Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Propiolic Acids in the Synthesis of N-heterocycles

Author(s): Zhan-Yong Wang*, Zhantong Liu, Nan Wang and Yuanfeng Tong*

Volume 20, Issue 7, 2023

Published on: 16 September, 2022

Page: [700 - 707] Pages: 8

DOI: 10.2174/1570193X19666220804145501

Price: $65

Open Access Journals Promotions 2
Abstract

This review discussed the synthetic applications of propiolic acids in the preparation of diverse N-heterocycles. 3~9-membered rings like azirines, β-lactams, oxazolidin-2-ones, 2-oxindoles, indoles, isoindolin-1-ones, imidazo[1,2-a]pyridines, triazoles, 2-pyridones, 2-quinolones, 1,4- benzothiazines, thiazinones, spiroindolines, etc. could be constructed via radical addition, fourcomponent Ugi reactions, 1,3-dipolar cycloadditions, or Diels-Alder reaction mechanism. We hope this review will promote future research in this area:

Introduction; Synthesis of azirines; Synthesis of lactams; Construction of five-membered rings; Construction of six-membered rings; Double cyclization for N-heterocycles; Construction of 7~9- membered rings; Conclusion.

Keywords: Propiolic acids, N-heterocycles, tandem reaction, thiazinones, spiroindolines, radical.

Graphical Abstract
[1]
a) Park, K.; Lee, S. Transition metal-catalyzed decarboxylative coupling reactions of alkynyl carboxylic acids. RSC Advances, 2013, 3(34), 14165-14182.
[http://dx.doi.org/10.1039/c3ra41442f];
b) Mohammadi-Khanaposhtani, M.; Jalalimanesh, N.; Saeedi, M.; Larijani, B.; Mahdavi, M. Synthesis of highly functionalized organic compounds through Ugi post-transformations started from propiolic acids. Mol. Divers., 2020, 24(3), 855-887.
[http://dx.doi.org/10.1007/s11030-019-09975-y] [PMID: 31325081];
c) Chen, C.; Wu, J.; Yan, G.; Huang, D. Recent advances of propiolic acids in organic reactions. Tetrahedron Lett., 2020, 61(4), 151415-151434.
[http://dx.doi.org/10.1016/j.tetlet.2019.151415]
[2]
Yue, X.; He, X.; Wu, Y-C.; Hu, M.; Wu, S.; Xie, Y-X.; Li, J-H. Metal-Free oxidative decarboxylative heteroannulation of alkynyl carboxylic acids with sulfinates and tert-butyl nitrite toward 2,2-disulfonyl-2h-azirines. ChemCatChem, 2020, 12(10), 2690-2694.
[http://dx.doi.org/10.1002/cctc.201902400]
[3]
a) Ghoshal, A.; Kumar, A.; Yugandhar, D.; Sona, C.; Kuriakose, S.; Nagesh, K.; Rashid, M.; Singh, S.K.; Wahajuddin, M.; Yadav, P.N.; Srivastava, A.K. Identification of novel β-lactams and pyrrolidinone derivatives as selective Histamine-3 receptor (H3R) modulators as possible anti-obesity agents. Eur. J. Med. Chem., 2018, 152, 148-159.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.020] [PMID: 29704723];
b) Ramanivas, T.; Parmeshwar, M.; Gayatri, G.; Nanubolu, J.B.; Srivastava, A.K. Asymmetric synthesis of functionalized 2,5-pyrrolidinediones and lactams through diastereospecific cycloisomerization/rearrangement of chiral ethanolamine-derived Ugi adducts. Eur. J. Org. Chem., 2017, 2017(16), 2245-2257.
[http://dx.doi.org/10.1002/ejoc.201700031];
c) Li, Z.; Sharma, U.K.; Liu, Z.; Sharma, N.; Harvey, J.N.; Eycken, E.V. Diversity-oriented synthesis of β-lactams and γ-lactams by post-ugi nucleophilic cyclization: Lewis acids as regioselective switch. Eur. J. Org. Chem., 2015, 2015(18), 3957-3962.
[http://dx.doi.org/10.1002/ejoc.201500270]
[4]
Budeev, A.; Kantin, G.; Dar’in, D.; Krasavin, M. Ugi reaction-derived 1H-pyrrol-2(5H)-ones proved as valid precursors to a new class of heterocyclic α-diazocarbonyl compounds. Tetrahedron Lett., 2022, 89, 153598-153600.
[http://dx.doi.org/10.1016/j.tetlet.2021.153598]
[5]
Xie, Y.; Feng, H.; Qi, Y.; Huang, J.; Huang, L. Chemodivergent synthesis of oxazolidin-2-ones via cu-catalyzed carboxyl transfer annulation of propiolic acids with amines. J. Org. Chem., 2021, 86(23), 16940-16947.
[http://dx.doi.org/10.1021/acs.joc.1c02099] [PMID: 34726412]
[6]
Balalaie, S.; Motaghedi, H.; Baraajanian, M.; Tahmassebi, D.; Bijanzadeh, H.R. Pd-catalyzed synthesis of 3-(diarylmethylene)-2-oxindoles and 3-(arylmethylene)-2-oxindoles. Tetrahedron, 2011, 67(47), 9134-9141.
[http://dx.doi.org/10.1016/j.tet.2011.09.089]
[7]
Gogoi, A.; Guin, S.; Rout, S.K.; Majji, G.; Patel, B.K. A Cu-catalysed synthesis of substituted 3-methyleneisoindolin-1-one. RSC Advances, 2014, 4(104), 59902-59907.
[http://dx.doi.org/10.1039/C4RA12782J]
[8]
Liu, Y.; Wang, W.; Han, J.; Sun, J.A. Cu(ii)-promoted tandem decarboxylative halogenation and oxidative diamination reaction of 2-aminopyridines with alkynoic acids for the synthesis of 2-haloimidazo[1,2-a]pyridines. Org. Biomol. Chem., 2017, 15(44), 9311-9318.
[http://dx.doi.org/10.1039/C7OB02014G] [PMID: 29083000]
[9]
a) Balalaie, S.; Vaezghaemi, A.; Zarezaden, N.; Rominger, F.; Bijanzadeh, H.R. Catalyst-free synthesis of fused triazolo-diazepino [5,6-b] quinoline derivatives via a sequential Ugi-4CR-nucleophilic substitution-intramolecular click reaction. Synlett, 2018, 29(8), 1095-1101.
[http://dx.doi.org/10.1055/s-0036-1591531];
b) Vachhani, D.D.; Kamar, A.; Modha, S.G.; Sharma, S.K.; Parmar, U.S.; Eyken, E.V. Diversely substituted triazolo[1,5-a][1,4]benzodiazepinones: A post-Ugi copper-catalyzed tandem azide-alkyne cycloaddition/ullmann C-N coupling approach. Eur. J. Org. Chem., 2013, 2013(7), 1223-1227.
[http://dx.doi.org/10.1002/ejoc.201201587]
[10]
Yan, Y-M.; Li, H-Y.; Zhang, M.; Wang, R-X.; Zhou, C-G.; Ren, Z.X.; Ding, M-W. One-Pot synthesis of [1,2,3]triazolo[1,5-a]quinoxalin-4(5h)-ones by a metal-free sequential Ugi-4CR/alkyne-azide cycloaddition reaction. Synlett, 2020, 31(1), 73-76.
[http://dx.doi.org/10.1055/s-0037-1610737]
[11]
a) Vohradská, N.; Sánchez-Carnerero, E.M.; Pastierik, T.; Mazal, C.; Klán, P. Controlled photorelease of alkynoic acids and their decarboxylative deprotection for copper-catalyzed azide/alkyne cycloaddition. Chem. Commun. (Camb.), 2018, 54(44), 5558-5561.
[http://dx.doi.org/10.1039/C8CC03341B] [PMID: 29761798];
b) Bharathimohan, K.; Ponpandian, T.; Ahamed, A.J.; Bhuvanesh, N. Sequential decarboxylative azide-alkyne cycloaddition and dehydrogenative coupling reactions: One-pot synthesis of polycyclic fused triazoles. Beilstein J. Org. Chem., 2014, 10, 3031-3037.
[http://dx.doi.org/10.3762/bjoc.10.321] [PMID: 25670973];
c) Saric, I.; Markovic, M.K.; Peter, R.; Linic, P.; Wittine, K.; Piltaver, I.K.; Badovinac, I.J.; Markovi, D.; Knez, M.; Ambrozi, G. In-situ multi-step pulsed vapor phase surface functionalization of zirconia nanoparticles via copper-free click chemistry. Appl. Surf. Sci., 2021, 539, 148254-148264.
[http://dx.doi.org/10.1016/j.apsusc.2020.148254]
[12]
a) Kolarovič A.; Schnürch, M.; Mihovilovic, M.D. Tandem catalysis: From alkynoic acids and aryl iodides to 1,2,3-triazoles in one pot. J. Org. Chem., 2011, 76(8), 2613-2618.
[http://dx.doi.org/10.1021/jo1024927] [PMID: 21391535];
b) Wang, X-X.; Xin, Y.; Li, Y.; Xia, W-J.; Zhou, B.; Ye, R-R.; Li, Y-M. Copper-catalyzed decarboxylative cycloaddition of propiolic acids, azides, and arylboronic acids: Construction of fully-substituted 1,2,3-triazoles. J. Org. Chem., 2020, 85(5), 3576-3586.
[http://dx.doi.org/10.1021/acs.joc.9b03285] [PMID: 31984747];
c) Beukeaw, D.; Yotphan, S. Copper‐catalyzed decarboxylative cycloaddition of alkynyl carboxylic acids and sodium azide with epoxides and ethers. ChemistrySelect, 2021, 6(36), 9632-9636.
[http://dx.doi.org/10.1002/slct.202102494]
[13]
Cui, F.H.; Chen, J.; Mo, Z.Y.; Su, S.X.; Chen, Y.Y.; Ma, X.L.; Tang, H.T.; Wang, H.S.; Pan, Y.M.; Xu, Y.L. Copper-catalyzed decarboxylative/click cascade reaction: Regioselective assembly of 5-selenotriazole anticancer agents. Org. Lett., 2018, 20(4), 925-929.
[http://dx.doi.org/10.1021/acs.orglett.7b03734] [PMID: 29388780]
[14]
Maddirala, A.R.; Andreana, P.R. Methyl isocyanide as a convertible functional group for the synthesis of spirocyclic oxindole γ-lactams via post-Ugi-4CR/transamidation/cyclization in a one-pot, three-step sequence. Beilstein J. Org. Chem., 2018, 14, 875-883.
[http://dx.doi.org/10.3762/bjoc.14.74] [PMID: 29765468]
[15]
Sharma, N.; Li, Z.; Sharma, U.K.; Van der Eycken, E.V. Facile access to functionalized spiro[indoline-3,2′-pyrrole]-2,5′-diones via post-Ugi domino Buchwald-Hartwig/Michael reaction. Org. Lett., 2014, 16(15), 3884-3887.
[http://dx.doi.org/10.1021/ol5019079] [PMID: 25029554]
[16]
Du, X.; Yu, J.; Gong, J.; Zaman, M.; Pereshivko, O.P.; Peshkov, V.A. Gold-catalyzed post-Ugi cascade transformation for the synthesis of 2-pyridones. Eur. J. Org. Chem., 2019, 2019(14), 2502-2507.
[http://dx.doi.org/10.1002/ejoc.201900027]
[17]
a) Du, X.; Huang, J.; Nechaev, A.A.; Yao, R.; Gong, J.; Van der Eycken, E.V.; Pereshivko, O.P.; Peshkov, V.A. Gold-catalyzed post-Ugi alkyne hydroarylation for the synthesis of 2-quinolones. Beilstein J. Org. Chem., 2018, 14, 2572-2579.
[http://dx.doi.org/10.3762/bjoc.14.234] [PMID: 30410618];
b) Singh, K.; Malviya, B.K.; Verma, V.P.; Badsara, S.S.; Bhardwaj, V.K.; Sharma, S. Cationic Pd(II) catalyzed regioselective intramolecular hydroarylation for the efficient synthesis of 4-aryl-2-quinolones. Tetrahedron, 2019, 75(17), 2506-2520.
[http://dx.doi.org/10.1016/j.tet.2019.03.026]
[18]
Murugan, S.P.; Wu, C.; Chen, C.; Lee, G. One-pot approach: Tandem consecutive Ugi-4CR/ACM-type reaction towards the synthesis of functionalised quinoline-2 (1H)-one scaffolds. Tetrahedron Lett., 2021, 67, 152889-152995.
[http://dx.doi.org/10.1016/j.tetlet.2021.152889]
[19]
Qiu, J-W.; Hu, B-L.; Zhang, X-G.; Tang, R-Y.; Zhong, P.; Li, J-H. Copper-catalyzed ring expansion of 2-aminobenzothiazoles with alkynyl carboxylic acids to 1,4-benzothiazines. Org. Biomol. Chem., 2015, 13(10), 3122-3127.
[http://dx.doi.org/10.1039/C4OB02467B] [PMID: 25632941]
[20]
Sun, K.; Jin, S.; Zhu, J.; Zhang, X.; Gao, M.; Zhang, W.; Lu, T.; Du, D. N-Heterocyclic carbene-catalyzed in situ activation of alkynyl acids for C-S bond formation: Access to imidazo[2,1- b][1,3]thiazinones. Adv. Synth. Catal., 2018, 360(23), 4515-4522.
[http://dx.doi.org/10.1002/adsc.201800857]
[21]
Üçüncü, M.; Cantürk, C. Karakuş E.; Zeybek, H.; Bozkaya, U.; Soydaş E.; Şahin, E.; Emrullahoğlu, M. A rare γ-pyranopyrazole skeleton: Design, one-pot synthesis and computational study. Org. Biomol. Chem., 2016, 14(31), 7490-7494.
[http://dx.doi.org/10.1039/C6OB01099G] [PMID: 27405663]
[22]
Welsch, S.J.; Umkehrer, M.; Ross, G.; Kolb, J.; Burdack, C.; Wessjohann, L.A. PdII/IV catalyzed oxidative cyclization of 1,6-enynes derived by Ugi-4-component reaction. Tetrahedron Lett., 2011, 52(47), 6295-6297.
[http://dx.doi.org/10.1016/j.tetlet.2011.09.094]
[23]
Modha, S.G.; Kumar, A.; Vachhani, D.D.; Jacobs, J.; Sharma, S.K.; Parmar, V.S.; Van Meervelt, L.; Van der Eycken, E.V. A diversity-oriented approach to spiroindolines: Post-Ugi gold-catalyzed diastereoselective domino cyclization. Angew. Chem. Int. Ed. Engl., 2012, 51(38), 9572-9575.
[http://dx.doi.org/10.1002/anie.201205052] [PMID: 22907654]
[24]
Li, Z.; Song, L.; Meervelt, L.V.; Tian, G.; Eycken, E.V. Cationic gold(I)-catalyzed cascade bicyclizations for divergent synthesis of (spiro)polyheterocycles. ACS Catal., 2018, 8(7), 6388-6393.
[http://dx.doi.org/10.1021/acscatal.8b01789]
[25]
Wu, C-Y.; Murugan, S.P.; Wang, Y-W.; Pan, H-W.; Sun, B-J.; Lin, Y-T.; Fatimah, S.; Chang, A.H.H.; Chen, C.; Lee, G-H. Synthesis of indoline-fused 2,5-diketopiperazine scaffolds via Ugi-4CR in the Basic mediated tandem consecutive cyclization. Adv. Synth. Catal., 2021, 363(21), 4960-4968.
[http://dx.doi.org/10.1002/adsc.202100658]
[26]
Huang, J.; Du, X.; Hecke, K.V.; Eycken, E.V.; Pereshivko, O.P.; Peshkov, V.A. Ugi reaction followed by intramolecular Diels-Alder reaction and elimination of hcl: One-pot approach to arene-fused isoindolinones. Eur. J. Org. Chem., 2017, 2017(30), 4379-4388.
[http://dx.doi.org/10.1002/ejoc.201700747]
[27]
Ambasana, P.A.; Vachhani, D.D.; Galli, M.; Jacobs, J.; Van Meervelt, L.; Shah, A.K.; Van der Eycken, E.V. Solvent switchable cycloaddition: A (one-pot) metal-free approach towards N-substituted benzo[e]- or [f]isoindolones via C(sp(2))-H functionalization. Org. Biomol. Chem., 2014, 12(44), 8861-8865.
[http://dx.doi.org/10.1039/C4OB01644K] [PMID: 25257733]
[28]
Moni, L.; Gers-Panther, C.F.; Anselmo, M.; Müller, T.J.; Riva, R. Highly convergent synthesis of intensively blue emissive furo[2,3-c]isoquinolines by a palladium-catalyzed cyclization cascade of unsaturated Ugi products. Chemistry, 2016, 22(6), 2020-2031.
[http://dx.doi.org/10.1002/chem.201504335] [PMID: 26748452]
[29]
Singh, K.; Malviya, B.K.; Roy, T.K.; Mithu, V.S.; Bhardwaj, V.K.; Verma, V.P.; Chimni, S.S.; Sharma, S. Catalyst-controlled structural divergence: Selective intramolecular 7-endo-dig and 6-exo-dig post-Ugi cyclization for the synthesis of benzoxazepinones and benzoxazinones. J. Org. Chem., 2018, 83(1), 57-68.
[http://dx.doi.org/10.1021/acs.joc.7b02123] [PMID: 29181970]
[30]
Kumar, A.; Li, Z.; Sharma, S.K.; Parmar, V.S.; Van der Eycken, E.V. Switching the regioselectivity via indium(III) and gold(I) catalysis: A post-Ugi intramolecular hydroarylation to azepino- and azocino-[c,d]indolones. Chem. Commun. (Camb.), 2013, 49(60), 6803-6805.
[http://dx.doi.org/10.1039/c3cc42704h] [PMID: 23783807]
[31]
a) Li, Z.; Kumar, A.; Vachhani, D.D.; Sharma, S.K.; Parmar, V.S.; Eycken, E.V. Regioselective synthesis of diversely substituted diazoninones through a post-Ugi gold-catalyzed intramolecular hydroarylation process. Eur. J. Org. Chem., 2014, 2014(10), 2084-2091.
[http://dx.doi.org/10.1002/ejoc.201301507];
b) Kumar, A.; Vachhani, D.D.; Modha, S.G.; Sharma, S.K.; Parmar, V.S.; Eycken, E.V. Post Ugi gold(i)- and platinum(ii)-catalyzed alkyne activation: Synthesis of diversely substituted fused azepinones and pyridinones. Synthesis, 2013, 45(18), 2571-2582.
[http://dx.doi.org/10.1055/s-0033-1339474];
c) Kumar, A.; Li, Z.; Sharma, S.K.; Parmar, V.S.; Van der Eycken, E.V. An expedient route to imidazo[1,4]diazepin-7-ones via a post-Ugi gold-catalyzed heteroannulation. Org. Lett., 2013, 15(8), 1874-1877.
[http://dx.doi.org/10.1021/ol400526a] [PMID: 23544989]
[32]
a) Zhou, X.; Xiao, T.; Iwama, Y.; Qin, Y. Biomimetic total synthesis of (+)-gelsemine. Angew. Chem. Int. Ed. Engl., 2012, 51(20), 4909-4912.
[http://dx.doi.org/10.1002/anie.201201736] [PMID: 22489097];
b) Mont, N.; Mehta, V.P.; Appukkuttan, P.; Beryozkina, T.; Toppet, S.; Van Hecke, K.; Van Meervelt, L.; Voet, A.; DeMaeyer, M.; Van der Eycken, E. Diversity oriented microwave-assisted synthesis of (-)-steganacin aza-analogues. J. Org. Chem., 2008, 73(19), 7509-7516.
[http://dx.doi.org/10.1021/jo801290j] [PMID: 18754579];
c) Vorogushin, A.V.; Predeus, A.V.; Wulff, W.D.; Hansen, H.J. Diels-Alder reaction-aromatization approach toward functionalized ring C allocolchicinoids. Enantioselective total synthesis of (-)-7S-allocolchicine. J. Org. Chem., 2003, 68(15), 5826-5831.
[http://dx.doi.org/10.1021/jo034420t] [PMID: 12868914];
d) Zhang, P.; Russell, M.G.; Jamison, T.F. Continuous flow total synthesis of Rufinamide. Org. Process Res. Dev., 2014, 18(11), 1567-1570.
[http://dx.doi.org/10.1021/op500166n];
e) Wang, R.; Cui, M.; Yang, Q.; Kuang, C. A facile total synthesis of Mubritinib. Synthesis, 2021, 53(5), 978-982.
[http://dx.doi.org/10.1055/a-1351-2370]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy