Foods, 2021, 10(11), 2765.
[http://dx.doi.org/10.3390/foods10112765] [PMID: 34829046]
[134]
Nowak, A.; Szczuka, D. Górczyńska, A.; Motyl, I.; Kręgiel, D. Characterization of apis mellifera gastrointestinal microbiota and lactic acid bacteria for honeybee protection-A review. Cells, 2021, 10(3), 701.
[http://dx.doi.org/10.3390/cells10030701] [PMID: 33809924]
[135]
Sorrenti, V.; Ali, S.; Mancin, L.; Davinelli, S.; Paoli, A.; Scapagnini, G. Cocoa polyphenols and gut microbiota interplay: Bioavailability, prebiotic effect, and impact on human health. Nutrients, 2020, 12(7), 1908.
[http://dx.doi.org/10.3390/nu12071908] [PMID: 32605083]
[136]
Nagata, R.; Sato, S.; Kilua, A.; Fukuma, N.; Nakayama, Y.; Kitazono, E.; Aoyama, T.; Han, K.H.; Fukushima, M. Combined effects of BARLEYmax and cocoa polyphenols on colonic microbiota and bacterial metabolites in vitro. Food Sci. Biotechnol., 2021, 30(11), 1417-1425.
[http://dx.doi.org/10.1007/s10068-021-00959-z] [PMID: 34790425]
[137]
Zhang, Y.; Cheng, L.; Zhang, X. Interactions of tea polyphenols with intestinal microbiota and their effects on cerebral nerves. J. Food Biochem., 2021, 45(1), e13575.
[http://dx.doi.org/10.1111/jfbc.13575] [PMID: 33222220]
[138]
Dolara, P.; Luceri, C.; De Filippo, C.; Femia, A.P.; Giovannelli, L.; Caderni, G.; Cecchini, C.; Silvi, S.; Orpianesi, C.; Cresci, A. Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutat. Res., 2005, 591(1-2), 237-246.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.04.022] [PMID: 16293270]
[139]
Kawabata, K.; Yoshioka, Y.; Terao, J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules, 2019, 24(2), 370.
[http://dx.doi.org/10.3390/molecules24020370] [PMID: 30669635]
[140]
Kim, H.; Castellon-Chicas, M.J.; Arbizu, S.; Talcott, S.T.; Drury, N.L.; Smith, S.; Mertens-Talcott, S.U. Mango (Mangifera indica L.) polyphenols: Anti-inflammatory intestinal microbial health benefits, and associated mechanisms of actions. Molecules, 2021, 26(9), 2732.
[http://dx.doi.org/10.3390/molecules26092732] [PMID: 34066494]
[141]
Katsirma, Z.; Dimidi, E.; Rodriguez-Mateos, A.; Whelan, K. Fruits and their impact on the gut microbiota, gut motility and constipation. Food Funct., 2021, 12(19), 8850-8866.
[http://dx.doi.org/10.1039/D1FO01125A] [PMID: 34505614]
[142]
Almuhayawi, M.S. Propolis as a novel antibacterial agent. Saudi J. Biol. Sci., 2020, 27(11), 3079-3086.
[http://dx.doi.org/10.1016/j.sjbs.2020.09.016] [PMID: 33100868]
[143]
Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct., 2019, 10(2), 514-528.
[http://dx.doi.org/10.1039/C8FO01997E] [PMID: 30746536]
[144]
Kasprzak-Drozd, K.; Oniszczuk, T.; Stasiak, M.; Oniszczuk, A. Beneficial effects of phenolic compounds on gut microbiota and metabolic syndrome. Int. J. Mol. Sci., 2021, 22(7), 3715.
[http://dx.doi.org/10.3390/ijms22073715] [PMID: 33918284]
[145]
Mithul Aravind, S.; Wichienchot, S.; Tsao, R.; Ramakrishnan, S.; Chakkaravarthi, S. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Res. Int., 2021, 142, 110189.
[http://dx.doi.org/10.1016/j.foodres.2021.110189] [PMID: 33773665]
[146]
Lee, H.C.; Jenner, A.M.; Low, C.S.; Lee, Y.K. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res. Microbiol., 2006, 157(9), 876-884.
[http://dx.doi.org/10.1016/j.resmic.2006.07.004] [PMID: 16962743]
[147]
Liao, Z.L.; Zeng, B.H.; Wang, W.; Li, G.H.; Wu, F.; Wang, L.; Zhong, Q.P.; Wei, H.; Fang, X. Impact of the consumption of tea polyphenols on early atherosclerotic lesion formation and intestinal bifidobacteria in high-fat-fed apoe(-/-) mice. Front. Nutr., 2016, 3, 42.
[http://dx.doi.org/10.3389/fnut.2016.00042] [PMID: 28066771]
[148]
Espín, J.C.; González-Sarrías, A.; Tomás-Barberán, F.A. The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochem. Pharmacol., 2017, 139, 82-93.
[http://dx.doi.org/10.1016/j.bcp.2017.04.033] [PMID: 28483461]
[149]
Man, A.W.C.; Zhou, Y.; Xia, N.; Li, H. Involvement of gut microbiota, microbial metabolites and interaction with polyphenol in host immunometabolism. Nutrients, 2020, 12(10), 3054.
[http://dx.doi.org/10.3390/nu12103054] [PMID: 33036205]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy