Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Direct Reprogramming in Bone and Joint Degenerative Diseases: Applications, Obstacles and Directions

Author(s): Kesi Shi, Fangcai Li*, Yiqing Tao* and Qixin Chen*

Volume 18, Issue 6, 2023

Published on: 14 September, 2022

Page: [766 - 778] Pages: 13

DOI: 10.2174/1574888X17666220810142943

Price: $65

Open Access Journals Promotions 2
Abstract

With a booming aging population worldwide, bone and joint degenerative diseases have gradually become a major public health focus, attracting extensive scientific attention. However, the effective treatments of these degenerative diseases have been confined to traditional medications and surgical interventions, which easily lead to the possibility of drug abuse or loss of physiological function to varying degrees. Recently, given that the development of reprogramming has overcome shackles in the field of degenerative diseases, direct reprogramming would provide a new concept to accelerate progress in the therapy of bone and joint degenerative diseases. The process of direct reprogramming would directly induce ordinary somatic cells to the desired targeted cells without passing through pluripotent cell states. In this review, we summarize some direct reprogramming of cells that has been attempted for the repair of common bone and joint degenerative diseases, such as osteoarthritis, osteoporosis-related fracture and intervertebral disc degeneration. However, it is inevitable that some obstacles, such as accurate transcription factors, an appropriate extracellular microenvironment and efficient delivery carriers in vivo, need to be resolved. In addition, developmental and promising directions associated with direct reprogramming have attracted public attention. Investigation of the regulation of the transient genome, metabolic conversion and cellular skeleton would provide superior potential candidates for the revolution of direct reprogramming. The aim of direct reprogramming is to directly provide target cells for cell therapy and even tissue reconstruction in bone and joint degenerative diseases. Moreover, the development of direct reprogramming have potential to achieve repair and even reconstruct in situ, which would be breakthrough effect for the repair of bone and joint degenerative diseases. The advance of direct reprogramming has opened numerous opportunities for new therapeutic strategies in regenerative medicine.

Keywords: Direct reprogramming, bone and joint degenerative diseases, applications, obstacles, directions, microenvironment.

Graphical Abstract
[1]
Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the global burden of disease study 2017. Lancet 2018; 392(10159): 1789-858.
[http://dx.doi.org/10.1016/S0140-6736(18)32279-7] [PMID: 30496104]
[2]
Yucesoy B, Charles LE, Baker B, Burchfiel CM. Occupational and genetic risk factors for osteoarthritis: A review. Work 2015; 50(2): 261-73.
[http://dx.doi.org/10.3233/WOR-131739] [PMID: 24004806]
[3]
Morello R. Osteogenesis imperfecta and therapeutics. Matrix Biol 2018; 71-72: 294-312.
[http://dx.doi.org/10.1016/j.matbio.2018.03.010] [PMID: 29540309]
[4]
Kepler CK, Ponnappan RK, Tannoury CA, Risbud MV, Anderson DG. The molecular basis of intervertebral disc degeneration. Spine J 2013; 13(3): 318-30.
[http://dx.doi.org/10.1016/j.spinee.2012.12.003] [PMID: 23537454]
[5]
Podgorski I. Future of anticathepsin K drugs: Dual therapy for skeletal disease and atherosclerosis? Future Med Chem 2009; 1(1): 21-34.
[http://dx.doi.org/10.4155/fmc.09.4] [PMID: 20126511]
[6]
Efimenko AY, Kochegura TN, Akopyan ZA, Parfyonova YV. Autologous stem cell therapy: How aging and chronic diseases affect stem and progenitor cells. Biores Open Access 2015; 4(1): 26-38.
[http://dx.doi.org/10.1089/biores.2014.0042] [PMID: 26309780]
[7]
Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med 2011; 9: 29.
[http://dx.doi.org/10.1186/1479-5876-9-29] [PMID: 21418664]
[8]
Fu X. The immunogenicity of cells derived from induced pluripotent stem cells. Cell Mol Immunol 2014; 11(1): 14-6.
[http://dx.doi.org/10.1038/cmi.2013.60] [PMID: 24336164]
[9]
Jha BS, Bharti K. Regenerating retinal pigment epithelial cells to cure blindness: A road towards personalized artificial tissue. Curr Stem Cell Rep 2015; 1(2): 79-91.
[http://dx.doi.org/10.1007/s40778-015-0014-4] [PMID: 26146605]
[10]
Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat Rev Immunol 2020; 20(11): 651-68.
[http://dx.doi.org/10.1038/s41577-020-0306-5] [PMID: 32433532]
[11]
Kim M, Kim C, Choi YS, Kim M, Park C, Suh Y. Age-related alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: Implication to age-associated bone diseases and defects. Mech Ageing Dev 2012; 133(5): 215-25.
[http://dx.doi.org/10.1016/j.mad.2012.03.014] [PMID: 22738657]
[12]
F M-J. Safety concerns and requirement of cellbased products for clinical application. Biomedical Product Development: Bench to Bedside. Cham: Springer 2020.
[13]
Sharma R, Bose D, Maminishkis A, Bharti K. Retinal pigment epithelium replacement therapy for age-related macular degeneration: Are we there yet? Annu Rev Pharmacol Toxicol 2020; 60: 553-72.
[http://dx.doi.org/10.1146/annurev-pharmtox-010919-023245] [PMID: 31914900]
[14]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[15]
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
[http://dx.doi.org/10.1016/j.cell.2007.11.019] [PMID: 18035408]
[16]
Takahashi K, Yamanaka S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 2016; 17(3): 183-93.
[http://dx.doi.org/10.1038/nrm.2016.8] [PMID: 26883003]
[17]
Cell Stem Cell Editorial T. 10 Questions: Clinical outlook for iPSCs. Cell Stem Cell 2016; 18(2): 170-3.
[http://dx.doi.org/10.1016/j.stem.2016.01.023] [PMID: 26849303]
[18]
Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: A decade of progress. Nat Rev Drug Discov 2017; 16(2): 115-30.
[http://dx.doi.org/10.1038/nrd.2016.245] [PMID: 27980341]
[19]
Liew LC, Ho BX, Soh BS. Mending a broken heart: Current strategies and limitations of cell-based therapy. Stem Cell Res Ther 2020; 11(1): 138.
[http://dx.doi.org/10.1186/s13287-020-01648-0] [PMID: 32216837]
[20]
Blau HM, Daley GQ. Stem cells in the treatment of disease. N Engl J Med 2019; 380(18): 1748-60.
[http://dx.doi.org/10.1056/NEJMra1716145] [PMID: 31042827]
[21]
Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010; 142(3): 375-86.
[http://dx.doi.org/10.1016/j.cell.2010.07.002] [PMID: 20691899]
[22]
Han DW, Tapia N, Hermann A, et al. Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 2012; 10(4): 465-72.
[http://dx.doi.org/10.1016/j.stem.2012.02.021] [PMID: 22445517]
[23]
Inagawa K, Ieda M. Direct reprogramming of mouse fibroblasts into cardiac myocytes. J Cardiovasc Transl Res 2013; 6(1): 37-45.
[http://dx.doi.org/10.1007/s12265-012-9412-5] [PMID: 23054660]
[24]
Thier M, Wörsdörfer P, Lakes YB, et al. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 2012; 10(4): 473-9.
[http://dx.doi.org/10.1016/j.stem.2012.03.003] [PMID: 22445518]
[25]
Huang P, He Z, Ji S, et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 2011; 475(7356): 386-9.
[http://dx.doi.org/10.1038/nature10116] [PMID: 21562492]
[26]
Smith ZD, Sindhu C, Meissner A. Molecular features of cellular reprogramming and development. Nat Rev Mol Cell Biol 2016; 17(3): 139-54.
[http://dx.doi.org/10.1038/nrm.2016.6] [PMID: 26883001]
[27]
Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, Beck JC. Relationship between donor age and the replicative lifespan of human cells in culture: A reevaluation. Proc Natl Acad Sci USA 1998; 95(18): 10614-9.
[http://dx.doi.org/10.1073/pnas.95.18.10614] [PMID: 9724752]
[28]
Srivastava D, DeWitt N. In vivo cellular reprogramming: The next generation. Cell 2016; 166(6): 1386-96.
[http://dx.doi.org/10.1016/j.cell.2016.08.055] [PMID: 27610565]
[29]
Li H, Chen G. In vivo reprogramming for CNS repair: Regenerating neurons from endogenous glial cells. Neuron 2016; 91(4): 728-38.
[http://dx.doi.org/10.1016/j.neuron.2016.08.004] [PMID: 27537482]
[30]
Hinckel BB, Gomoll AH. Autologous chondrocytes and next-generation matrix-based autologous chondrocyte implantation. Clin Sports Med 2017; 36(3): 525-48.
[http://dx.doi.org/10.1016/j.csm.2017.02.008] [PMID: 28577711]
[31]
White BJ, Stapleford AB, Hawkes TK, Finger MJ, Herzog MM. Allograft use in arthroscopic labral reconstruction of the hip with front-to-back fixation technique: Minimum 2-year follow-up. Arthroscopy 2016; 32(1): 26-32.
[http://dx.doi.org/10.1016/j.arthro.2015.07.016] [PMID: 26422708]
[32]
Rakic R, Bourdon B, Hervieu M, et al. RNA interference and BMP-2 stimulation allows equine chondrocytes redifferentiation in 3d-hypoxia cell culture model: Application for matrix-induced autologous chondrocyte implantation. Int J Mol Sci 2017; 18(9): E1842.
[http://dx.doi.org/10.3390/ijms18091842] [PMID: 28837082]
[33]
Amariglio N, Hirshberg A, Scheithauer BW, et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 2009; 6(2): e1000029.
[http://dx.doi.org/10.1371/journal.pmed.1000029] [PMID: 19226183]
[34]
Jiang Z, Han Y, Cao X. Induced pluripotent stem cell (iPSCs) and their application in immunotherapy. Cell Mol Immunol 2014; 11(1): 17-24.
[http://dx.doi.org/10.1038/cmi.2013.62] [PMID: 24336163]
[35]
Outani H, Okada M, Hiramatsu K, Yoshikawa H, Tsumaki N. Induction of chondrogenic cells from dermal fibroblast culture by defined factors does not involve a pluripotent state. Biochem Biophys Res Commun 2011; 411(3): 607-12.
[http://dx.doi.org/10.1016/j.bbrc.2011.06.194] [PMID: 21763273]
[36]
Goessler UR, Bugert P, Bieback K, et al. Expression of collagen and fiber-associated proteins in human septal cartilage during in vitro dedifferentiation. Int J Mol Med 2004; 14(6): 1015-22.
[http://dx.doi.org/10.3892/ijmm.14.6.1015] [PMID: 15547667]
[37]
Outani H, Okada M, Yamashita A, Nakagawa K, Yoshikawa H, Tsumaki N. Direct induction of chondrogenic cells from human dermal fibroblast culture by defined factors. PLoS One 2013; 8(10): e77365.
[http://dx.doi.org/10.1371/journal.pone.0077365] [PMID: 24146984]
[38]
Hiramatsu K, Sasagawa S, Outani H, Nakagawa K, Yoshikawa H, Tsumaki N. Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors. J Clin Invest 2011; 121(2): 640-57.
[http://dx.doi.org/10.1172/JCI44605] [PMID: 21293062]
[39]
Wang Y, Wu MH, Cheung MPL, et al. Reprogramming of dermal fibroblasts into osteo-chondrogenic cells with elevated osteogenic potency by defined transcription factors. Stem Cell Reports 2017; 8(6): 1587-99.
[http://dx.doi.org/10.1016/j.stemcr.2017.04.018] [PMID: 28528696]
[40]
Yamanaka S. Elite and stochastic models for induced pluripotent stem cell generation. Nature 2009; 460(7251): 49-52.
[http://dx.doi.org/10.1038/nature08180] [PMID: 19571877]
[41]
Cota P, Helmi SA, Hsu C, Rancourt DE. Cytokine directed chondroblast trans-differentiation: JAK inhibition facilitates direct reprogramming of fibroblasts to chondroblasts. Cells 2020; 9(1): E191.
[http://dx.doi.org/10.3390/cells9010191] [PMID: 31940860]
[42]
Zhao T, Fu Y, Zhu J, et al. Single-cell RNA-seq reveals dynamic early embryonic-like programs during chemical reprogramming. Cell Stem Cell 2018; 23(1): 31-45.e7.
[http://dx.doi.org/10.1016/j.stem.2018.05.025] [PMID: 29937202]
[43]
Zhang M, Lin YH, Sun YJ, et al. Pharmacological reprogramming of fibroblasts into neural stem cells by signaling-directed transcriptional activation. Cell Stem Cell 2016; 18(5): 653-67.
[http://dx.doi.org/10.1016/j.stem.2016.03.020] [PMID: 27133794]
[44]
Zhang Y, Cao N, Huang Y, et al. Expandable cardiovascular progenitor cells reprogrammed from fibroblasts. Cell Stem Cell 2016; 18(3): 368-81.
[http://dx.doi.org/10.1016/j.stem.2016.02.001] [PMID: 26942852]
[45]
Hou P, Li Y, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 2013; 341(6146): 651-4.
[http://dx.doi.org/10.1126/science.1239278] [PMID: 23868920]
[46]
Chen Y, Wu B, Lin J, et al. High-resolution dissection of chemical reprogramming from mouse embryonic fibroblasts into fibrocartilaginous cells. Stem Cell Reports 2020; 14(3): 478-92.
[http://dx.doi.org/10.1016/j.stemcr.2020.01.013] [PMID: 32084387]
[47]
Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: Current concepts and future directions. BMC Med 2011; 9: 66.
[http://dx.doi.org/10.1186/1741-7015-9-66] [PMID: 21627784]
[48]
Neve A, Corrado A, Cantatore FP. Osteoblast physiology in normal and pathological conditions. Cell Tissue Res 2011; 343(2): 289-302.
[http://dx.doi.org/10.1007/s00441-010-1086-1] [PMID: 21120535]
[49]
Long F. Building strong bones: Molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 2011; 13(1): 27-38.
[http://dx.doi.org/10.1038/nrm3254] [PMID: 22189423]
[50]
Panaroni C, Tzeng YS, Saeed H, Wu JY. Mesenchymal progenitors and the osteoblast lineage in bone marrow hematopoietic niches. Curr Osteoporos Rep 2014; 12(1): 22-32.
[http://dx.doi.org/10.1007/s11914-014-0190-7] [PMID: 24477415]
[51]
Wu JY. Pluripotent stem cells and skeletal regeneration--promise and potential. Curr Osteoporos Rep 2015; 13(5): 342-50.
[http://dx.doi.org/10.1007/s11914-015-0285-9] [PMID: 26260198]
[52]
Lu Z, Chiu J, Lee LR, et al. Reprogramming of human fibroblasts into osteoblasts by insulin-like growth factor-binding protein 7. Stem Cells Transl Med 2020; 9(3): 403-15.
[http://dx.doi.org/10.1002/sctm.19-0281] [PMID: 31904196]
[53]
Bilousova G, Jun H, King KB, et al. Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells 2011; 29(2): 206-16.
[http://dx.doi.org/10.1002/stem.566] [PMID: 21732479]
[54]
Shu J, Wu C, Wu Y, et al. Induction of pluripotency in mouse somatic cells with lineage specifiers. Cell 2013; 153(5): 963-75.
[http://dx.doi.org/10.1016/j.cell.2013.05.001] [PMID: 23706735]
[55]
Yamamoto K, Kishida T, Sato Y, et al. Direct conversion of human fibroblasts into functional osteoblasts by defined factors. Proc Natl Acad Sci USA 2015; 112(19): 6152-7.
[http://dx.doi.org/10.1073/pnas.1420713112] [PMID: 25918395]
[56]
Kalajzic I, Kalajzic Z, Kaliterna M, et al. Use of type I collagen green fluorescent protein transgenes to identify subpopulations of cells at different stages of the osteoblast lineage. J Bone Miner Res 2002; 17(1): 15-25.
[http://dx.doi.org/10.1359/jbmr.2002.17.1.15] [PMID: 11771662]
[57]
Zhu H, Kimura T, Swami S, Wu JY. Pluripotent stem cells as a source of osteoblasts for bone tissue regeneration. Biomaterials 2019; 196: 31-45.
[http://dx.doi.org/10.1016/j.biomaterials.2018.02.009] [PMID: 29456164]
[58]
Zhu H, Swami S, Yang P, Shapiro F, Wu JY. Direct reprogramming of mouse fibroblasts into functional osteoblasts. J Bone Miner Res 2020; 35(4): 698-713.
[http://dx.doi.org/10.1002/jbmr.3929] [PMID: 31793059]
[59]
Phillips MD, Kuznetsov SA, Cherman N, et al. Directed differentiation of human induced pluripotent stem cells toward bone and cartilage: In vitro versus in vivo assays. Stem Cells Transl Med 2014; 3(7): 867-78.
[http://dx.doi.org/10.5966/sctm.2013-0154] [PMID: 24855277]
[60]
Gjorgjieva T, Xie X, Commins P, et al. Loss of β-actin leads to accelerated mineralization and dysregulation of osteoblast-differentiation genes during osteogenic reprogramming. Adv Sci (Weinh) 2020; 7(23): 2002261.
[http://dx.doi.org/10.1002/advs.202002261] [PMID: 33304760]
[61]
Deyo RA, Von Korff M, Duhrkoop D. Opioids for low back pain. BMJ 2015; 350: g6380.
[http://dx.doi.org/10.1136/bmj.g6380] [PMID: 25561513]
[62]
P G he biology of the intervertebral disc. (1st ed.), Boca Raton, FL: CRC Press 1988.
[63]
Freemont AJ. The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain. Rheumatology (Oxford) 2009; 48(1): 5-10.
[http://dx.doi.org/10.1093/rheumatology/ken396] [PMID: 18854342]
[64]
Vo NV, Hartman RA, Patil PR, et al. Molecular mechanisms of biological aging in intervertebral discs. J Orthop Res 2016; 34(8): 1289-306.
[http://dx.doi.org/10.1002/jor.23195] [PMID: 26890203]
[65]
Schwarzer AC, Aprill CN, Derby R, Fortin J, Kine G, Bogduk N. The prevalence and clinical features of internal disc disruption in patients with chronic low back pain. Spine 1995; 20(17): 1878-83.
[http://dx.doi.org/10.1097/00007632-199509000-00007] [PMID: 8560335]
[66]
Malik KM, Cohen SP, Walega DR, Benzon HT. Diagnostic criteria and treatment of discogenic pain: A systematic review of recent clinical literature. Spine J 2013; 13(11): 1675-89.
[http://dx.doi.org/10.1016/j.spinee.2013.06.063] [PMID: 23993035]
[67]
Liu Y, Yu T, Ma XX, Xiang HF, Hu YG, Chen BH. Lentivirus-mediated TGF-β3, CTGF and TIMP1 gene transduction as a gene therapy for intervertebral disc degeneration in an in vivo rabbit model. Exp Ther Med 2016; 11(4): 1399-404.
[http://dx.doi.org/10.3892/etm.2016.3063] [PMID: 27073456]
[68]
Yarborough M, Sharp RR. Public trust and research a decade later: What have we learned since Jesse Gelsinger’s death? Mol Genet Metab 2009; 97(1): 4-5.
[http://dx.doi.org/10.1016/j.ymgme.2009.02.002] [PMID: 19285443]
[69]
Paul R, Haydon RC, Cheng H, et al. Potential use of Sox9 gene therapy for intervertebral degenerative disc disease. Spine 2003; 28(8): 755-63.
[http://dx.doi.org/10.1097/01.BRS.0000058946.64222.92] [PMID: 12698117]
[70]
Maidhof R, Alipui DO, Rafiuddin A, Levine M, Grande DA, Chahine NO. Emerging trends in biological therapy for intervertebral disc degeneration. Discov Med 2012; 14(79): 401-11.
[PMID: 23272692]
[71]
Zhou P, Guo Q, Ling F, Qian Z, Li B. Progress and challenges in tissue engineering of intervertebral disc annulus fibrosus. Zhejiang Da Xue Xue Bao Yi Xue Ban 2016; 45(2): 132-40.
[PMID: 27273986]
[72]
Sivakamasundari V, Lufkin T. Stemming the degeneration: IVD stem cells and stem cell regenerative therapy for degenerative disc disease. Adv Stem Cells 2013; 2013
[73]
Yoshikawa T, Ueda Y, Miyazaki K, Koizumi M, Takakura Y. Disc regeneration therapy using marrow mesenchymal cell transplantation: A report of two case studies. Spine 2010; 35(11): E475-80.
[http://dx.doi.org/10.1097/BRS.0b013e3181cd2cf4] [PMID: 20421856]
[74]
Acosta FL Jr, Metz L, Adkisson HD, et al. Porcine intervertebral disc repair using allogeneic juvenile articular chondrocytes or mesenchymal stem cells. Tissue Eng Part A 2011; 17(23-24): 3045-55.
[http://dx.doi.org/10.1089/ten.tea.2011.0229] [PMID: 21910592]
[75]
Tang R, Jing L, Willard VP, et al. Differentiation of human induced pluripotent stem cells into nucleus pulposus-like cells. Stem Cell Res Ther 2018; 9(1): 61.
[http://dx.doi.org/10.1186/s13287-018-0797-1] [PMID: 29523190]
[76]
Gallego-Perez D, Pal D, Ghatak S, et al. Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue. Nat Nanotechnol 2017; 12(10): 974-9.
[http://dx.doi.org/10.1038/nnano.2017.134] [PMID: 28785092]
[77]
Tang S, Richards J, Khan S, et al. Nonviral transfection with brachyury reprograms human intervertebral disc cells to a pro-anabolic anti-catabolic/inflammatory phenotype: A proof of concept study. J Orthop Res 2019; 37(11): 2389-400.
[http://dx.doi.org/10.1002/jor.24408] [PMID: 31286562]
[78]
Cao F, Xie X, Gollan T, et al. Comparison of gene-transfer efficiency in human embryonic stem cells. Mol Imaging Biol 2010; 12(1): 15-24.
[http://dx.doi.org/10.1007/s11307-009-0236-x] [PMID: 19551446]
[79]
Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008; 322(5903): 949-53.
[http://dx.doi.org/10.1126/science.1164270] [PMID: 18845712]
[80]
Karagiannis P, Yamanaka S. The fate of cell reprogramming. Nat Methods 2014; 11(10): 1006-8.
[http://dx.doi.org/10.1038/nmeth.3109] [PMID: 25264776]
[81]
Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol 1997; 17(4): 2336-46.
[http://dx.doi.org/10.1128/MCB.17.4.2336] [PMID: 9121483]
[82]
Liu Y, Li H, Tanaka K, Tsumaki N, Yamada Y. Identification of an enhancer sequence within the first intron required for cartilage-specific transcription of the alpha2(XI) collagen gene. J Biol Chem 2000; 275(17): 12712-8.
[http://dx.doi.org/10.1074/jbc.275.17.12712] [PMID: 10777565]
[83]
Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 1997; 89(5): 747-54.
[http://dx.doi.org/10.1016/S0092-8674(00)80257-3] [PMID: 9182762]
[84]
Komori T. Regulation of osteoblast differentiation by transcription factors. J Cell Biochem 2006; 99(5): 1233-9.
[http://dx.doi.org/10.1002/jcb.20958] [PMID: 16795049]
[85]
Soufi A, Garcia MF, Jaroszewicz A, Osman N, Pellegrini M, Zaret KS. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 2015; 161(3): 555-68.
[http://dx.doi.org/10.1016/j.cell.2015.03.017] [PMID: 25892221]
[86]
Iwafuchi-Doi M, Zaret KS. Pioneer transcription factors in cell reprogramming. Genes Dev 2014; 28(24): 2679-92.
[http://dx.doi.org/10.1101/gad.253443.114] [PMID: 25512556]
[87]
Soufi A, Donahue G, Zaret KS. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 2012; 151(5): 994-1004.
[http://dx.doi.org/10.1016/j.cell.2012.09.045] [PMID: 23159369]
[88]
Cirillo LA, Lin FR, Cuesta I, Friedman D, Jarnik M, Zaret KS. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell 2002; 9(2): 279-89.
[http://dx.doi.org/10.1016/S1097-2765(02)00459-8] [PMID: 11864602]
[89]
Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010; 463(7284): 1035-41.
[http://dx.doi.org/10.1038/nature08797] [PMID: 20107439]
[90]
Lee MH, Kim YJ, Yoon WJ, et al. Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. J Biol Chem 2005; 280(42): 35579-87.
[http://dx.doi.org/10.1074/jbc.M502267200] [PMID: 16115867]
[91]
Kawane T, Komori H, Liu W, et al. Dlx5 and mef2 regulate a novel runx2 enhancer for osteoblast-specific expression. J Bone Miner Res 2014; 29(9): 1960-9.
[http://dx.doi.org/10.1002/jbmr.2240] [PMID: 24692107]
[92]
Wapinski OL, Vierbuchen T, Qu K, et al. Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 2013; 155(3): 621-35.
[http://dx.doi.org/10.1016/j.cell.2013.09.028] [PMID: 24243019]
[93]
Voog J, Jones DL. Stem cells and the niche: A dynamic duo. Cell Stem Cell 2010; 6(2): 103-15.
[http://dx.doi.org/10.1016/j.stem.2010.01.011] [PMID: 20144784]
[94]
Fu JD, Srivastava D. Direct reprogramming of fibroblasts into cardiomyocytes for cardiac regenerative medicine. Circ J 2015; 79(2): 245-54.
[http://dx.doi.org/10.1253/circj.CJ-14-1372] [PMID: 25744738]
[95]
Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126(4): 677-89.
[http://dx.doi.org/10.1016/j.cell.2006.06.044] [PMID: 16923388]
[96]
Gerardo H, Lima A, Carvalho J, et al. Soft culture substrates favor stem-like cellular phenotype and facilitate reprogramming of human mesenchymal stem/stromal cells (hMSCs) through mechanotransduction. Sci Rep 2019; 9(1): 9086.
[http://dx.doi.org/10.1038/s41598-019-45352-3] [PMID: 31235788]
[97]
Jin Y, Lee JS, Kim J, et al. Three-dimensional brain-like microenvironments facilitate the direct reprogramming of fibroblasts into therapeutic neurons. Nat Biomed Eng 2018; 2(7): 522-39.
[http://dx.doi.org/10.1038/s41551-018-0260-8] [PMID: 30948831]
[98]
Ma SKY, Chan ASF, Rubab A, Chan WCW, Chan D. Extracellular matrix and cellular plasticity in musculoskeletal development. Front Cell Dev Biol 2020; 8: 781.
[http://dx.doi.org/10.3389/fcell.2020.00781] [PMID: 32984311]
[99]
Benoit DS, Schwartz MP, Durney AR, Anseth KS. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater 2008; 7(10): 816-23.
[http://dx.doi.org/10.1038/nmat2269] [PMID: 18724374]
[100]
Chiche A, Le Roux I, von Joest M, et al. Injury-induced senescence enables in vivo reprogramming in skeletal muscle. Cell Stem Cell 2017; 20(3): 407-414.e4.
[http://dx.doi.org/10.1016/j.stem.2016.11.020] [PMID: 28017795]
[101]
Qian L, Huang Y, Spencer CI, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 2012; 485(7400): 593-8.
[http://dx.doi.org/10.1038/nature11044] [PMID: 22522929]
[102]
Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 2014; 14(2): 188-202.
[http://dx.doi.org/10.1016/j.stem.2013.12.001] [PMID: 24360883]
[103]
Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008; 455(7213): 627-32.
[http://dx.doi.org/10.1038/nature07314] [PMID: 18754011]
[104]
Jayawardena TM, Finch EA, Zhang L, et al. MicroRNA induced cardiac reprogramming in vivo: Evidence for mature cardiac myocytes and improved cardiac function. Circ Res 2015; 116(3): 418-24.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.304510] [PMID: 25351576]
[105]
Su Z, Niu W, Liu ML, Zou Y, Zhang CL. In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun 2014; 5: 3338.
[http://dx.doi.org/10.1038/ncomms4338] [PMID: 24569435]
[106]
Song G, Pacher M, Balakrishnan A, et al. Direct reprogramming of hepatic myofibroblasts into hepatocytes in vivo attenuates liver fibrosis. Cell Stem Cell 2016; 18(6): 797-808.
[http://dx.doi.org/10.1016/j.stem.2016.01.010] [PMID: 26923201]
[107]
Yao K, Qiu S, Wang YV, et al. Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas. Nature 2018; 560(7719): 484-8.
[http://dx.doi.org/10.1038/s41586-018-0425-3] [PMID: 30111842]
[108]
Miyamoto K, Akiyama M, Tamura F, et al. Direct in vivo reprogramming with sendai virus vectors improves cardiac function after myocardial infarction. Cell Stem Cell 2018; 22(1): 91-103.e5.
[http://dx.doi.org/10.1016/j.stem.2017.11.010] [PMID: 29276141]
[109]
Lee K, Yu P, Lingampalli N, Kim HJ, Tang R, Murthy N. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells. Int J Nanomedicine 2015; 10: 1841-54.
[PMID: 25834424]
[110]
Chang Y, Lee E, Kim J, Kwon YW, Kwon Y, Kim J. Efficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrier. Biomaterials 2019; 192: 500-9.
[http://dx.doi.org/10.1016/j.biomaterials.2018.11.034] [PMID: 30513475]
[111]
Park G, Yoon BS, Kim YS, et al. Conversion of mouse fibroblasts into cardiomyocyte-like cells using small molecule treatments. Biomaterials 2015; 54: 201-12.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.029] [PMID: 25907053]
[112]
Li X, Zuo X, Jing J, et al. Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell 2015; 17(2): 195-203.
[http://dx.doi.org/10.1016/j.stem.2015.06.003] [PMID: 26253201]
[113]
Dai P, Harada Y, Takamatsu T. Highly efficient direct conversion of human fibroblasts to neuronal cells by chemical compounds. J Clin Biochem Nutr 2015; 56(3): 166-70.
[http://dx.doi.org/10.3164/jcbn.15-39] [PMID: 26060345]
[114]
O’Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol 2020; 21(10): 585-606.
[http://dx.doi.org/10.1038/s41580-020-0251-y] [PMID: 32457507]
[115]
Ocampo A, Reddy P, Martinez-Redondo P, et al. in vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 2016; 167(7): 1719-33.
[116]
Andrey G, Mundlos S. The three-dimensional genome: Regulating gene expression during pluripotency and development. Development 2017; 144(20): 3646-58.
[http://dx.doi.org/10.1242/dev.148304] [PMID: 29042476]
[117]
Stadhouders R, Vidal E, Serra F, et al. Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming. Nat Genet 2018; 50(2): 238-49.
[http://dx.doi.org/10.1038/s41588-017-0030-7] [PMID: 29335546]
[118]
Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 1987; 51(6): 987-1000.
[http://dx.doi.org/10.1016/0092-8674(87)90585-X] [PMID: 3690668]
[119]
Dall’Agnese A, Caputo L, Nicoletti C, et al. Transcription factor-directed re-wiring of chromatin architecture for somatic cell nuclear reprogramming toward trans-differentiation. Mol Cell 2019; 76(3): 453-472.e8.
[http://dx.doi.org/10.1016/j.molcel.2019.07.036] [PMID: 31519520]
[120]
Zheng X, Boyer L, Jin M, et al. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. eLife 2016; 5: 5.
[http://dx.doi.org/10.7554/eLife.13374] [PMID: 27282387]
[121]
Cliff TS, Dalton S. Metabolic switching and cell fate decisions: Implications for pluripotency, reprogramming and development. Curr Opin Genet Dev 2017; 46: 44-9.
[http://dx.doi.org/10.1016/j.gde.2017.06.008] [PMID: 28662447]
[122]
Mathieu J, Ruohola-Baker H. Metabolic remodeling during the loss and acquisition of pluripotency. Development 2017; 144(4): 541-51.
[http://dx.doi.org/10.1242/dev.128389] [PMID: 28196802]
[123]
Gascón S, Murenu E, Masserdotti G, et al. Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming. Cell Stem Cell 2016; 18(3): 396-409.
[http://dx.doi.org/10.1016/j.stem.2015.12.003] [PMID: 26748418]
[124]
Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 2015; 86(4): 883-901.
[http://dx.doi.org/10.1016/j.neuron.2015.03.035] [PMID: 25996133]
[125]
Liu Z, Wang L, Welch JD, et al. Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte. Nature 2017; 551(7678): 100-4.
[http://dx.doi.org/10.1038/nature24454] [PMID: 29072293]
[126]
Li X, Fang P, Yang WY, et al. Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cells. Can J Physiol Pharmacol 2017; 95(3): 247-52.
[http://dx.doi.org/10.1139/cjpp-2016-0515] [PMID: 27925481]
[127]
Finkel T. Signal transduction by mitochondrial oxidants. J Biol Chem 2012; 287(7): 4434-40.
[http://dx.doi.org/10.1074/jbc.R111.271999] [PMID: 21832045]
[128]
West AP, Brodsky IE, Rahner C, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 2011; 472(7344): 476-80.
[http://dx.doi.org/10.1038/nature09973] [PMID: 21525932]
[129]
Patananan AN, Sercel AJ, Wu TH, et al. Pressure-driven mitochondrial transfer pipeline generates mammalian cells of desired genetic combinations and fates. Cell Rep 2020; 33(13): 108562.
[http://dx.doi.org/10.1016/j.celrep.2020.108562] [PMID: 33378680]
[130]
Percipalle P, Vartiainen M. Cytoskeletal proteins in the cell nucleus: A special nuclear actin perspective. Mol Biol Cell 2019; 30(15): 1781-5.
[http://dx.doi.org/10.1091/mbc.E18-10-0645] [PMID: 31306096]
[131]
Xie X, Venit T, Drou N, Percipalle P. In mitochondria? -actin regulates mtDNA transcription and is required for mitochondrial quality control. iScience 2018; 3: 226-37.
[http://dx.doi.org/10.1016/j.isci.2018.04.021] [PMID: 30428323]
[132]
Miyamoto K, Teperek M, Yusa K, Allen GE, Bradshaw CR, Gurdon JB. Nuclear wave1 is required for reprogramming transcription in oocytes and for normal development. Science 2013; 341(6149): 1002-5.
[http://dx.doi.org/10.1126/science.1240376] [PMID: 23990560]
[133]
Xie X, Percipalle P. An actin-based nucleoskeleton involved in gene regulation and genome organization. Biochem Biophys Res Commun 2018; 506(2): 378-86.
[http://dx.doi.org/10.1016/j.bbrc.2017.11.206] [PMID: 29203242]
[134]
Davidson AJ, Wood W. Unravelling the actin cytoskeleton: A new competitive edge? Trends Cell Biol 2016; 26(8): 569-76.
[http://dx.doi.org/10.1016/j.tcb.2016.04.001] [PMID: 27133808]
[135]
Guo J, Wang Y, Sachs F, Meng F. Actin stress in cell reprogramming. Proc Natl Acad Sci USA 2014; 111(49): E5252-61.
[http://dx.doi.org/10.1073/pnas.1411683111] [PMID: 25422450]
[136]
Xie X, Jankauskas R, Mazari AMA, Drou N, Percipalle P. β-actin regulates a heterochromatin landscape essential for optimal induction of neuronal programs during direct reprograming. PLoS Genet 2018; 14(12): e1007846.
[http://dx.doi.org/10.1371/journal.pgen.1007846] [PMID: 30557298]
[137]
Carafoli E. The fateful encounter of mitochondria with calcium: How did it happen? Biochim Biophys Acta 2010; 1797(6-7): 595-606.
[http://dx.doi.org/10.1016/j.bbabio.2010.03.024] [PMID: 20385096]
[138]
Hernandez PA, Jacobsen TD, Chahine NO. Actomyosin contractility confers mechanoprotection against TNFα-induced disruption of the intervertebral disc. Sci Adv 2020; 6(34): eaba2368.
[http://dx.doi.org/10.1126/sciadv.aba2368] [PMID: 32875103]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy