Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

阿育吠陀草药疗法:痴呆症的治疗和管理综述

卷 19, 期 8, 2022

发表于: 07 October, 2022

页: [568 - 584] 页: 17

弟呕挨: 10.2174/1567205019666220805100008

价格: $65

Open Access Journals Promotions 2
摘要

阿育吠陀草药疗法:痴呆症的治疗和管理综述 痴呆的特征是非典型神经综合征和一些认知缺陷,如扩展性记忆丧失,奇怪的行为,异常的思维,受损的判断力,阳痿和日常生活活动的困难。痴呆不是一种疾病,但它是由几种神经退行性疾病引起的,如阿尔茨海默病、帕金森病和路易氏体。有几种药物和治疗方法可以缓解不寻常的认知能力下降,但没有有效的药理治疗方案是没有副作用的。草药或传统药物,如阿育吠陀,已经被称为促进和巩固精神、大脑、身体和环境之间的平衡。阿育吠陀疗法包括600种草药配方,250种单一植物疗法,以及缓解患者痴呆和增强活力的自然和整体健康疗法。阿育吠陀罗萨耶那草药[恢复活力的元素]增强脑细胞,增强记忆力,减少压力。目前治疗痴呆的医学场景促使人们转向探索阿育吠陀医学的功效、安全性和效率。这篇综述介绍了几种草药治疗改善痴呆症状和患者生活质量的文献。

关键词: 阿育吠陀,痴呆,印度人参,姜黄,婆罗米,shankhapushpi。

[1]
Dementia. World Health Organization. 2017. Available from: http://www.who.int/mediacentre/factsheets/fs362/en/ (Accessed on: 17 April, 2018).
[2]
Qiu C, Fratiglioni L. Aging without dementia is achievable: Current evidence from epidemiological research. J Alzheimers Dis 2018; 62(3): 933-42.
[http://dx.doi.org/10.3233/JAD-171037] [PMID: 29562544]
[3]
Winblad B, Amouyel P, Andrieu S, et al. Defeating Alzheimer’s disease and other dementias: A priority for European science and society. Lancet Neurol 2016; 15(5): 455-532.
[http://dx.doi.org/10.1016/S1474-4422(16)00062-4] [PMID: 26987701]
[4]
Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer’s disease: Age categories from 1 to 100 years. J Neuropathol Exp Neurol 2011; 70(11): 960-9.
[http://dx.doi.org/10.1097/NEN.0b013e318232a379] [PMID: 22002422]
[5]
Dementia: Number of people affected to triple in next 30 years. World Health Organization 2017. Available from: http://www.who.int/mediacentre/news/releases/2017/dementia-triple-affected/en/ (Accessed on: August 11, 2022).
[6]
Mendez MF. Early-onset Alzheimer’s disease and its variants. Continuum (Minneapolis Minn) 2019; 25(1): 34-51.
[http://dx.doi.org/10.1212/CON.0000000000000687] [PMID: 30707186]
[7]
Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement 2013; 9(1): 63-75.e2.
[http://dx.doi.org/10.1016/j.jalz.2012.11.007] [PMID: 23305823]
[8]
Rashrash M, Schommer JC, Brown LM. Prevalence and predictors of herbal medicine use among adults in the United States. J Patient Exp 2017; 4(3): 108-13.
[http://dx.doi.org/10.1177/2374373517706612] [PMID: 28959715]
[9]
Ferran J, Wilson K, Doran M, et al. The early-onset dementias: A study of clinical characteristics and service use. Int J Geriatr Psychiatry 1996; 11(10): 863-9.
[http://dx.doi.org/10.1002/(SICI)1099-1166(199610)11:10<863::AID-GPS394>3.0.CO;2-7]
[10]
Vieira RT, Caixeta L, Machado S, et al. Epidemiology of early-onset dementia: A review of the literature. Clin Pract Epidemiol Ment Health 2013; 9(1): 88-95.
[http://dx.doi.org/10.2174/1745017901309010088] [PMID: 23878613]
[11]
Read S, Wittenberg R, Karagiannidou M, et al. The effect of midlife risk factors on dementia in older age; London: Public Health England 2017. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/633096/2017
[12]
Sundström A, Adolfsson AN, Nordin M, Adolfsson R. Loneliness increases the risk of all cause dementia and Alzheimer’s disease. J Gerontol B Psychol Sci Soc Sci 2020; 75(5): 919-26.
[http://dx.doi.org/10.1093/geronb/gbz139] [PMID: 31676909]
[13]
Sofi F, Valecchi D, Bacci D, et al. Physical activity and risk of cognitive decline: A meta-analysis of prospective studies. J Intern Med 2011; 269(1): 107-17.
[http://dx.doi.org/10.1111/j.1365-2796.2010.02281.x] [PMID: 20831630]
[14]
Guure CB, Ibrahim NA, Adam MB, Said SM. Impact of physical activity on cognitive decline, dementia and its subtypes: Meta-analysis of prospective study. BioMed Res Int 2017; 2017: 1-13.
[http://dx.doi.org/10.1155/2017/9016924] [PMID: 28271072]
[15]
Prince M, Guerchet M, Prina M. The epidemiology and impact of dementia: Current state and future trends. In: WHO/MSD/MER/153. Geneva: World Health Organization 2015. Available from: http://www.who.int/mental_health/neurology/dementia/dementia_thematicbrief_epidemiology.pdf [Accessed on: 17 April, 2018].
[16]
Mental health. World Health Organization 2018. Available from: http://www.who.int/mental_health/neurology/dementia/en/ [Accessed on: 17 April, 2018].
[17]
Saxena S, Dua T. Towards a dementia plan: A WHO guide. World Health Organization 2018. Available from: http://www.who.int/mental_health/neurology/dementia/policy_guidance/en (Accessed August 11, 2022).
[18]
Vestergaard M, Hamada T, Morita M, Takagi M. Cholesterol, lipids, amyloid Beta, and Alzheimer’s. Curr Alzheimer Res 2010; 7(3): 262-70.
[http://dx.doi.org/10.2174/156720510791050821] [PMID: 19715550]
[19]
Lanoiselée HM, Nicolas G, Wallon D, et al. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer’s disease: A genetic screening study of familial and sporadic cases. PLoS Med 2017; 14(3): e1002270.
[http://dx.doi.org/10.1371/journal.pmed.1002270] [PMID: 28350801]
[20]
Raux G, Guyant-Maréchal L, Martin C, et al. Molecular diagnosis of autosomal dominant early onset Alzheimer’s disease: An update. J Med Genet 2005; 42(10): 793-5.
[http://dx.doi.org/10.1136/jmg.2005.033456] [PMID: 16033913]
[21]
Naj AC, Jun G, Beecham GW, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 2011; 43(5): 436-41.
[http://dx.doi.org/10.1038/ng.801] [PMID: 21460841]
[22]
Mullane K, Williams M. Alzheimer’s disease (AD) therapeutics – 1: Repeated clinical failures continue to question the amyloid hypothesis of AD and the current understanding of AD causality. Biochem Pharmacol 2018; 158: 359-75.
[http://dx.doi.org/10.1016/j.bcp.2018.09.026] [PMID: 30273553]
[23]
Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 2007; 69(24): 2197-204.
[http://dx.doi.org/10.1212/01.wnl.0000271090.28148.24] [PMID: 17568013]
[24]
de la Torre JC. The vascular hypothesis of Alzheimer’s disease: Bench to bedside and beyond. Neurodegener Dis 2010; 7(1-3): 116-21.
[http://dx.doi.org/10.1159/000285520] [PMID: 20173340]
[25]
Moon JH, Lim S, Han JW, et al. Carotid intima-media thickness is associated with the progression of cognitive impairment in older adults. Stroke 2015; 46(4): 1024-30.
[http://dx.doi.org/10.1161/STROKEAHA.114.008170] [PMID: 25737314]
[26]
Tiwari R, Tripathi J. A critical appraisal of dementia with special reference to Smritibuddhihrass. Ayu 2013; 34(3): 235-42.
[http://dx.doi.org/10.4103/0974-8520.123102] [PMID: 24501515]
[27]
Hirono H, Watanabe K, Hasegawa K. Anti-dementia drugs and hepatotoxicity-Report of two cases. Int J Gerontol 2018; 12(3): 261-3.
[http://dx.doi.org/10.1016/j.ijge.2018.02.008]
[28]
Diwan S, Hougham GW, Sachs GA. Strain experienced by caregivers of dementia patients receiving palliative care: Findings from the Palliative Excellence in Alzheimer Care Efforts (PEACE) Program. J Palliat Med 2004; 7(6): 797-807.
[http://dx.doi.org/10.1089/jpm.2004.7.797] [PMID: 15684847]
[29]
Quality indicators for dementia. Available from: http://www.oecd.org/els/health-systems/Item-4c-HCQI-dementia-OECD.pdf [Accessed on: 17 April, 2018].
[30]
Sharma AK, Kumar R, Mishra A, Gupta R. Problems associated with clinical trials of Ayurvedic medicines. Rev Bras Farmacogn 2010; 20(2): 276-81.
[http://dx.doi.org/10.1590/S0102-695X2010000200023]
[31]
Linde K, Jonas WB, Melchart D, Willich S. The methodological quality of randomized controlled trials of homeopathy, herbal medicines and acupuncture. Int J Epidemiol 2001; 30(3): 526-31.
[http://dx.doi.org/10.1093/ije/30.3.526] [PMID: 11416076]
[32]
Schwartz S. Psychoactive herbs in veterinary behavior medicine. John Wiley & Sons 2008.
[33]
Frawley D, Ranade S, Lele A. Ayurveda and marma therapy: Energy points in yogic healing. USA: Lotus Press 2003.
[34]
Lad VD, Bams M, Anisha Durve MS. Marma points of Ayurveda. Albuquerque, NM: Ayurvedic Press 2008.
[35]
Choudhary B. Approach to neurological disorder in Ayurveda. Indian J Med Res Pharm Sci 2015; 2(12): 2349-5340.
[36]
Gokhale BV. Ayurvedīya Padārthavijñāna The Philosophy of Āyurveda based on the Philosophies of Vaiáeṣika. Nyāya and Sāṃkhya 1953; Vol. 34
[37]
Singh RH. The basic tenets of Ayurvedic dietetics and nutrition Ayurvedic Science of Food and Nutrition. Springer: New York, NY 2014; pp. 15-23.
[http://dx.doi.org/10.1007/978-1-4614-9628-1_2]
[38]
Jayasundar R. Ayurveda: A distinctive approach to health and disease. Curr Sci 2010; 8(7): 908-14.
[39]
Dimock EC. Hinduism Encyclopedia Britannica Available from: https://www.britannica.com/topic/Hinduism (Accessed on: January 26, 2022).
[40]
Chaudhuri K, Chandola HM, Ravishankar B, Samarakoon SMS, Kumar R. Evaluation of diet and life style in etiopathogenesis of senile dementia: A survey study. Ayu 2011; 32(2): 171-6.
[http://dx.doi.org/10.4103/0974-8520.92554] [PMID: 22408297]
[41]
Govindaraj P, Nizamuddin S, Sharath A, et al. Genome-wide analysis correlates Ayurveda Prakriti. Sci Rep 2015; 5(1): 15786.
[http://dx.doi.org/10.1038/srep15786] [PMID: 26511157]
[42]
Dubey T, Chinnathambi S. Brahmi (Bacopa monnieri): An ayurvedic herb against the Alzheimer’s disease. Arch Biochem Biophys 2019; 676: 108153.
[http://dx.doi.org/10.1016/j.abb.2019.108153] [PMID: 31622587]
[43]
Gupta K, Mamidi P. Schizophrenia or dementia or mood disorder with psychosis? Int J Yoga-Philos Psychol Parapsychol 2020; 8(2): 75-86.
[44]
Camacho M, Macleod AD, Maple-Grødem J, et al. Early constipation predicts faster dementia onset in Parkinson’s disease. NPJ Parkinsons Dis 2021; 7(1): 45.
[http://dx.doi.org/10.1038/s41531-021-00191-w] [PMID: 34039994]
[45]
Sharma PV. Caraka Samhita, Chaukhambha Orientalia (Reprint Edition.). 2011; 1-4.
[46]
Murthy KRS. Susruta Samhita; Chaukhambha Orientalia (Reprint Edition.). 2010; 1.
[47]
Valiathan MS. The legacy of Charaka. In: Orient. Longman 2003.
[48]
Wang J, Zhang H, Tang X. Cholinergic deficiency involved in vascular dementia: Possible mechanism and strategy of treatment. Acta Pharmacol Sin 2009; 30(7): 879-88.
[http://dx.doi.org/10.1038/aps.2009.82] [PMID: 19574993]
[49]
Brahma SK, Debnath PK. Therapeutic importance of Rasayana drugs with special reference to their multi-dimensional actions. Aryavaidyan 2003; 16: 160-3.
[50]
Rege NN, Thatte UM, Dahanukar SA. Adaptogenic properties of six rasayana herbs used in Ayurvedic medicine. Phytother Res 1999; 13(4): 275-91.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199906)13:4<275::AID-PTR510>3.0.CO;2-S] [PMID: 10404532]
[51]
Schlebusch L, Bosch BA, Polglase G, Kleinschmidt I, Pillay BJ, Cassimjee MH. A double-blind, placebo-controlled, double-centre study of the effects of an oral multivitamin-mineral combination on stress. S Afr Med J 2000; 90(12): 1216-23.
[PMID: 11234653]
[52]
Murphy BM, Frigo LC. Development, implementation, and results of a successful multidisciplinary adverse drug reaction reporting program in a university teaching hospital. Hosp Pharm 1993; 28(12): 1199-1204, 1240.
[PMID: 10130617]
[53]
Dwevedi C, Chandrakar K, Singh V, Tiwari SP. Indian herbal medicines used for treatment of dementia: An overview. Indian J Pharmacol 2014; 1(9): 553-71.
[54]
Mercola J. Ashwagandha: Ancient herb proven to be a potential cure for Alzheimer’s. 2012. Available from: http://articles.mercola.com/sites/articles/archive/2012/04/07/ashwag (Accessed on: August 11, 2022).
[55]
Rao RV, Descamps O, John V, Bredesen DE. Ayurvedic medicinal plants for Alzheimer’s disease: A review. Alzheimers Res Ther 2012; 4(3): 22.
[http://dx.doi.org/10.1186/alzrt125] [PMID: 22747839]
[56]
Russo A, Izzo AA, Cardile V, Borrelli F, Vanella A. Indian medicinal plants as antiradicals and DNA cleavage protectors. Phytomedicine 2001; 8(2): 125-32.
[http://dx.doi.org/10.1078/0944-7113-00021] [PMID: 11315755]
[57]
Farooqui AA, Farooqui T, Madan A, Ong JHJ, Ong WY. Ayurvedic medicine for the treatment of dementia: Mechanistic aspects. Evid Based Complement Alternat Med 2018; 2018: 1-11.
[http://dx.doi.org/10.1155/2018/2481076] [PMID: 29861767]
[58]
Narayan M, Seeley KW, Jinwal UK. Identification and quantitative analysis of cellular proteins affected by treatment with withaferin a using a SILAC-based proteomics approach. J Ethnopharmacol 2015; 175: 86-92.
[http://dx.doi.org/10.1016/j.jep.2015.09.024] [PMID: 26392330]
[59]
Sun GY, Li R, Cui J, et al. Withania somnifera and its withanolides attenuate oxidative and inflammatory responses and up-regulate antioxidant responses in BV-2 microglial cells. Neuromolecular Med 2016; 18(3): 241-52.
[http://dx.doi.org/10.1007/s12017-016-8411-0] [PMID: 27209361]
[60]
Patnaik N. Role of medicinal plants [Brahmi and Ashwagandha] in the treatment of Alzheimer’s disease. Int J Life Sci Scienti Res 2015; 2(1): 15-7.
[61]
Choudhary D, Bhattacharyya S, Bose S. Efficacy and safety of Ashwagandha (Withania somneria (L.) Dunal) root extract in improving memory and cognitive functions. J Diet Suppl 2017; 14(6): 599-612.
[http://dx.doi.org/10.1080/19390211.2017.1284970] [PMID: 28471731]
[62]
Tohda C, Kuboyama T, Komatsu K. Dendrite extension by methanol extract of Ashwagandha (roots of Withania somnifera) in SK-N-SH cells. Neuroreport 2000; 11(9): 1981-5.
[http://dx.doi.org/10.1097/00001756-200006260-00035] [PMID: 10884056]
[63]
Kuboyama T, Tohda C, Komatsu K. Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br J Pharmacol 2005; 144(7): 961-71.
[http://dx.doi.org/10.1038/sj.bjp.0706122] [PMID: 15711595]
[64]
Elhadidy ME, Sawie HG, Meguid NA. Protective effect of Ashwagandha against neurotoxicity induced by aluminium chloride in rats. Asian Pac J Trop Biomed 2018; 8(1): 59-66.
[http://dx.doi.org/10.4103/2221-1691.221139]
[65]
Paul S, Chakraborty S, Anand U, et al. Withania somnifera (L.) Dunal (Ashwagandha): A comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects. Biomed Pharmacother 2021; 143: 112175.
[http://dx.doi.org/10.1016/j.biopha.2021.112175] [PMID: 34649336]
[66]
Singh N, Bhalla M, De Jager P, Gilca M. An overview on ashwagandha: A Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med 2011; 8(5S) (Suppl.): 208-13.
[http://dx.doi.org/10.4314/ajtcam.v8i5S.9] [PMID: 22754076]
[67]
Sharifi-Rad J, Quispe C, Ayatollahi SA, et al. Chemical composition, biological activity and health-promoting effects of Withania somnifera for pharma-food industry applications. J Food Qual 2021; 2021: 1-14.
[http://dx.doi.org/10.1155/2021/8985179]
[68]
Toden S, Theiss AL, Wang X, Goel A. Essential turmeric oils enhance anti-inflammatory efficacy of curcumin in dextran sulfate sodium-induced colitis. Sci Rep 2017; 7(1): 814.
[http://dx.doi.org/10.1038/s41598-017-00812-6] [PMID: 28400554]
[69]
Yang F, Lim GP, Begum AN, et al. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 2005; 280(7): 5892-901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[70]
Bryan HK, Olayanju A, Goldring CE, Park BK. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 2013; 85(6): 705-17.
[http://dx.doi.org/10.1016/j.bcp.2012.11.016] [PMID: 23219527]
[71]
Gupta SC, Prasad S, Kim JH, et al. Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep 2011; 28(12): 1937-55.
[http://dx.doi.org/10.1039/c1np00051a] [PMID: 21979811]
[72]
Wang Y, Yin H, Wang L, et al. Curcumin as a potential treatment for Alzheimer’s disease: A study of the effects of curcumin on hippocampal expression of glial fibrillary acidic protein. Am J Chin Med 2013; 41(1): 59-70.
[http://dx.doi.org/10.1142/S0192415X13500055] [PMID: 23336507]
[73]
Begum AN, Jones MR, Lim GP, et al. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther 2008; 326(1): 196-208.
[http://dx.doi.org/10.1124/jpet.108.137455] [PMID: 18417733]
[74]
Cole GM, Lim GP, Yang F, et al. Prevention of Alzheimer’s disease: Omega-3 fatty acid and phenolic antioxidant interventions. Neurobiol Aging 2005; 26 (Suppl. 1): 133-6.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.09.005]
[75]
Brondino N, Re S, Boldrini A, et al. Curcumin as a therapeutic agent in dementia: A mini systematic review of human studies. Sci World J 2014; 2014: 1-6.
[http://dx.doi.org/10.1155/2014/174282] [PMID: 24578620]
[76]
Park SY, Kim HS, Cho EK, et al. Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Food Chem Toxicol 2008; 46(8): 2881-7.
[http://dx.doi.org/10.1016/j.fct.2008.05.030] [PMID: 18573304]
[77]
Zhang L, Fiala M, Cashman J, et al. Curcuminoids enhance amyloid-β uptake by macrophages of Alzheimer’s disease patients. J Alzheimers Dis 2006; 10(1): 1-7.
[http://dx.doi.org/10.3233/JAD-2006-10101] [PMID: 16988474]
[78]
Kim H, Park BS, Lee KG, et al. Effects of naturally occurring compounds on fibril formation and oxidative stress of β-amyloid. J Agric Food Chem 2005; 53(22): 8537-41.
[http://dx.doi.org/10.1021/jf051985c] [PMID: 16248550]
[79]
Chainani-Wu N. Safety and anti-inflammatory activity of Curcumin: A component of tumeric. [Curcuma longa]. J Altern Complement Med 2003; 9(1): 161-8.
[80]
Voulgaropoulou SD, van Amelsvoort TAMJ, Prickaerts J, Vingerhoets C. The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: A systematic review of pre-clinical and clinical studies. Brain Res 2019; 1725: 146476.
[http://dx.doi.org/10.1016/j.brainres.2019.146476] [PMID: 31560864]
[81]
Nasri H, Sahinfard N, Rafieian M, et al. Turmeric: A spice with multifunctional medicinal properties. J Herbmed Pharmacol 2014; 3(1): 5-8.
[82]
Kumar A, Singh A. Interaction of turmeric (Curcuma longa (L.) with beneficial microbes: A review. 3 Biotech 2017; 7(6): 357.
[83]
Prasad S, Aggarwal BB, Benzie IFF, Wachtel-Galor S. Turmeric, the golden spice Herbal Medicine: Biomolecular and Clinical Aspects. (2nd ed.), UK: Taylor and Francis Group 2011.
[84]
Chanda S, Ramachandra TV. Phytochemical and pharmacological importance of turmeric [Curcuma longa]: A review. J Pharmacol 2019; 9(1): 16-23p.
[85]
Chaudhari KS, Tiwari NR, Tiwari RR, Sharma RS. Neurocognitive effect of nootropic drug Brahmi (Bacopa monnieri) in Alzheimer’s disease. Ann Neurosci 2017; 24(2): 111-22.
[http://dx.doi.org/10.1159/000475900] [PMID: 28588366]
[86]
Jeyasri R, Muthuramalingam P, Suba V, Ramesh M, Chen J-T. Bacopa monnieri and their bioactive compounds inferred Multi-target treatment strategy for neurological diseases: A cheminformatics and system pharmacology approach. Biomolecules 2020; 10(4): 536.
[http://dx.doi.org/10.3390/biom10040536]
[87]
Simpson T, Pase M, Stough C. Bacopa monnieri as an antioxidant therapy to reduce oxidative stress in the aging brain. Evid Based Complement Alternat Med 2015; 2015: 1-9.
[http://dx.doi.org/10.1155/2015/615384] [PMID: 26413126]
[88]
Majumdar S, Basu A, Paul P, Halder M, Jha S. Bacosides and neuroprotection. Nat Prod 2013; pp. 3639-60.
[89]
Bhattacharya SK, Bhattacharya A, Kumar A, Ghosal S. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phytother Res 2000; 14(3): 174-9.
[http://dx.doi.org/10.1002/(SICI)1099-1573(200005)14:3<174::AID-PTR624>3.0.CO;2-O] [PMID: 10815010]
[90]
Dhanasekaran M, Tharakan B, Holcomb LA, Hitt AR, Young KA, Manyam BV. Neuroprotective mechanisms of ayurvedic antidementia botanical Bacopa monniera. Phytother Res 2007; 21(10): 965-9.
[http://dx.doi.org/10.1002/ptr.2195] [PMID: 17604373]
[91]
Anand P, Nair HB, Sung B, et al. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol 2010; 79(3): 330-8.
[http://dx.doi.org/10.1016/j.bcp.2009.09.003]
[92]
Kamkaew N, Scholfield CN, Ingkaninan K, et al. Bacopa monnieri and its constituents is hypotensive in anaesthetized rats and vasodilator in various artery types. J Ethnopharmacol 2011; 137(1): 790-5.
[93]
Singh HK, Srimal RC, Srivastava AK, Garg NK, Dhawan BN. Neuro-psychopharmacological effects of bacosides A and B. Proceedings of Fourth Conference on the Neurobiology of Learning and Memory. Irvine, California. Oct 17-20, 1990; pp. 80.
[94]
Singh HK, Dhawan BN. Drugs affecting learning and memory. Lectures Neurobiol 1992; 1: 189-207.
[95]
Chowdhuri KD, Parmar D, Kakkar P, Shukla R, Seth PK, Srimal RC. Antistress effects of bacosides of Bacopa monnieri: Modulation of Hsp70 expression, superoxide dismutase and cytochrome P450 activity in rat brain. Phytother Res 2002; 16(7): 639-45.
[96]
Debnath T, Kim D, Lim B. Natural products as a source of anti-inflammatory agents associated with inflammatory bowel disease. Molecules 2013; 18(6): 7253-70.
[http://dx.doi.org/10.3390/molecules18067253] [PMID: 23783459]
[97]
Madhu K, Prakash T. Bacoside-A attenuated in vitro activation of primary astrocyte and microglial cultures. European J Pharm Med Res 2018; 5(11): 337-41.
[98]
Nemetchek MD, Stierle AA, Stierle DB, Lurie DI. The Ayurvedic plant Bacopa monnieri inhibits inflammatory pathways in the brain. J Ethnopharmacol 2017; 197: 92-100.
[http://dx.doi.org/10.1016/j.jep.2016.07.073]
[99]
Abdul MAS, Vijayabalan S, Madhavan P, et al. Bacopa monneri, a neuroprotective lead in Alzheimer’s disease: A review on its properties, mechanisms of action and preclinical and clinical studies. Drug Target Insights 2019; 13: 1177392819866412.
[http://dx.doi.org/10.1177/1177392819866412] [PMID: 31391778]
[100]
Rajan KE, Preethi J, Singh HK. Molecular and functional characterization of Bacopa monniera: A retrospective review. Evid Based Complement Alternat Med 2015; 2015: 945217.
[http://dx.doi.org/10.1155/2015/945217] [PMID: 26413131]
[101]
Konar A, Gautam A, Thakur MK. Bacopa monniera [CDRI-08] upregulates the expression of neuronal and glial plasticity markers in the brain of scopolamine induced amnesic mice. Evid Based Complement Alternat Med 2015; 2015: 837012.
[http://dx.doi.org/10.1155/2015/837012] [PMID: 26413129]
[102]
Uabundit N, Wattanathorn J, Mucimapura S, Ingkaninan K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J Ethnopharmacol 2010; 127(1): 26-31.
[http://dx.doi.org/10.1016/j.jep.2009.09.056] [PMID: 19808086]
[103]
Hota SK, Barhwal K, Baitharu I, Prasad D, Singh SB, Ilavazhagan G. Bacopa monniera leaf extract ameliorates hypobaric hypoxia induced spatial memory impairment. Neurobiol Dis 2009; 34(1): 23-39.
[http://dx.doi.org/10.1016/j.nbd.2008.12.006] [PMID: 19154788]
[104]
Mathur D, Goyal K, Koul V, Anand A. The molecular links of re-emerging therapy: A review of evidence of Brahmi. Front Pharmacol 2016; 7: 44.
[http://dx.doi.org/10.3389/fphar.2016.00044] [PMID: 26973531]
[105]
Nandy S, Dey A, Mukherjeeb A. Advances in dammarane-type triterpenoid saponins from Bacopa monnieri: Structure, bioactivity, biotechnology and neuroprotection. Stud Nat Prod Chem 2019; 63: 489-533.
[http://dx.doi.org/10.1016/B978-0-12-817901-7.00015-0]
[106]
Choudhary S, Kumari I, Thakur S, Kaurav H, Chaudhary G. Brahmi (Bacopa monnieri): A potential ayurvedic cognitive enhancer & neuroprotective herb. Int J Ayurveda Pharma Res 2021; 9(5): 41-9.
[http://dx.doi.org/10.47070/ijapr.v9i5.1917]
[107]
Dey T, Mishra SP. Memory boosters: A review on Indian Ayurvedic herbs. Int J Innov Res Sci Eng Technol 2017; 6(11): 21180.
[108]
Amin H, Sharma R, Vyas M. Shankhapusphi [Convolvulus pluricaulis Choisy]: Validation of the therapeutic claims through contemporary studies. Int J Green Pharm 2014; 8(4): 193-200.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.028]
[109]
Bhowmik D, Kumar S, Paswan S, Srivastava S. Traditional Indian herbs Convolvulus pluricaulis and its medicinal importance. J Pharmacogn Phytochem 2012; 1: 2178-4136.
[110]
Sethiya NK, Nahata A, Mishra SH, Dixit VK. An update on Shankhpushpi, a cognition-boosting Ayurvedic medicine. J Chin Integr Med 2009; 7(11): 1001-22.
[http://dx.doi.org/10.3736/jcim20091101] [PMID: 19912732]
[111]
Chandel U, Kharoliwal S. A review on traditional Indian herbs Convolvulus pluricaulis Linn and its medicinal importance. Int J Pure App Biosci 2014; 2(6): 326-9.
[112]
Malik J, Karan M, Vasisht K. Nootropic, anxiolytic and CNS-depressant studies on different plant sources of Shankhpushpi. Pharm Biol 2011; 49(12): 1234-42.
[http://dx.doi.org/10.3109/13880209.2011.584539] [PMID: 21846173]
[113]
Shukla SP. Anti-anxiety agents of plant origin. Probe (Memphis) 1981; 20: 201-8.
[114]
Dandiya PC. The pharmacological basis of herbal drugs acting on CNS. Eastern Pharm 1990; 33: 39-47.
[115]
Dubey GP, Pathak SR, Gupta BS. Combined effect of Brahmi (Bacopa monniera) and Shankhpushpi (Convolvulus pluricaulis) on cognitive functions. Pharmacopsychoecol 1994; 7: 249-51.
[116]
Manyam BV. Dementia in Ayurveda. J Altern Complement Med 1999; 5(1): 81-8.
[http://dx.doi.org/10.1089/acm.1999.5.81] [PMID: 10100034]
[117]
Nahata A, Patil UK, Dixit VK. Anxiolytic activity of Evolvulus alsinoides and Convulvulus pluricaulis in rodents. Pharm Biol 2009; 47(5): 444-51.
[http://dx.doi.org/10.1080/13880200902822596]
[118]
Dhingra D, Valecha R. Evaluation of the antidepressant like activity of Convolvulus pluricaulis in the mouse forced swim and tail suspension tests. Med Sci Monit 2007; 13(7): BR155-61.
[119]
Sharma K, Bhatnagar M, Kulkarni SK. Effect of Convolvulus pluricaulis Choisy and Asparagus racemosus Willd on learning and memory in young and old mice: A comparative evaluation. Indian J Exp Biol 2010; 48(5): 479-85.
[PMID: 20795365]
[120]
Rai K, Murthy KD, Karanth KS, Nalini K, Rao MS, Srinivasan KK. Clitoria ternatea root extract enhances acetylcholine content in rat hippocampus. Flioterapia 2002; 73(7-8): 685-9.
[http://dx.doi.org/10.1016/S0367-326X(02)00249-6]
[121]
Pinchas M, Baranes D. Dendritic branch intersections are structurally regulated targets for efficient axonal wiring and synaptic clustering. PLoS One 2013; 8(12): e82083.
[http://dx.doi.org/10.1371/journal.pone.0082083] [PMID: 24349189]
[122]
Sinha SN, Dixit VP, Madnawat AVS, Sharma OP. The possible potentiation of cognitive processing on administration of Convolvulus microphyllus in rats. Indiana Med 1989; 1: 1-6.
[123]
Sethiya NK, Nahata A, Singh PK, Mishra SH. Neuropharmacological evaluation on four traditional herbs used as nervine tonic and commonly available as Shankhpushpi in India. J Ayurveda Integr Med 2019; 10(1): 25-31.
[http://dx.doi.org/10.1016/j.jaim.2017.08.012] [PMID: 29530454]
[124]
Thakur S, Kaurav H. Ayurvedic medicinal importance of Sankhapushpi (Convolvulus pluricaulis): Potential cognition boosting herb. Int J Pharm Sci Res Health Care 2021; 4.
[125]
Balkrishna A, Thakur P, Varshney A. Phytochemical profile, pharmacological attributes and medicinal properties of Convolvulus Prostratus-A cognitive enhancer herb for the management of neurodegenerative etiologies. Front Pharmacol 2020; 11: 171.
[http://dx.doi.org/10.3389/fphar.2020.00171] [PMID: 32194410]
[126]
Ganie SH, Ali Z, Das S, Srivastav PS, Sharma MP. Identification of sankhapushpi by morphological, chemical and molecular markers 2015; 3(2): 1-9.
[127]
Centella asiatica [asiatic pennywort], Invasive species compendium. CABI 2017. Available from: https://www.cabi.org/isc/datasheet/12048 (Accessed August 11, 2022).
[128]
Inamdar PK, Yeole RD, Ghogare AB, de Souza NJ. Determination of biologically active constituents in Centella asiatica. J Chromatogr A 1996; 742(1-2): 127-30.
[http://dx.doi.org/10.1016/0021-9673(96)00237-3]
[129]
Xu Y, Cao Z, Khan I, Luo Y. Gotu Kola (Centella asiatica) extract enhances phosphorylation of cyclic AMP response element binding protein in neuroblastoma cells expressing amyloid beta peptide. J Alzheimers Dis 2008; 13(3): 341-9.
[http://dx.doi.org/10.3233/JAD-2008-13311] [PMID: 18431001]
[130]
Siddiqui BS, Aslam H, Ali ST, Khan S, Begum S. Chemical constituents of Centella asiatica. J Asian Nat Prod Res 2007; 9(4): 407-14.
[http://dx.doi.org/10.1080/10286020600782454] [PMID: 17613628]
[131]
Ramesh BN, Indi SS, Rao KSJ. Studies to understand the effect of Centella asiatica on Aβ[42] aggregation in vitro. Curr Trends Biotechnol Pharm 2010; 4(2): 716-24.
[132]
Lokanathan Y, Omar N. Recent updates in neuroprotective and neurogenerative potential of Centella asiatica. Malays J Med Sci 2016; 23(1): 4-14.
[133]
Coyle J, Puttfarcken P. Glutamate toxicity. Science 1993; 262(5134): 689-95.
[http://dx.doi.org/10.1126/science.7901908] [PMID: 7901908]
[134]
Dhanasekaran M, Holcomb LA, Hitt AR, et al. Centella asiatica extract selectively decreases amyloid β levels in hippocampus of Alzheimer’s disease animal model. Phytother Res 2009; 23(1): 14-9.
[http://dx.doi.org/10.1002/ptr.2405] [PMID: 19048607]
[135]
Gray N, Morré J, Kelley J, et al. Centella asiatica protects against the toxic effects of intracellular beta-amyloid accumulation. Planta Med 2013; 79(10): 1348596.
[http://dx.doi.org/10.1055/s-0033-1348596]
[136]
Gray NE, Sampath H, Zweig JA, Quinn JF, Soumyanath A. Centella asiatica attenuates amyloid-β-induced oxidative stress and mitochondrial dysfunction. J Alzheimers Dis 2015; 45(3): 933-46.
[http://dx.doi.org/10.3233/JAD-142217] [PMID: 25633675]
[137]
Gray NE, Zweig JA, Murchison C, et al. Centella asiatica attenuates Aβ-induced neurodegenerative spine loss and dendritic simplification. Neurosci Lett 2017; 646: 24-9.
[http://dx.doi.org/10.1016/j.neulet.2017.02.072] [PMID: 28279707]
[138]
Ahmad RM, Justin TA, Manivasagam T, Nataraj J, Essa MM, Chidambaram SB. Asiatic acid nullified aluminium toxicity in in vitro model of Alzheimer’s disease. Front Biosci (Elite Ed) 2018; 10(2): 287-99.
[PMID: 28930619]
[139]
Sabaragamuwa R, Perera CO, Fedrizzi B. Centella asiatica (Gotu kola) as a neuroprotectant and its potential role in healthy ageing. Trends Food Sci Technol 2018; 79: 88-97.
[http://dx.doi.org/10.1016/j.tifs.2018.07.024]
[140]
Sun B, Wu L, Wu Y, et al. Therapeutic potential of Centella asiatica and itstriterpenes: A review. Front Pharmacol 2020; 11: 568032.
[http://dx.doi.org/10.3389/fphar.2020.568032] [PMID: 33013406]
[141]
Singh DC, Dhyani S, Kaur G. A critical review on Guggulu (Commiphora wightii (arn) Bhand.) & its miraculous medicinal uses. Int J Ayur. Pharm Res 2015; 3(1): 1-9.
[142]
Sarup P, Bala S, Kamboj S. Pharmacology and phytochemistry of oleo-gum resin of Commiphora weightii. Scientifca 2015; 138039: 1-14.
[143]
Das GR. A new hypolipidaemic agent (gugulipid). J Assoc Phys India 1990; 38(2): 186.
[PMID: 2248657]
[144]
Urizar NL, Moore DD. GUGULIPID: A natural cholesterol-lowering agent. Annu Rev Nutr 2003; 23(1): 303-13.
[http://dx.doi.org/10.1146/annurev.nutr.23.011702.073102] [PMID: 12626688]
[145]
Perluigi M, Joshi G, Sultana R, et al. In vivo protective effects of ferulic acid ethyl ester against amyloid-beta peptide 1–42-induced oxidative stress. J Neurosci Res 2006; 84(2): 418-26.
[http://dx.doi.org/10.1002/jnr.20879] [PMID: 16634068]
[146]
Sultana R, Ravagna A, Mohmmad-Abdul H, Calabrese V, Butterfield DA. Ferulic acid ethyl ester protects neurons against amyloid beta- peptide(1-42)-induced oxidative stress and neurotoxicity: Relationship to antioxidant activity. J Neurochem 2005; 92(4): 749-58.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02899.x] [PMID: 15686476]
[147]
Cui J, Huang L, Zhao A, et al. Guggulsterone is a farnesoid X receptor antagonist in coactivator association assays but acts to enhance transcription of bile salt export pump. J Biol Chem 2003; 278(12): 10214-20.
[http://dx.doi.org/10.1074/jbc.M209323200] [PMID: 12525500]
[148]
Szapary PO, Wolfe ML, Bloedon LT, et al. Guggulipid for the treatment of hypercholesterolemia: A randomized controlled trial. JAMA 2003; 290(6): 765-72.
[http://dx.doi.org/10.1001/jama.290.6.765] [PMID: 12915429]
[149]
Nohr LA, Rasmussen LB, Straand J. Resin from the mukul myrrh tree, guggul, can it be used for treating hypercholesterolemia? A randomized, controlled study. Complement Ther Med 2009; 17(1): 16-22.
[http://dx.doi.org/10.1016/j.ctim.2008.07.001] [PMID: 19114224]
[150]
Urizar NL, Liverman AB, Dodds DNT, et al. A natural product that lowers cholesterol as an antagonist ligand for FXR. Science 2002; 296(5573): 1703-6.
[http://dx.doi.org/10.1126/science.1072891] [PMID: 11988537]
[151]
Morley JE, Banks WA. Lipids and cognition. J Alzheimers Dis 2010; 20(3): 737-47.
[http://dx.doi.org/10.3233/JAD-2010-091576] [PMID: 20413879]
[152]
Eckert GP, Kirsch C, Leutz S, Wood WG, Müller WE. Cholesterol modulates amyloid beta-peptide’s membrane interactions. Pharmacopsychiatry 2003; 36 (Suppl. 2): S136-43.
[PMID: 14574628]
[153]
Harris JR, Milton NGN. Cholesterol in Alzheimer’s disease and other amyloidogenic disorders. Subcell Biochem 2010; 51: 47-75.
[http://dx.doi.org/10.1007/978-90-481-8622-8_2] [PMID: 20213540]
[154]
Saxena G, Singh SP, Pal R, Singh S, Pratap R, Nath C. Gugulipid, an extract of Commiphora wighitii with lipid-lowering properties, has protective effects against streptozotocin-induced memory deficits in mice. Pharmacol Biochem Behav 2007; 86(4): 797-805.
[http://dx.doi.org/10.1016/j.pbb.2007.03.010] [PMID: 17477963]
[155]
Shrivastav MK, Ahmed I, et al. Ayurvedic medicinal plant- Guggulu (Commiphora wightii): A birds eye view. Int J Pharm Pharm Sci 2015; 2(5): 25-9.
[156]
Sanglongi B, Rao G, Baswaraj S. Pharmaceutical study of Guggulu (Commiphora mukul linn.) W.S.R to its various shodhana properties. Int J Dev Res 2017; 7(6): 13000-6.
[157]
Sanka N, Santhipriya N, Nadendla RR. An updated review on Anti-Alzheimer’s herbal drugs. J Drug Deliv Ther 2018; 8(6): 360-72.
[http://dx.doi.org/10.22270/jddt.v8i6.2049]
[158]
Joshi H, Parle M. Nardostachys jatamansi improves learning and memory in mice. J Med Food 2006; 9(1): 113-8.
[http://dx.doi.org/10.1089/jmf.2006.9.113] [PMID: 16579738]
[159]
Thakur S, Kaurav H, Chaudhary G. Nardostachys jatamansi: Importance of highly significant and endangered plant in Ayurveda. Int J Res Ayurveda Pharm 2021; 12(3): 124-30.
[http://dx.doi.org/10.7897/2277-4343.120387]
[160]
Chandrasekhar K, Kapoor J, Anishetty S. A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of ashwagandha root in reducing stress and anxiety in adults. Indian J Psychol Med 2012; 34(3): 255-62.
[http://dx.doi.org/10.4103/0253-7176.106022] [PMID: 23439798]
[161]
Ng QX, Loke W, Foo NX, et al. A systematic review of the clinical use of Withania somnifera (Ashwagandha) to ameliorate cognitive dysfunction. Phytother Res 2020; 34(3): 583-90.
[http://dx.doi.org/10.1002/ptr.6552] [PMID: 31742775]
[162]
Gupta M, Kaur G. Withania somnifera (L.) Dunal ameliorates neurodegeneration and cognitive impairments associated with systemic inflammation. BMC Complement Altern Med 2019; 19(1): 217.
[http://dx.doi.org/10.1186/s12906-019-2635-0] [PMID: 31416451]
[163]
Begum VH, Sadique J. Long term effect of herbal drug Withania somnifera on adjuvant induced arthritis in rats. Indian J Exp Biol 1988; 26(11): 877-82.
[PMID: 3248848]
[164]
Tohda C, Komatsu K, Kuboyama T. Scientific basis of the anti-dementia drugs of constituents from Ashwagandha. J Trad Med 2005; 22 (Suppl. 1): 176-82.
[165]
Bhattacharya SK, Goel RK, Kaur R, Ghosal S. Anti-stress activity of sitoindosides VII and VIII, new acylsterylglucosides from Withania somnifera. Phytother Res 1987; 1(1): 32-7.
[http://dx.doi.org/10.1002/ptr.2650010108]
[166]
Bassani TB, Turnes JM, Moura ELR, et al. Effects of curcumin on short-term spatial and recognition memory, adult neurogenesis and neuroinflammation in a streptozotocin-induced rat model of dementia of Alzheimer’s type. Behav Brain Res 2017; 335: 41-54.
[http://dx.doi.org/10.1016/j.bbr.2017.08.014] [PMID: 28801114]
[167]
Small GW, Siddarth P, Li Z, et al. Memory and brain amyloid and tau effects of a bioavailable form of Curcumin in non-demented adults: A double blind placebo-controlled 18-month trial. Am J Geriatr Psychiatry 2018; 26(3): 266-77.
[http://dx.doi.org/10.1016/j.jagp.2017.10.010] [PMID: 29246725]
[168]
Sharman J, Galeshi R, Onega L, Ashby S, Sharman K. The efficacy of Curcumin on cognition, depressionand agitation in older adults with Alzheimer’s disease. Open Nutr J 2017; 11(1): 11-6.
[http://dx.doi.org/10.2174/1874288201711010011]
[169]
Mishra M, Mishra AK, Mishra U. Brahmi (Bacopa monnieri Linn) in the treatment of dementias – a pilot study. Future Healthc J 2019; 6 (Suppl. 1): 69.
[http://dx.doi.org/10.7861/futurehosp.6-1-s69] [PMID: 31363591]
[170]
Phakdeekul W, Kedthongma W. Effectiveness of Bacopa herb for solving dementia in the elderly. Sys Rev Pharma 2021; 12(10): 548-53.
[171]
Sethiya NK, Nahata A, Dixit VK, Mishra SH. Cognition boosting effect of Canscora decussata (a South Indian Shankhpushpi). Eur J Integr Med 2012; 4(1): e113-21.
[http://dx.doi.org/10.1016/j.eujim.2011.11.003]
[172]
Reshma RG, Anirudhan R. Effect of Sankhapushpi [Clitoria ternatea Linn] choorna in the working memory of children. Int J Ayurveda Pharma Res 2019; 7(3): 42-8.
[173]
Soumyanath A, Zhong YP, Henson E, et al. Centella asiatica extract improves behavioral deficits in a mouse model of Alzheimer’s disease: Investigation of a possible mechanism of action. Int J Alzheimers Dis 2012; 2012: 1-9.
[http://dx.doi.org/10.1155/2012/381974] [PMID: 22506133]
[174]
Wattanathorn J, Mator L, Muchimapura S, et al. Positive modulation of cognition and mood in the healthy elderly volunteer following the administration of Centella asiatica. J Ethnopharmacol 2008; 116(2): 325-32.
[http://dx.doi.org/10.1016/j.jep.2007.11.038] [PMID: 18191355]
[175]
Huang C, Wang J, Lu X, et al. Z-guggulsterone negatively controls microglia-mediated neuroinflammation via blocking IκB-α–NF-κBB signals. Neurosci Lett 2016; 619: 34-42.
[http://dx.doi.org/10.1016/j.neulet.2016.02.021] [PMID: 26879835]
[176]
Raghav S, Singh H, Dalal PK, Srivastava JS, Asthana OP. Randomized controlled trial of standardized Bacopa monniera extract in age-associated memory impairment. Int J Psychiatry 2006; 48(4): 238-42.
[PMID: 20703343]
[177]
Raina RS, Chopra VS, Sharma R, et al. The psychomotor effects of Brahmi and caffeine in healthy male volunteers. J Clin Diagn Res 2009; 3: 1827-35.
[178]
Calabrese C, Gregory WL, Leo M, Kraemer D, Bora K, Oken B. Effect of standardized Bacopa monniera extract on cognitive function in elderly. A randomized double blind placebo controlled study. J Altern Complement Med 2008; 14: 707-13.
[http://dx.doi.org/10.1089/acm.2008.0018] [PMID: 18611150]
[179]
Carlson JJ, Farquhar JW, DiNucci E, et al. Safety and efficacy of a ginkgo biloba-containing dietary supplement on cognitive function, quality of life, and platelet function in healthy, cognitively intact older adults. J Am Diet Assoc 2007; 107(3): 422-32.
[http://dx.doi.org/10.1016/j.jada.2006.12.011] [PMID: 17324660]
[180]
Lewis JE, Melillo AB, Tiozzo E, et al. A double-blind, randomized clinical trial of dietary supplementation on cognitive and immune functioning in healthy older adults. BMC Complement Altern Med 2014; 14(1): 43.
[http://dx.doi.org/10.1186/1472-6882-14-43] [PMID: 24495355]
[181]
Hashiguchi M, Ohta Y, Shimizu M, Maruyama J, Mochizuki M. Meta-analysis of the efficacy and safety of Ginkgo biloba extract for the treatment of dementia. J Pharm Health Care Sci 2015; 1(1): 14.
[http://dx.doi.org/10.1186/s40780-015-0014-7] [PMID: 26819725]
[182]
Singh M, Saxena G, Arya S. Evaluation of anti-stress effects of Nardostachys jatamansi Dc root extract on clinical patients: A psychological estimation. In: ESSENCE Int J Env Rehab Conser. 2017; 8: pp. (2)54-61.
[183]
Seddon N, D’Cunha NM, Mellor DD, et al. Effects of Curcumin on cognitive function-A systematic review of randomized controlled trials. Explor Res Hypothesis Med 2019; 4(1): 1-11.
[http://dx.doi.org/10.14218/ERHM.2018.00024]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy