Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Current Overview on the Role of Nanoparticles in Water Desalination Technology

Author(s): Chitra Shivalingam, Laksita Mohan, Dhanraj Ganapathy, Rajeshkumar Shanmugam, Sivaperumal Pitchiah, Ramya Ramadoss and Ashok K. Sundramoorthy*

Volume 18, Issue 9, 2022

Published on: 06 September, 2022

Page: [989 - 998] Pages: 10

DOI: 10.2174/1573411018666220805112549

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Nanoparticles based thin-film has remarkable challenges in water desalination. Carbon allotropes (carbon nanotubes, graphene sheets, and fullerene), metal and metal oxide nanoparticulates (titanium dioxide, silver, copper oxide, alumina, zinc oxide, and metal-organic framework, silica, halloysite, zeolite, aquaporin and cellulose) are the out breaking materials for water desalination. Advanced materials in membrane forms are impacting the desalination processes in terms of reverse osmosis, forward osmosis, pervaporation, membrane distillation, and electrodialysis.

Objective: The main objective of this review is to provide a comprehensive overview of the various methods of water desalination and the role of nanoparticles in this regard.

Methods: We discussed the overall studies describing the process of desalination, viz. distillation, osmosis, freeze-thaw desalination, electrodialysis, membranes, various types of nanoparticles used in desalination, current techniques in desalination, membrane technology with Algae treatment, environmental issues in desalination, future scopes and trials.

Conclusion: Various polymeric membranes with graphene/carbon derivatives and nano-particulate integrated membranes are gaining enormous attention in the field of membrane technology for the desalination process. Nanoparticulate impregnated, and natural algae conjugated polymeric membranes may provide a plethora of possibilities for membrane filtration technology in the near future.

Keywords: Desalination, water, membrane, nanoparticles, osmosis, carbon particles.

« Previous
Graphical Abstract
[1]
Shatat, M.; Riffat, S.B. Water desalination technologies utilizing conventional and renewable energy sources. Int. J. Low Carbon Technol., 2014, 9(1), 1-19.
[http://dx.doi.org/10.1093/ijlct/cts025]
[2]
Gude, V.G. Desalination and sustainability - An appraisal and current perspective. Water Res., 2016, 89, 87-106.
[http://dx.doi.org/10.1016/j.watres.2015.11.012] [PMID: 26641014]
[3]
Umapathi, R.; Ghoreishian, S.M.; Sonwal, S.; Rani, G.M.; Huh, Y.S. Portable Electrochemical Sensing Methodologies for on-Site Detection of Pesticide Residues in Fruits and Vegetables. Coord. Chem. Rev., 2022, 453, 214305.
[http://dx.doi.org/10.1016/j.ccr.2021.214305]
[4]
Umapathi, R.; Sonwal, S.; Lee, M.J.; Mohana Rani, G.; Lee, E-S.; Jeon, T-J.; Kang, S-M.; Oh, M-H.; Huh, Y.S. Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges. Coord. Chem. Rev., 2021, 446, 214061.
[http://dx.doi.org/10.1016/j.ccr.2021.214061]
[5]
Umapathi, R.; Park, B.; Sonwal, S.; Rani, G.M.; Cho, Y.; Huh, Y.S. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends Food Sci. Technol., 2022, 119, 69-89.
[http://dx.doi.org/10.1016/j.tifs.2021.11.018]
[6]
Vilian, A.T.E.; Umapathi, R.; Hwang, S.K.; Huh, Y.S.; Han, Y.K.; Han, Y-K. Pd-Cu nanospheres supported on Mo2C for the electrochemical sensing of nitrites. J. Hazard. Mater., 2021, 408, 124914.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124914] [PMID: 33360698]
[7]
Lim, Y.J.; Goh, K.; Kurihara, M.; Wang, R. Seawater desalination by reverse osmosis: Current development and future challenges in membrane fabrication--a review. J. Membr. Sci., 2021, 629, 119292.
[http://dx.doi.org/10.1016/j.memsci.2021.119292]
[8]
Tayerani Charmchi, A.S.; Ifaei, P.; Yoo, C. The nexus between water, exergy, and economics in an optimal integrated desalination system with two configurations and four operation modes. Energy Convers. Manage., 2022, 251, 114966.
[http://dx.doi.org/10.1016/j.enconman.2021.114966]
[9]
Tian, Y.; Liu, X.; Xu, S.; Li, J.; Caratenuto, A.; Mu, Y.; Wang, Z.; Chen, F.; Yang, R.; Liu, J.; Minus, M.L.; Zheng, Y. Recyclable and efficient ocean biomass-derived hydrogel photothermal evaporator for thermally-localized solar desalination. Desalination, 2022, 523, 115449.
[http://dx.doi.org/10.1016/j.desal.2021.115449]
[10]
Moreira, F. de S.; Lopes, M.P.C.; de Freitas, M.A.V.; An-tunes, A. M. de S. Future scenarios for the development of the desalination industry in contexts of water scarcity: A bra-zilian case study. Technol. Forecast. Soc. Change, 2021, 167, 120727.
[http://dx.doi.org/10.1016/j.techfore.2021.120727]
[11]
Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Carbon-based sustainable nanomaterials for water treatment: State-of-art and future perspectives. Chemosphere, 2021, 263, 128005.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128005] [PMID: 33297038]
[12]
Leonel, A.G.; Mansur, A.A.P.; Mansur, H.S. Advanced functional nanostructures based on magnetic iron oxide nano-materials for water remediation: A review. Water Res., 2021, 190, 116693.
[http://dx.doi.org/10.1016/j.watres.2020.116693] [PMID: 33302040]
[13]
Wang, Z.; Wang, Z.; Lin, S.; Jin, H.; Gao, S.; Zhu, Y.; Jin, J. Nanoparticle-templated nanofiltration membranes for ultra-high performance desalination. Nat. Commun., 2018, 9(1), 2004.
[http://dx.doi.org/10.1038/s41467-018-04467-3] [PMID: 29785031]
[14]
Seyednezhad, M.; Sheikholeslami, M.; Ali, J.A.; Shafee, A.; Nguyen, T.K. Nanoparticles for water desalination in solar heat exchanger. J. Therm. Anal. Calorim., 2020, 139(3), 1619-1636.
[http://dx.doi.org/10.1007/s10973-019-08634-6]
[15]
Tan, C.L-J.; Torres, J. Positive cooperativity in the activation of E. coli aquaporin Z by cardiolipin: Potential for lipid-based aquaporin modulators. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2021, 1866(5), 158899.
[http://dx.doi.org/10.1016/j.bbalip.2021.158899] [PMID: 33581256]
[16]
Mir, N.; Bicer, Y. Integration of electrodialysis with renewable energy sources for sustainable freshwater production: A review. J. Environ. Manage., 2021, 289, 112496.
[http://dx.doi.org/10.1016/j.jenvman.2021.112496] [PMID: 33839606]
[17]
Ma, G.; Xu, X.; Tesfai, M.; Zhang, Y.; Wang, H.; Xu, P. Nanocomposite cation-exchange membranes for wastewater electrodialysis: Organic fouling, desalination performance, and toxicity testing. Separ. Purif. Tech., 2021, 275, 119217.
[http://dx.doi.org/10.1016/j.seppur.2021.119217]
[18]
Chauhan, V.K.; Shukla, S.K.; Tirkey, J.V.; Singh Rathore, P.K. A comprehensive review of direct solar desalination techniques and its advancements. J. Clean. Prod., 2021, 284, 124719.
[http://dx.doi.org/10.1016/j.jclepro.2020.124719]
[19]
Ma, Q.; Xu, Z.; Wang, R. Distributed solar desalination by membrane distillation: Current status and future perspectives. Water Res., 2021, 198, 117154.
[http://dx.doi.org/10.1016/j.watres.2021.117154] [PMID: 33930793]
[20]
Jehandideh, S.; Hassanzade, H.; Shakib, S.E. Environmental assessment of a hybrid system composed of solid oxide fuel cell, gas turbine and multiple effect evaporation desalination system. Energy Environ., 2021, 32(5), 874-901.
[http://dx.doi.org/10.1177/0958305X20973575]
[21]
Pourkiaei, S.M.; Mohsen Pourkiaei, S.; Ahmadi, M.H.; Ghazvini, M.; Moosavi, S.; Pourfayaz, F.; Kumar, R.; Chen, L. Status of direct and indirect solar desalination methods: Comprehensive review. Eur. Phys. J. Plus, 2021, 136(5), 602.
[http://dx.doi.org/10.1140/epjp/s13360-021-01560-3]
[22]
Skuse, C.; Gallego-Schmid, A.; Azapagic, A.; Gorgojo, P. Can emerging membrane-based desalination technologies replace reverse osmosis? Desalination, 2021, 500, 114844.
[http://dx.doi.org/10.1016/j.desal.2020.114844]
[23]
Honarparvar, S.; Zhang, X.; Chen, T.; Alborzi, A.; Afroz, K.; Reible, D. Frontiers of membrane desalination processes for brackish water treatment: A review. Membranes (Basel), 2021, 11(4), 246.
[http://dx.doi.org/10.3390/membranes11040246] [PMID: 33805438]
[24]
Theoretical framework for predicting inorganic fouling in membrane distillation and experimental validation with calcium sulfate. J. Membr. Sci., 2017, 528, 381-390.
[http://dx.doi.org/10.1016/j.memsci.2017.01.031]
[25]
Zhang, L.; Xu, Z.; Zhao, L.; Bhatia, B.; Zhong, Y.; Gong, S.; Wang, E.N. Passive, high-efficiency thermally-localized solar desalination. Energy Environ. Sci., 2021, 14(4), 1771-1793.
[http://dx.doi.org/10.1039/D0EE03991H]
[26]
Yao, Y.; Zhang, P.; Jiang, C.; DuChanois, R.M.; Zhang, X.; Elimelech, M. High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nat. Sustain., 2020, 4(2), 138-146.
[http://dx.doi.org/10.1038/s41893-020-00619-w]
[27]
Wang, L.; Violet, C.; DuChanois, R.M.; Elimelech, M. Derivation of the theoretical minimum energy of separation of desalination processes. J. Chem. Educ., 2020, 97(12), 4361-4369.
[http://dx.doi.org/10.1021/acs.jchemed.0c01194]
[28]
Najim, A.; Krishnan, S. A similarity solution for heat transfer analysis during progressive freeze-concentration based desalination. Int. J. Therm. Sci., 2022, 172, 107328.
[http://dx.doi.org/10.1016/j.ijthermalsci.2021.107328]
[29]
Patel, S.K.; Qin, M.; Walker, W.S.; Elimelech, M. Energy efficiency of electro-driven brackish water desalination: Electrodialysis significantly outperforms membrane capacitive deionization. Environ. Sci. Technol., 2020, 54(6), 3663-3677.
[http://dx.doi.org/10.1021/acs.est.9b07482] [PMID: 32084313]
[30]
Campione, A.; Gurreri, L.; Ciofalo, M.; Micale, G.; Tam-burini, A.; Cipollina, A. Electrodialysis for water desalination: A critical assessment of recent developments on process fun-damentals, models and applications. Desalination, 2018, 434, 121-160.
[http://dx.doi.org/10.1016/j.desal.2017.12.044]
[31]
Al-Amshawee, S.; Yunus, M.Y.B.M.; Azoddein, A.A.M.; Hassell, D.G.; Dakhil, I.H.; Hasan, H.A. Electrodialysis desalination for water and wastewater: A review. Chem. Eng. J., 2020, 380, 122231.
[http://dx.doi.org/10.1016/j.cej.2019.122231]
[32]
Doornbusch, G.; van der Wal, M.; Tedesco, M.; Post, J.; Nijmeijer, K.; Borneman, Z. Multistage electrodialysis for desali-nation of natural seawater. Desalination, 2021, 505, 114973.
[http://dx.doi.org/10.1016/j.desal.2021.114973]
[33]
Lee, J.; Kim, S.; Kim, N.; Kim, C.; Yoon, J. Enhancing the desalination performance of capacitive deionization using a layered double hydroxide coated activated carbon electrode. Appl. Sci. (Basel), 2020, 10(1), 403.
[http://dx.doi.org/10.3390/app10010403]
[34]
Mutharasi, Y.; Zhang, Y.; Weber, M.; Maletzko, C.; Chung, T-S. Novel reverse osmosis membranes incorporated with Co-Al layered double hydroxide (LDH) with enhanced performance for brackish water desalination. Desalination, 2021, 498, 114740.
[http://dx.doi.org/10.1016/j.desal.2020.114740]
[35]
Wang, L.; Yuan, Z.; Zhang, Y.; Guo, W.; Sun, X.; Duan, X. Sandwich layered double hydroxides with graphene oxide for enhanced water desalination. Sci. China Mater., 2022, 65(3), 803-810.
[http://dx.doi.org/10.1007/s40843-021-1767-1]
[36]
Saleem, H.; Zaidi, S.J. Nanoparticles in reverse osmosis membranes for desalination: A state of the art review. Desalination, 2020, 475, 114171.
[http://dx.doi.org/10.1016/j.desal.2019.114171]
[37]
Bhoj, Y.; Pandey, G.; Bhoj, A.; Tharmavaram, M.; Rawtani, D. Recent advancements in practices related to desalination by means of nanotechnology. Chem. Phy. Impact, 2021, 2, 100025.
[http://dx.doi.org/10.1016/j.chphi.2021.100025]
[38]
Lee, C.S.; Kim, I.; Jang, J.W.; Yoon, D.S.; Lee, Y.J. Aquaporin-incorporated graphene-oxide membrane for pressurized desalination with superior integrity enabled by molecular recognition. Adv. Sci. (Weinh.), 2021, 8(20), e2101882.
[http://dx.doi.org/10.1002/advs.202101882] [PMID: 34397173]
[39]
Baskar, A.V.; Benzigar, M.R.; Talapaneni, S.N.; Singh, G.; Karakoti, A.S.; Yi, J.; Al-Muhtaseb, A.H.; Ariga, K.; Ajayan, P.M.; Vinu, A. Self‐assembled fullerene nanostructures: Synthesis and applications. Adv. Funct. Mater., 2022, 32(6), 2106924.
[http://dx.doi.org/10.1002/adfm.202106924]
[40]
Wang, Y.; Tang, B.; Han, P.; Qi, G.; Gao, D.; Pu, S.; Tao, S. Adjustable photothermal device induced by magnetic field for efficient solar‐driven desalination. EcoMat, 2021, 3(5)
[http://dx.doi.org/10.1002/eom2.12139]
[41]
Vafakhah, S.; Saeedikhani, M.; Huang, S.; Yan, D.; Leong, Z.Y.; Wang, Y.; Hou, L.; Guo, L.; Valdivia y Alvarado, P.; Yang, H.Y. Tungsten disulfide-reduced go/cnt aerogel: A tuned interlayer spacing anode for efficient water desalination. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(17), 10758-10768.
[http://dx.doi.org/10.1039/D1TA01347E]
[42]
Wibowo, E. Sutisna; Rokhmat, M.; Murniati, R.; Khairurrijal; Abdullah, M. Utilization of natural zeolite as sorbent material for seawater desalination. Procedia Eng., 2017, 170, 8-13.
[http://dx.doi.org/10.1016/j.proeng.2017.03.002]
[43]
Grimm, L.M.; Sinn, S.; Krstić, M.; D’Este, E.; Sonntag, I.; Prasetyanto, E.A.; Kuner, T.; Wenzel, W.; De Cola, L.; Biedermann, F. Fluorescent nanozeolite receptors for the highly selective and sensitive detection of neurotransmitters in water and biofluids. Adv. Mater., 2021, 33(49), e2104614.
[http://dx.doi.org/10.1002/adma.202104614] [PMID: 34580934]
[44]
Curto, D.; Franzitta, V.; Guercio, A. A review of the water desalination technologies. NATO Adv. Sci. Inst. Ser. E. Appl. Sci., 2021, 11(2), 670.
[http://dx.doi.org/10.3390/app11020670]
[45]
Bundschuh, J.; Kaczmarczyk, M.; Ghaffour, N.; To-maszewska, B. State-of-the-art of renewable energy sources used in water desalination: Present and future prospects. Desalination, 2021, 508, 115035.
[http://dx.doi.org/10.1016/j.desal.2021.115035]
[46]
Teow, Y.H.; Mohammad, A.W. New generation nanomaterials for water desalination: A review. Desalination, 2019, 451, 2-17.
[http://dx.doi.org/10.1016/j.desal.2017.11.041]
[47]
Haan, T.Y.; Shah, M.; Chun, H.K.; Mohammad, A.W. A study on membrane technology for surface water treatment: Synthesis, characterization and performance test. Membr. Water Treatment, 2018, 9(2), 69-77.
[48]
Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M.J.; Hussain, M. A state-of-the-art review on wastewater treatment techniques: The effectiveness of adsorption method. Environ. Sci. Pollut. Res. Int., 2021, 28(8), 9050-9066.
[http://dx.doi.org/10.1007/s11356-021-12395-x] [PMID: 33483933]
[49]
Shabani, N.; Javadi, A.; Jafarizadeh-Malmiri, H.; Mirzaie, H.; Sadeghi, J. Potential application of iron oxide nanoparticles synthesized by co-precipitation technology as a coagulant for water treatment in settling tanks. Min. Metall. Explor., 2021, 38(1), 269-276.
[http://dx.doi.org/10.1007/s42461-020-00338-y]
[50]
Goh, P.S.; Ismail, A.F.; Hilal, N. Nano-enabled membranes technology: Sustainable and revolutionary solutions for membrane desalination? Desalination, 2016, 380, 100-104.
[http://dx.doi.org/10.1016/j.desal.2015.06.002]
[51]
Zhang, R.; Liu, Y.; He, M.; Su, Y.; Zhao, X.; Elimelech, M.; Jiang, Z. Antifouling membranes for sustainable water purification: Strategies and mechanisms. Chem. Soc. Rev., 2016, 45(21), 5888-5924.
[http://dx.doi.org/10.1039/C5CS00579E] [PMID: 27494001]
[52]
Woo, H.; Yang, H.S.; Timmes, T.C.; Han, C.; Nam, J-Y.; Byun, S.; Kim, S.; Ryu, H.; Kim, H-C. Treatment of reverse osmosis concentrate using an algal-based MBR combined with ozone pretreatment. Water Res., 2019, 159, 164-175.
[http://dx.doi.org/10.1016/j.watres.2019.05.003] [PMID: 31091481]
[53]
Yuan, J.; Wu, M.; Wu, H.; Liu, Y.; You, X.; Zhang, R.; Su, Y.; Yang, H.; Shen, J.; Jiang, Z. Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(44), 25641-25649.
[http://dx.doi.org/10.1039/C9TA08163A]
[54]
Elsaid, K.; Kamil, M.; Sayed, E.T.; Abdelkareem, M.A.; Wil-berforce, T.; Olabi, A. Environmental impact of desalination technologies: A review. Sci. Total Environ., 2020, 748, 141528.
[http://dx.doi.org/10.1016/j.scitotenv.2020.141528] [PMID: 32818886]
[55]
Wang, X.; Zhao, Y.; Tian, E.; Li, J.; Ren, Y. Graphene oxide-based polymeric membranes for water treatment. Adv. Mater. Interfaces, 2018, 5(15), 1701427.
[http://dx.doi.org/10.1002/admi.201701427]
[56]
Du, Y-C.; Huang, L-J.; Wang, Y-X.; Yang, K.; Tang, J-G.; Wang, Y.; Cheng, M-M.; Zhang, Y.; Kipper, M.J.; Belfiore, L.A.; Ranil, W.S. Recent developments in graphene‐based polymer composite membranes: Preparation, mass transfer mechanism, and applications. J. Appl. Polym. Sci., 2019, 136(28), 47761.
[http://dx.doi.org/10.1002/app.47761]
[57]
Hutfles, J.; Lumley, C.; Chen, X.; Ren, Z.J.; Pellegrino, J. Graphene-integrated polymeric membrane as a flexible, multi-functional electrode. Chem. Eng. Sci., 2019, 209, 115221.
[http://dx.doi.org/10.1016/j.ces.2019.115221]
[58]
Mousavi, S.S.; Kargari, A. Water recovery from reverse osmosis concentrate by commercial nanofiltration membranes: A comparative study. Desalination, 2022, 528, 115619.
[http://dx.doi.org/10.1016/j.desal.2022.115619]
[59]
Ng, L.Y.; Chua, H.S.; Ng, C.Y. Incorporation of graphene oxide-based nanocomposite in the polymeric membrane for water and wastewater treatment: A review on recent development. J. Environ. Chem. Eng., 2021, 9(5), 105994.
[http://dx.doi.org/10.1016/j.jece.2021.105994]
[60]
Chen, S.; Lv, C.; Hao, K.; Jin, L.; Xie, Y.; Zhao, W.; Sun, S.; Zhang, X.; Zhao, C. Multifunctional negatively-charged poly (ether sulfone) nanofibrous membrane for water remediation. J. Colloid Interface Sci., 2019, 538, 648-659.
[http://dx.doi.org/10.1016/j.jcis.2018.12.038] [PMID: 30572229]
[61]
Alayande, A.B.; Park, H-D.; Vrouwenvelder, J.S.; Kim, I.S. Implications of chemical reduction using hydriodic acid on the antimicrobial properties of graphene oxide and reduced graphene oxide membranes. Small, 2019, 15(28), e1901023.
[http://dx.doi.org/10.1002/smll.201901023] [PMID: 31148406]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy