Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

在氧化应激环境中评估三叶鼠尾草对睡眠剥夺引起的记忆缺陷的影响

卷 19, 期 6, 2022

发表于: 23 August, 2022

页: [440 - 448] 页: 9

弟呕挨: 10.2174/1567205019666220805092450

价格: $65

conference banner
摘要

背景:据报道,学习和记忆缺陷与海马氧化损伤有关。此外,睡眠剥夺(SD)通过令人痛苦的氧化应激平衡减轻记忆。在本报告中,研究了口服鼠尾草提取物对慢性SD所致认知障碍的前瞻性神经保护作用。 方法:采用改良的多平台(每天8小时;持续6周)在成年雄性Wistar大鼠中诱导SD。同时,给予三叶草提取物(375mg/kg,口服)六周。此后,使用桡臂水迷宫测试来评估空间学习和记忆。此外,在大鼠海马中测量了不同海马抗氧化参数的活性:谷胱甘肽过氧化物酶(GPx)、氧化谷胱甘肽(GSSG)、还原型谷胱甘肽(GSH)、过氧化氢酶、超氧化物歧化酶(SOD)和硫代巴比妥酸反应物(TBARS)。此外,还评估了脑源性神经营养因子(BDNF)的水平。 结果:目前的结果表明,慢性SD显著损害了短期和长期记忆,而鼠尾草提取物抑制了这些后果。此外,鼠尾草提取物显著稳定了SD大鼠体内SOD、过氧化氢酶和GPx等抗氧化酶水平(P<0.05),并显著提高了GSH/GSSG比值(P<0.05)。然而,给药鼠尾草提取物后,GSH、TBARS或BDNF水平没有显著变化(P>0.05)。 结论:鼠尾草提取物(S.Triloba)的慢性治疗通过调节大鼠海马抗氧化参数水平,消除了SD诱导的记忆障碍。

关键词: 鼠尾草、过氧化氢酶、迷宫、脑源性神经营养因子、谷胱甘肽、睡眠剥夺。

[1]
Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: The evidence. CMAJ 2006; 174(6): 801-9.
[http://dx.doi.org/10.1503/cmaj.051351] [PMID: 16534088]
[2]
Ohlmann KK, O'Sullivan MI. The costs of short sleep. AAOHN J 2009; 57(9): 381-5.
[3]
Ellenbogen JM. Cognitive benefits of sleep and their loss due to sleep deprivation. Neurology 2005; 64(7): E25-7.
[http://dx.doi.org/10.1212/01.wnl.0000164850.68115.81] [PMID: 15824327]
[4]
Robertson EM, Pascual-Leone A, Press DZ. Awareness modifies the skill-learning benefits of sleep. Curr Biol 2004; 14(3): 208-12.
[http://dx.doi.org/10.1016/j.cub.2004.01.027] [PMID: 14761652]
[5]
Alzoubi KH, Khabour OF, Rashid BA, Damaj IM, Salah HA. The neuroprotective effect of vitamin E on chronic sleep deprivation-induced memory impairment: The role of oxidative stress. Behav Brain Res 2012; 226(1): 205-10.
[http://dx.doi.org/10.1016/j.bbr.2011.09.017] [PMID: 21944940]
[6]
Silva RH, Abílio VC, Takatsu AL, et al. Role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice. Neuropharmacology 2004; 46(6): 895-903.
[http://dx.doi.org/10.1016/j.neuropharm.2003.11.032] [PMID: 15033349]
[7]
Alzoubi KH, Rababa’h AM, Owaisi A, Khabour OF. L-carnitine prevents memory impairment induced by chronic REM-sleep deprivation. Brain Res Bull 2017; 131: 176-82.
[http://dx.doi.org/10.1016/j.brainresbull.2017.04.004] [PMID: 28433816]
[8]
Patel AK, Reddy V, Araujo JF. Physiology, sleep stages. Treasure Island, FL: StatPearls 2021.
[9]
Dement W. The occurrence of low voltage, fast, electroencephalogram patterns during behavioral sleep in the cat. Electroencephalogr Clin Neurophysiol 1958; 10(2): 291-6.
[http://dx.doi.org/10.1016/0013-4694(58)90037-3] [PMID: 13548075]
[10]
Jouvet D, Valatx JL. Polygraphic study of sleep in lambs. C R Seances Soc Biol Fil 1962; 156: 1411-4.
[PMID: 13965002]
[11]
Silber MH, Ancoli-Israel S, Bonnet MH, et al. The visual scoring of sleep in adults. J Clin Sleep Med 2007; 3(2): 121-31.
[12]
McCarley RW. Neurobiology of REM and NREM sleep. Sleep Med 2007; 8(4): 302-30.
[http://dx.doi.org/10.1016/j.sleep.2007.03.005] [PMID: 17468046]
[13]
Greene R, Siegel J. Sleep: A functional enigma. Neuromolecular Med 2004; 5(1): 59-68.
[http://dx.doi.org/10.1385/NMM:5:1:059] [PMID: 15001813]
[14]
Izac SM, Eeg TR. Basic anatomy and physiology of sleep. Am J Electroneurodiagn Technol 2006; 46(1): 18-38.
[http://dx.doi.org/10.1080/1086508X.2006.11079555] [PMID: 16605170]
[15]
Jawabri KH, Raja A. Physiology, sleep patterns. StatPearls, Treasure Island, (FL) 2021.
[16]
Benca RM, Teodorescu M. Sleep physiology and disorders in aging and dementia. Handb Clin Neurol 2019; 167: 477-93.
[http://dx.doi.org/10.1016/B978-0-12-804766-8.00026-1] [PMID: 31753150]
[17]
Harrison Y, Horne JA. Sleep loss and temporal memory. Q J Exp Psychol A 2000; 53(1): 271-9.
[http://dx.doi.org/10.1080/713755870] [PMID: 10718074]
[18]
McDermott CM, Hardy MN, Bazan NG, Magee JC. Sleep deprivation-induced alterations in excitatory synaptic transmission in the CA1 region of the rat hippocampus. J Physiol 2006; 570(Pt 3): 553-65.
[http://dx.doi.org/10.1113/jphysiol.2005.093781] [PMID: 16322058]
[19]
Rababa’h AM, Alzoubi KH, Atmeh A. Levosimendan enhances memory through antioxidant effect in rat model: Behavioral and molecular study. Behav Pharmacol 2018; 29(4): 344-50.
[http://dx.doi.org/10.1097/FBP.0000000000000362] [PMID: 29176443]
[20]
Abuirmeileh AN, Alzoubi KH, Rababa’h AM. The effect of levosimendan on two distinct rodent models of Parkinson’s disease. Curr Alzheimer Res 2020; 17(11): 1043-51.
[http://dx.doi.org/10.2174/1567205017666201218102724] [PMID: 33342412]
[21]
Alzoubi KH, Aburashed ZO, Mayyas F. Edaravone protects from memory impairment induced by chronic L-methionine administration. Naunyn Schmiedebergs Arch Pharmacol 2020; 393(7): 1221-8.
[http://dx.doi.org/10.1007/s00210-020-01827-z] [PMID: 31989235]
[22]
Lee S, Lim JS, Yun HS, et al. Dietary supplementation with Ceriporia lacerata improves learning and memory in a scopolamine-induced amnesia mouse model. Food Sci Biotechnol 2021; 30(8): 1107-16.
[http://dx.doi.org/10.1007/s10068-021-00945-5] [PMID: 34471564]
[23]
Amin A, Hamza AA. Hepatoprotective effects of Hibiscus, Rosmarinus and Salvia on azathioprine-induced toxicity in rats. Life Sci 2005; 77(3): 266-78.
[http://dx.doi.org/10.1016/j.lfs.2004.09.048] [PMID: 15878355]
[24]
Ali MS, Dardass AK, Ahmad S, Saleem M, Firdous S, Ahmad VU. Two new diterpenoids from Salvia triloba. Fitoterapia 2000; 71(4): 347-52.
[http://dx.doi.org/10.1016/S0367-326X(99)00173-2] [PMID: 10925002]
[25]
Esquivel B, Méndez A, Ortega AR, Soriano-garcia M, Toscano A, Rodriguez-hahn L. Neo-clerodane-type diterpenoids from Salvia keerlii. Phytochemistry 1985; 24: 1769-72.
[http://dx.doi.org/10.1016/S0031-9422(00)82548-0]
[26]
Valverde S, Escudero J, Cristóbal López J, Ma Rabanal R. Two terpenoids from Salvia bicolor. Phytochemistry 1985; 24(1): 111-3.
[http://dx.doi.org/10.1016/S0031-9422(00)80817-1]
[27]
Abdel-Moneim FM, Elgamal MHA, Fayez MBE, Salam LAR. Constituents of local plants—XI.: The triterpenoid acids of Salvia lanigera Poir. and S. triloba L. Phytochemistry 1967; 6(7): 1035-6.
[http://dx.doi.org/10.1016/S0031-9422(00)86058-6]
[28]
Topçu G. Bioactive triterpenoids from Salvia species. J Nat Prod 2006; 69(3): 482-7.
[http://dx.doi.org/10.1021/np0600402] [PMID: 16562861]
[29]
Ulubelen A, Oztürk S, Iśildatici S. A new flavone from Salvia triloba L.f (Labiatae). J Pharm Sci 1968; 57(6): 1037-8.
[http://dx.doi.org/10.1002/jps.2600570630] [PMID: 5671324]
[30]
Lu Y, Foo LY. Flavonoid and phenolic glycosides from Salvia officinalis. Phytochemistry 2000; 55(3): 263-7.
[http://dx.doi.org/10.1016/S0031-9422(00)00309-5] [PMID: 11142853]
[31]
Ulubelen A. New Diterpenoids from the roots of Salvia triloba. Planta Med 1990; 56(1): 82-3.
[http://dx.doi.org/10.1055/s-2006-960890] [PMID: 17221372]
[32]
Imanshahidi M, Hosseinzadeh H. The pharmacological effects of Salvia species on the central nervous system. Phytother Res 2006; 20(6): 427-37.
[http://dx.doi.org/10.1002/ptr.1898] [PMID: 16619340]
[33]
Abu-Dahab R, Abdallah MR, Kasabri V, Mhaidat NM, Afifi FU. Mechanistic studies of antiproliferative effects of Salvia triloba and Salvia dominica (Lamiaceae) on breast cancer cell lines (MCF7 and T47D). Z Naturforsch C J Biosci 2014; 69(11-12): 443-51.
[PMID: 25854764]
[34]
Ahmed HH, Salem AM, Sabry GM, Husein AA, Kotob SE. Possible therapeutic uses of Salvia triloba and Piper nigrum in Alzheimer’s disease-induced rats. J Med Food 2013; 16(5): 437-46.
[http://dx.doi.org/10.1089/jmf.2012.0165] [PMID: 23631499]
[35]
Atmaca H, Bozkurt E. Apoptotic and anti-angiogenic effects of Salvia triloba extract in prostate cancer cell lines. Tumour Biol 2016; 37(3): 3639-46.
[http://dx.doi.org/10.1007/s13277-015-4208-2] [PMID: 26459311]
[36]
Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF. The 1996 guide for the care and use of laboratory animals. ILAR J 1997; 38(1): 41-8.
[http://dx.doi.org/10.1093/ilar.38.1.41]
[37]
Aleisa AM, Alzoubi KH, Alkadhi KA. Post-learning REM sleep deprivation impairs long-term memory: Reversal by acute nicotine treatment. Neurosci Lett 2011; 499(1): 28-31.
[http://dx.doi.org/10.1016/j.neulet.2011.05.025] [PMID: 21624432]
[38]
Grahnstedt S, Ursin R. Platform sleep deprivation affects deep slow wave sleep in addition to REM sleep. Behav Brain Res 1985; 18(3): 233-9.
[http://dx.doi.org/10.1016/0166-4328(85)90031-2] [PMID: 4091961]
[39]
Axmacher N, Draguhn A, Elger CE, Fell J. Memory processes during sleep: Beyond the standard consolidation theory. Cell Mol Life Sci 2009; 66(14): 2285-97.
[http://dx.doi.org/10.1007/s00018-009-0019-1] [PMID: 19322518]
[40]
Whitney P, Hinson JM. Measurement of cognition in studies of sleep deprivation. Prog Brain Res 2010; 185: 37-48.
[http://dx.doi.org/10.1016/B978-0-444-53702-7.00003-8] [PMID: 21075232]
[41]
Montplaisir J, Petit D, Gauthier S, Gaudreau H, Décary A. Sleep disturbances and EEG slowing in Alzheimer’s disease. Sleep Res Online 1998; 1(4): 147-51.
[PMID: 11382871]
[42]
Smith C, Rose GM. Posttraining paradoxical sleep in rats is increased after spatial learning in the Morris water maze. Behav Neurosci 1997; 111(6): 1197-204.
[http://dx.doi.org/10.1037/0735-7044.111.6.1197] [PMID: 9438789]
[43]
Reimund E. The free radical flux theory of sleep. Med Hypotheses 1994; 43(4): 231-3.
[http://dx.doi.org/10.1016/0306-9877(94)90071-X] [PMID: 7838006]
[44]
Ramanathan L, Gulyani S, Nienhuis R, Siegel JM. Sleep deprivation decreases superoxide dismutase activity in rat hippocampus and brainstem. Neuroreport 2002; 13(11): 1387-90.
[http://dx.doi.org/10.1097/00001756-200208070-00007] [PMID: 12167758]
[45]
Fukui K, Omoi NO, Hayasaka T, et al. Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann N Y Acad Sci 2002; 959: 275-84.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb02099.x] [PMID: 11976202]
[46]
Alzoubi KH, Khabour OF, Salah HA, Hasan Z. Vitamin E prevents high-fat high-carbohydrates diet-induced memory impairment: The role of oxidative stress. Physiol Behav 2013; 119: 72-8.
[http://dx.doi.org/10.1016/j.physbeh.2013.06.011] [PMID: 23769690]
[47]
Eidi M, Eidi A, Bahar M. Effects of Salvia officinalis L. (sage) leaves on memory retention and its interaction with the cholinergic system in rats. Nutrition 2006; 22(3): 321-6.
[http://dx.doi.org/10.1016/j.nut.2005.06.010] [PMID: 16500558]
[48]
Tildesley NT, Kennedy DO, Perry EK, et al. Salvia lavandulaefolia (Spanish sage) enhances memory in healthy young volunteers. Pharmacol Biochem Behav 2003; 75(3): 669-74.
[http://dx.doi.org/10.1016/S0091-3057(03)00122-9] [PMID: 12895685]
[49]
Orhan I, Aslan M. Appraisal of scopolamine-induced antiamnesic effect in mice and in vitro antiacetylcholinesterase and antioxidant activities of some traditionally used Lamiaceae plants. J Ethnopharmacol 2009; 122(2): 327-32.
[http://dx.doi.org/10.1016/j.jep.2008.12.026] [PMID: 19162154]
[50]
Mahdy K, Shaker O, Wafay H, Nassar Y, Hassan H, Hussein A. Effect of some medicinal plant extracts on the oxidative stress status in Alzheimer’s disease induced in rats. Eur Rev Med Pharmacol Sci 2012; 16 (Suppl. 3): 31-42.
[PMID: 22957416]
[51]
Lantzouraki DZ, Tsiaka T, Soteriou N, et al. Antioxidant profiles of Vitis vinifera L. and Salvia triloba L. leaves using high-energy extraction methodologies. J AOAC Int 2020; 103(2): 413-21.
[http://dx.doi.org/10.5740/jaoacint.19-0261] [PMID: 31530341]
[52]
Yildirim A, Mavi A, Oktay M, Kara AA, Algur OF, Bilaloglu V. Comparison of antioxidant and antimicrobial activities of tilia (Tilia argentea Desf ex DC), sage (Salvia triloba l.), and black tea (Camellia sinensis) extracts. J Agric Food Chem 2000; 48(10): 5030-4.
[http://dx.doi.org/10.1021/jf000590k] [PMID: 11052773]
[53]
Shaffery JP, Lopez J, Roffwarg HP. Brain-derived neurotrophic factor (BDNF) reverses the effects of rapid eye movement sleep deprivation (REMSD) on developmentally regulated, long-term potentiation (LTP) in visual cortex slices. Neurosci Lett 2012; 513(1): 84-8.
[http://dx.doi.org/10.1016/j.neulet.2012.02.012] [PMID: 22361363]
[54]
Aicardi G, Argilli E, Cappello S, et al. Induction of long-term potentiation and depression is reflected by corresponding changes in secretion of endogenous brain-derived neurotrophic factor. Proc Natl Acad Sci USA 2004; 101(44): 15788-92.
[http://dx.doi.org/10.1073/pnas.0406960101] [PMID: 15505222]
[55]
Guzman-Marin R, Ying Z, Suntsova N, et al. Suppression of hippocampal plasticity-related gene expression by sleep deprivation in rats. J Physiol 2006; 575(Pt 3): 807-19.
[http://dx.doi.org/10.1113/jphysiol.2006.115287] [PMID: 16825295]
[56]
Hairston IS, Peyron C, Denning DP, et al. Sleep deprivation effects on growth factor expression in neonatal rats: A potential role for BDNF in the mediation of delta power. J Neurophysiol 2004; 91(4): 1586-95.
[http://dx.doi.org/10.1152/jn.00894.2003] [PMID: 14668298]
[57]
Massadeh AM, Alzoubi KH, Milhem AM, Rababa’h AM, Khabour OF. Evaluating the effect of selenium on spatial memory impairment induced by sleep deprivation. Physiol Behav 2022; 244: 113669.
[http://dx.doi.org/10.1016/j.physbeh.2021.113669] [PMID: 34871651]
[58]
Alzoubi KH, Khabour OF, Salah HA, Abu Rashid BE. The combined effect of sleep deprivation and Western diet on spatial learning and memory: Role of BDNF and oxidative stress. J Mol Neurosci 2013; 50(1): 124-33.
[http://dx.doi.org/10.1007/s12031-012-9881-7] [PMID: 22956188]
[59]
Alzoubi KH, Mayyas F, Abu Zamzam HI. Omega-3 fatty acids protects against chronic sleep-deprivation induced memory impairment. Life Sci 2019; 227: 1-7.
[http://dx.doi.org/10.1016/j.lfs.2019.04.028] [PMID: 30998938]
[60]
Tualeka AR, Martiana T, Ahsan A, Russeng SS, Meidikayanti W. Association between malondialdehyde and glutathione (L-gamma-glutamyl-cysteinyl-glycine/GSH) levels on workers exposed to benzene in Indonesia. Open Access Maced J Med Sci 2019; 7(7): 1198-202.
[http://dx.doi.org/10.3889/oamjms.2019.246] [PMID: 31049107]
[61]
Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 2007; 49(2): 241-8.
[http://dx.doi.org/10.1161/01.HYP.0000254415.31362.a7] [PMID: 17190878]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy