Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Nanoparticle-Based Inhalation Therapy for Pulmonary Diseases

Author(s): Dhananjay Yadav, Peninah M. Wairagu, Minseok Kwak* and Jun-O Jin*

Volume 23, Issue 11, 2022

Published on: 08 November, 2022

Page: [882 - 896] Pages: 15

DOI: 10.2174/1389200223666220803103039

Price: $65

Abstract

The lung is exposed to various pollutants and is the primary site for the onset of various diseases, including infections, allergies, and cancers. One possible treatment approach for such pulmonary diseases involves direct administration of therapeutics to the lung so as to maintain the topical concentration of the drug. Particles with nanoscale diameters tend to reach the pulmonary region. Nanoparticles (NPs) have garnered significant interest for applications in biomedical and pharmaceutical industries because of their unique physicochemical properties and biological activities. In this article, we describe the biological and pharmacological activities of NPs as well as summarize their potential in the formulation of drugs employed to treat pulmonary diseases. Recent advances in the use of NPs in inhalation chemotherapy for the treatment of lung diseases have also been highlighted.

Keywords: Natural polymer, nanoparticle, respiratory disease, biomedical applications, lung therapy, phagocytosis.

Graphical Abstract
[1]
Ventola, C.L. Progress in nanomedicine: Approved and investigational nanodrugs. P&T, 2017, 42(12), 742-755.
[PMID: 29234213]
[2]
Lu, Y.; Sun, W.; Gu, Z. Stimuli-responsive nanomaterials for therapeutic protein delivery. J. Control. Release, 2014, 194, 1-19.
[http://dx.doi.org/10.1016/j.jconrel.2014.08.015] [PMID: 25151983]
[3]
Navya, P.N.; Daima, H.K. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxi-cological perspectives. Nano Converg., 2016, 3(1), 1-14.
[http://dx.doi.org/10.1186/s40580-016-0064-z] [PMID: 28191411]
[4]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12, 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[5]
Babu, A.; Templeton, A. K.; Munshi, A.; Ramesh, R. Nanoparticlebased drug delivery for therapy of lung cancer: Progress and challenges. J. Nanomater., 2013, 2013
[http://dx.doi.org/10.1155/2013/863951]
[6]
Kumar, M.; Jha, A.; Dr, M.; Mishra, B. Targeted drug nanocrystals for pulmonary delivery: A potential strategy for lung cancer therapy. Expert Opin. Drug Deliv., 2020, 17(10), 1459-1472.
[http://dx.doi.org/10.1080/17425247.2020.1798401] [PMID: 32684002]
[7]
Barua, S.; Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today, 2014, 9(2), 223-243.
[http://dx.doi.org/10.1016/j.nantod.2014.04.008] [PMID: 25132862]
[8]
Janssen, W.J.; Stefanski, A.L.; Bochner, B.S.; Evans, C.M. Control of lung defence by mucins and macrophages: Ancient defence mecha-nisms with modern functions. Eur. Respir. J., 2016, 48(4), 1201-1214.
[http://dx.doi.org/10.1183/13993003.00120-2015] [PMID: 27587549]
[9]
Blank, F.; Fytianos, K.; Seydoux, E.; Rodriguez-Lorenzo, L.; Petri-Fink, A.; von Garnier, C.; Rothen-Rutishauser, B. Interaction of bio-medical nanoparticles with the pulmonary immune system. J. Nanobiotechnology, 2017, 15(1), 6.
[http://dx.doi.org/10.1186/s12951-016-0242-5] [PMID: 28069025]
[10]
Chaurasiya, B.; Zhao, Y-Y. Dry Powder for pulmonary delivery: A comprehensive review. Pharmaceutics, 2020, 13(1), 31.
[http://dx.doi.org/10.3390/pharmaceutics13010031] [PMID: 33379136]
[11]
Brillault, J.; Tewes, F. Control of the lung residence time of highly permeable molecules after nebulization: Example of the fluoroquin-olones. Pharmaceutics, 2020, 12(4), 387.
[http://dx.doi.org/10.3390/pharmaceutics12040387] [PMID: 32340298]
[12]
Herman, T.F.; Santos, C. StatPearls; StatPearls Publishing: Treasure Island, FL, 2021.
[13]
Anderson, C.F.; Grimmett, M.E.; Domalewski, C.J.; Cui, H. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2020, 12(1), e1586.
[http://dx.doi.org/10.1002/wnan.1586] [PMID: 31602823]
[14]
Bennett, W.D.; Henderson, A.G.; Ceppe, A.; Zeman, K.L.; Wu, J.; Gladman, C.; Fuller, F.; Gazda, S.; Button, B.; Boucher, R.C.; Don-aldson, S.H. Effect of hypertonic saline on mucociliary clearance and clinical outcomes in chronic bronchitis. ERJ Open Res., 2020, 6(3), 00269-02020.
[http://dx.doi.org/10.1183/23120541.00269-2020] [PMID: 32802823]
[15]
Bustamante-Marin, X.M.; Ostrowski, L.E. Cilia and mucociliary clearance. Cold Spring Harb. Perspect. Biol., 2017, 9(4), a028241.
[http://dx.doi.org/10.1101/cshperspect.a028241] [PMID: 27864314]
[16]
Labiris, N.R.; Dolovich, M.B. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol., 2003, 56(6), 588-599.
[http://dx.doi.org/10.1046/j.1365-2125.2003.01892.x] [PMID: 14616418]
[17]
Kong, X.; Hellermann, G.R.; Zhang, W.; Jena, P.; Kumar, M.; Behera, A.; Behera, S.; Lockey, R.; Mohapatra, S.S. Chitosan interferon-gamma nanogene therapy for lung disease: Modulation of T-cell and dendritic cell immune responses. Allergy Asthma Clin. Immunol., 2008, 4(3), 95-105.
[http://dx.doi.org/10.1186/1710-1492-4-3-95] [PMID: 20525130]
[18]
Kumar, M.; Kong, X.; Behera, A.K.; Hellermann, G.R.; Lockey, R.F.; Mohapatra, S.S. Chitosan IFN-gamma-pDNA Nanoparticle (CIN) therapy for allergic asthma. Genet. Vaccines Ther., 2003, 1(1), 3-3.
[http://dx.doi.org/10.1186/1479-0556-1-3] [PMID: 14613519]
[19]
Lenders, V.; Koutsoumpou, X.; Sargsian, A.; Manshian, B.B. Biomedical nanomaterials for immunological applications: Ongoing research and clinical trials. Nanoscale Adv., 2020, 2, 5046-5089.
[http://dx.doi.org/10.1039/D0NA00478B]
[20]
Zhong, W.; Zhang, X.; Zeng, Y.; Lin, D.; Wu, J. Recent applications and strategies in nanotechnology for lung diseases. Nano Res., 2021, 14(7), 2067-2089.
[http://dx.doi.org/10.1007/s12274-020-3180-3] [PMID: 33456721]
[21]
Bundgaard, H.; von Oettingen, G.; Larsen, K.M.; Landsfeldt, U.; Jensen, K.A.; Nielsen, E.; Cold, G.E. Effects of sevoflurane on intracra-nial pressure, cerebral blood flow and cerebral metabolism. A dose-response study in patients subjected to craniotomy for cerebral tu-mours. Acta Anaesthesiol. Scand., 1998, 42(6), 621-627.
[http://dx.doi.org/10.1111/j.1399-6576.1998.tb05292.x] [PMID: 9689265]
[22]
Al-Humadi, H.W.; Al-Saigh, R.J.; Al-Humadi, A.W. Addressing the challenges of tuberculosis: A brief historical account. Front. Pharmacol., 2017, 8, 689.
[http://dx.doi.org/10.3389/fphar.2017.00689] [PMID: 29033842]
[23]
Seung, K.J.; Keshavjee, S.; Rich, M.L. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb. Perspect. Med., 2015, 5(9), a017863-a017863.
[http://dx.doi.org/10.1101/cshperspect.a017863] [PMID: 25918181]
[24]
Shehzad, A.; Rehman, G.; Ul-Islam, M.; Khattak, W.A.; Lee, Y.S. Challenges in the development of drugs for the treatment of tuberculo-sis. Braz. J. Infect. Dis., 2013, 17(1), 74-81.
[http://dx.doi.org/10.1016/j.bjid.2012.10.009] [PMID: 23287547]
[25]
Nasiruddin, M.; Neyaz, M.K.; Das, S. Nanotechnology-based approach in tuberculosis treatment. Tuberc. Res. Treat., 2017, 2017, 4920209.
[http://dx.doi.org/10.1155/2017/4920209] [PMID: 28210505]
[26]
Tafaghodi, M.; Khademi, F. Polymer-based nanoparticles as delivery systems for treatment and vaccination of tuberculosis. In: Kesharwani, P., Ed.; Nanotechnology Based Approaches for Tuberculosis Treatment; Academic Press: Cambridge, Masschusetts, 2020, pp. 123-142.
[27]
Baranyai, Z.; Soria-Carrera, H.; Alleva, M.; Millán-Placer, A.C.; Lucía, A.; Martín-Rapún, R.; Aínsa, J.A.; de la Fuente, J.M. Nanotechnolo-gy-based targeted drug delivery: An emerging tool to overcome tuberculosis. Adv. Ther. (Weinh.), 2021, 4, 2000113.
[http://dx.doi.org/10.1002/adtp.202000113]
[28]
Pandey, R.; Sharma, A.; Zahoor, A.; Sharma, S.; Khuller, G.K.; Prasad, B. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J. Antimicrob. Chemother., 2003, 52(6), 981-986.
[http://dx.doi.org/10.1093/jac/dkg477] [PMID: 14613962]
[29]
Hussain, A.; Singh, S.; Das, S.S.; Anjireddy, K.; Karpagam, S.; Shakeel, F. Nanomedicines as drug delivery carriers of anti-tubercular drugs: From pathogenesis to infection control. Curr. Drug Deliv., 2019, 16(5), 400-429.
[http://dx.doi.org/10.2174/1567201816666190201144815] [PMID: 30714523]
[30]
Clemens, D.L.; Lee, B-Y.; Xue, M.; Thomas, C.R.; Meng, H.; Ferris, D. Nel, A.E.; Zink, J.I.; Horwitz, M.A. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob. Agents Chemother., 2012, 56, 2535-2545.
[http://dx.doi.org/10.1128/AAC.06049-11] [PMID: 22354311]
[31]
Costa-Gouveia, J.; Pancani, E.; Jouny, S.; Machelart, A.; Delorme, V.; Salzano, G.; Iantomasi, R.; Piveteau, C.; Queval, C.J.; Song, O-R.; Flipo, M.; Deprez, B.; Saint-André, J-P.; Hureaux, J.; Majlessi, L.; Willand, N.; Baulard, A.; Brodin, P.; Gref, R. Combination therapy for tuberculosis treatment: Pulmonary administration of ethionamide and booster co-loaded nanoparticles. Sci. Rep., 2017, 7(1), 5390.
[http://dx.doi.org/10.1038/s41598-017-05453-3] [PMID: 28710351]
[32]
Pandey, R.; Sharma, S.; Khuller, G.K. Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis (Edinb.), 2005, 85(5-6), 415-420.
[http://dx.doi.org/10.1016/j.tube.2005.08.009] [PMID: 16256437]
[33]
du Toit, L.C.; Pillay, V.; Danckwerts, M.P. Tuberculosis chemotherapy: Current drug delivery approaches. Respir. Res., 2006, 7, 118.
[http://dx.doi.org/10.1186/1465-9921-7-118] [PMID: 16984627]
[34]
Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front. Mol. Biosci., 2020, 7, 587997-587997.
[http://dx.doi.org/10.3389/fmolb.2020.587997] [PMID: 33195435]
[35]
Gordillo-Galeano, A.; Mora-Huertas, C.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm., 2018, 133, 285-308.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.017] [PMID: 30463794]
[36]
Ahmad, Z.; Sharma, S.; Khuller, G.K. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int. J. Antimicrob. Agents, 2005, 26(4), 298-303.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.07.012] [PMID: 16154726]
[37]
Nagpal, P.S.; Kesarwani, A.; Sahu, P.; Upadhyay, P. Aerosol immunization by alginate coated mycobacterium (BCG/MIP) particles provide enhanced immune response and protective efficacy than aerosol of plain mycobacterium against M.tb. H37Rv infection in mice. BMC Infect. Dis., 2019, 19(1), 568.
[http://dx.doi.org/10.1186/s12879-019-4157-2] [PMID: 31262260]
[38]
Tan, Z.M.; Lai, G.P.; Pandey, M.; Srichana, T.; Pichika, M.R.; Gorain, B.; Bhattamishra, S.K.; Choudhury, H. Novel approaches for the treatment of pulmonary tuberculosis. Pharmaceutics, 2020, 12(12), 12.
[http://dx.doi.org/10.3390/pharmaceutics12121196] [PMID: 33321797]
[39]
Sharma, A.K.; Khuller, G.K. DNA vaccines: Future strategies and relevance to intracellular pathogens. Immunol. Cell Biol., 2001, 79(6), 537-546.
[http://dx.doi.org/10.1046/j.1440-1711.2001.01044.x] [PMID: 11903613]
[40]
Delong, R.K.; Reynolds, C.M.; Malcolm, Y.; Schaeffer, A.; Severs, T.; Wanekaya, A. Functionalized gold nanoparticles for the binding, stabilization, and delivery of therapeutic DNA, RNA, and other biological macromolecules. Nanotechnol. Sci. Appl., 2010, 3, 53-63.
[http://dx.doi.org/10.2147/NSA.S8984] [PMID: 24198471]
[41]
Park, S.Y.; Lee, J.S.; Georganopoulou, D.; Mirkin, C.A.; Schatz, G.C. Structures of DNA-linked nanoparticle aggregates. J. Phys. Chem. B, 2006, 110(25), 12673-12681.
[http://dx.doi.org/10.1021/jp062212+] [PMID: 16800601]
[42]
Elbakry, A.; Zaky, A.; Liebl, R.; Rachel, R.; Goepferich, A.; Breunig, M. Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett., 2009, 9(5), 2059-2064.
[http://dx.doi.org/10.1021/nl9003865] [PMID: 19331425]
[43]
Chen, J.S.; Chen, J.; Bhattacharjee, S.; Cao, Z.; Wang, H.; Swanson, S.D.; Zong, H.; Baker, J.R., Jr; Wang, S.H. Functionalized nanoparticles with targeted antibody to enhance imaging of breast cancer in vivo. J. Nanobiotechnology, 2020, 18(1), 135.
[http://dx.doi.org/10.1186/s12951-020-00695-2] [PMID: 32948179]
[44]
Thiruppathi, R.; Mishra, S.; Ganapathy, M.; Padmanabhan, P.; Gulyás, B. Nanoparticle functionalization and its potentials for molecular imaging. Adv. Sci. (Weinh.), 2016, 4(3), 1600279-1600279.
[http://dx.doi.org/10.1002/advs.201600279] [PMID: 28331783]
[45]
Hitzman, C.J.; Elmquist, W.F.; Wiedmann, T.S. Development of a respirable, sustained release microcarrier for 5-fluorouracil II: In vitro and in vivo optimization of lipid coated nanoparticles. J. Pharm. Sci., 2006, 95(5), 1127-1143.
[http://dx.doi.org/10.1002/jps.20590] [PMID: 16570303]
[46]
Hitzman, C.J.; Elmquist, W.F.; Wattenberg, L.W.; Wiedmann, T.S. Development of a respirable, sustained release microcarrier for 5-fluorouracil I: in vitro assessment of liposomes, microspheres, and lipid coated nanoparticles. J. Pharm. Sci., 2006, 95(5), 1114-1126.
[http://dx.doi.org/10.1002/jps.20591] [PMID: 16570302]
[47]
Situ, J-Q.; Wang, X-J.; Zhu, X-L.; Xu, X-L.; Kang, X-Q.; Hu, J-B.; Lu, C-Y.; Ying, X-Y.; Yu, R-S.; You, J.; Du, Y.Z. Multifunctional SPIO/DOX-loaded A54 homing peptide functionalized dextran-g-PLGA micelles for tumor therapy and MR imaging. Sci. Rep., 2016, 6, 35910.
[http://dx.doi.org/10.1038/srep35910] [PMID: 27775017]
[48]
Milosevic, M.; Stojanovic, D.B.; Simic, V.; Grkovic, M.; Bjelovic, M.; Uskokovic, P.S.; Kojic, M. Preparation and modeling of three-layered PCL/PLGA/PCL fibrous scaffolds for prolonged drug release. Sci. Rep., 2020, 10(1), 11126-11126.
[http://dx.doi.org/10.1038/s41598-020-68117-9] [PMID: 32636450]
[49]
Makadia, H.K.; Siegel, S.J. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel), 2011, 3(3), 1377-1397.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[50]
Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials (Basel), 2020, 10(7), 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[51]
Jokerst, J.V.; Lobovkina, T.; Zare, R.N.; Gambhir, S.S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond.), 2011, 6(4), 715-728.
[http://dx.doi.org/10.2217/nnm.11.19] [PMID: 21718180]
[52]
Pourtalebi Jahromi, L.; Ghazali, M.; Ashrafi, H.; Azadi, A. A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles. Heliyon, 2020, 6(2), e03451.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03451] [PMID: 32140583]
[53]
Lucas, A.; Yasa, J.; Lucas, M. Regeneration and repair in the healing lung. Clin. Transl. Immunology, 2020, 9(7), e1152-e1152.
[http://dx.doi.org/10.1002/cti2.1152] [PMID: 32665845]
[54]
Lizal, F.; Elcner, J.; Jedelsky, J.; Maly, M.; Jicha, M.; Farkas, Á.; Belka, M.; Rehak, Z.; Adam, J.; Brinek, A.; Laznovsky, J.; Zikmund, T.; Kaiser, J. The effect of oral and nasal breathing on the deposition of inhaled particles in upper and tracheobronchial airways. J. Aerosol Sci., 2020, 150, 105649-105649.
[http://dx.doi.org/10.1016/j.jaerosci.2020.105649] [PMID: 32904428]
[55]
Hickey, A.J. Emerging trends in inhaled drug delivery. Adv. Drug Deliv. Rev., 2020, 157, 63-70.
[http://dx.doi.org/10.1016/j.addr.2020.07.006] [PMID: 32663488]
[56]
Jin, X.; Song, L.; Ma, C-C.; Zhang, Y-C.; Yu, S. Pulmonary route of administration is instrumental in developing therapeutic interven-tions against respiratory diseases. Saudi Pharm. J., 2020, 28(12), 1655-1665.
[http://dx.doi.org/10.1016/j.jsps.2020.10.012] [PMID: 33424258]
[57]
Yang, W.; Peters, J.I.; Williams, R.O. III Inhaled nanoparticles--a current review. Int. J. Pharm., 2008, 356(1-2), 239-247.
[http://dx.doi.org/10.1016/j.ijpharm.2008.02.011] [PMID: 18358652]
[58]
Braakhuis, H.M.; Gosens, I.; Krystek, P.; Boere, J.A.; Cassee, F.R.; Fokkens, P.H.; Post, J.A.; van Loveren, H.; Park, M.V. Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Part. Fibre Toxicol., 2014, 11, 49.
[http://dx.doi.org/10.1186/s12989-014-0049-1] [PMID: 25227272]
[59]
Gonda, A.; Zhao, N.; Shah, J.V.; Calvelli, H.R.; Kantamneni, H.; Francis, N.L.; Ganapathy, V. Engineering tumor-targeting nanoparticles as vehicles for precision nanomedicine. Med One, 2019, 4, 4.
[PMID: 31592196]
[60]
He, S.; Gui, J.; Xiong, K.; Chen, M.; Gao, H.; Fu, Y. A roadmap to pulmonary delivery strategies for the treatment of infectious lung dis-eases. J. Nanobiotechnology, 2022, 20(1), 101.
[http://dx.doi.org/10.1186/s12951-022-01307-x] [PMID: 35241085]
[61]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[62]
Hariyadi, D.M.; Islam, N. Current status of alginate in drug delivery. Adv. Pharmacol. Pharm. Sci., 2020, 2020, 8886095-8886095.
[http://dx.doi.org/10.1155/2020/8886095] [PMID: 32832902]
[63]
Sabuj, M.Z.R.; Islam, N. Inhaled antibiotics-loaded polymeric nanoparticles for the management of lower respiratory tract infections. Nanoscale Adv., 2021, 3, 4005-4018.
[64]
Mosafer, J.; Sabbaghi, A-H.; Badiee, A.; Dehghan, S.; Tafaghodi, M. Preparation, characterization and in vivo evaluation of alginate-coated chitosan and trimethylchitosan nanoparticles loaded with PR8 influenza virus for nasal immunization. Asian J. Pharm. Sci., 2019, 14, 216-221.
[65]
Boroumand, H.; Badie, F.; Mazaheri, S.; Seyedi, Z.S.; Nahand, J.S.; Nejati, M.; Baghi, H.B.; Abbasi-Kolli, M.; Badehnoosh, B.; Ghandali, M.; Hamblin, M.R.; Mirzaei, H. Chitosan-based nanoparticles against viral infections. Front. Cell. Infect. Microbiol., 2021, 11, 643953.
[http://dx.doi.org/10.3389/fcimb.2021.643953] [PMID: 33816349]
[66]
van Gent, M.E.; Ali, M.; Nibbering, P.H.; Kłodzińska, S.N. Current advances in lipid and polymeric antimicrobial peptide delivery systems and coatings for the prevention and treatment of bacterial infections. Pharmaceutics, 2021, 13(11), 1840.
[http://dx.doi.org/10.3390/pharmaceutics13111840] [PMID: 34834254]
[67]
Velino, C.; Carella, F.; Adamiano, A.; Sanguinetti, M.; Vitali, A.; Catalucci, D.; Bugli, F.; Iafisco, M. Nanomedicine approaches for the pulmonary treatment of cystic fibrosis. Front. Bioeng. Biotechnol., 2019, 7, 406.
[http://dx.doi.org/10.3389/fbioe.2019.00406] [PMID: 31921811]
[68]
López-López, M.; Fernández-Delgado, A.; Moyá, M.L.; Blanco-Arévalo, D.; Carrera, C.; de la Haba, R.R.; Ventosa, A.; Bernal, E.; López-Cornejo, P. Optimized preparation of levofloxacin loaded polymeric nanoparticles. Pharmaceutics, 2019, 11(2), 57.
[http://dx.doi.org/10.3390/pharmaceutics11020057] [PMID: 30704034]
[69]
Gaspar, M.C.; Sousa, J.J.; Pais, A.A.; Cardoso, O.; Murtinho, D.; Serra, M.E.; Tewes, F.; Olivier, J.C. Optimization of levofloxacin-loaded crosslinked chitosan microspheres for inhaled aerosol therapy. Eur. J. Pharm. Biopharm., 2015, 96, 65-75.
[http://dx.doi.org/10.1016/j.ejpb.2015.07.010] [PMID: 26192459]
[70]
Putro, J.N.; Lunardi, V.B.; Soetaredjo, F.E.; Yuliana, M.; Santoso, S.P.; Wenten, I.G.; Ismadji, S. A review of gum hydrocolloid polyelec-trolyte complexes (PEC) for biomedical applications: Their properties and drug delivery studies. Processes (Basel), 2021, 9, 1796.
[http://dx.doi.org/10.3390/pr9101796]
[71]
Dadou, S.M.; Antonijevic, M.D.; Chowdhry, B.Z.; Badwan, A.A. An Overview of Chitosan-Xanthan Gum Matrices as Controlled Release Drug Carriers; IntechOpen: London, 2018.
[http://dx.doi.org/10.5772/intechopen.76038]
[72]
Barbosa, A.I.; Costa Lima, S.A.; Reis, S. Application of pH-responsive fucoidan/chitosan nanoparticles to improve oral quercetin delivery. Molecules, 2019, 24(2), 346.
[http://dx.doi.org/10.3390/molecules24020346] [PMID: 30669398]
[73]
Potaś, J.; Szymańska, E.; Winnicka, K. Challenges in developing of chitosan-Based polyelectrolyte complexes as a platform for mucosal and skin drug delivery. Eur. Polym. J., 2020, 140, 110020.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110020]
[74]
Castro, K.C.d.; Costa, J.M.; Campos, M.G.N. Drug-loaded polymeric nanoparticles: A review. Int. J. Polym. Mater. Polym. Biomater., 2022, 71, 1-13.
[http://dx.doi.org/10.1080/00914037.2020.1798436]
[75]
Ahmad, A.; Mubharak, N.; Naseem, K.; Tabassum, H.; Rizwan, M.; Najda, A.; Kashif, M.; Bin-Jumah, M.; Hussain, A.; Shaheen, A. Re-cent advancement and development of chitin and chitosan-based nanocomposite for drug delivery: Critical approach to clinical research. Arab. J. Chem., 2020, 13, 8935-8964.
[http://dx.doi.org/10.1016/j.arabjc.2020.10.019]
[76]
Pramanik, S.; Mohanto, S.; Manne, R.; Rajendran, R.R.; Deepak, A.; Edapully, S.J.; Patil, T.; Katari, O. Nanoparticle-based drug delivery system: The magic bullet for the treatment of chronic pulmonary diseases. Mol. Pharm., 2021, 18(10), 3671-3718.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00491] [PMID: 34491754]
[77]
Hakkimane, S.S.; Shenoy, V.P.; Gaonkar, S.L.; Bairy, I.; Guru, B.R. Antimycobacterial susceptibility evaluation of rifampicin and isonia-zid benz-hydrazone in biodegradable polymeric nanoparticles against Mycobacterium tuberculosis H37Rv strain. Int. J. Nanomedicine, 2018, 13, 4303-4318.
[http://dx.doi.org/10.2147/IJN.S163925] [PMID: 30087562]
[78]
Tough, I.R.; Moodaley, R.; Cox, H.M. Mucosal glucagon-like peptide 1 (GLP-1) responses are mediated by calcitonin gene-related peptide (CGRP) in the mouse colon and both peptide responses are area-specific. Neurogastroenterol. Motil., 2018, 30(1), 30.
[http://dx.doi.org/10.1111/nmo.13149] [PMID: 28695626]
[79]
Cao, Y.; Rewatkar, P.; Wang, R.; Hasnain, S.Z.; Popat, A.; Kumeria, T. Nanocarriers for oral delivery of biologics: Small carriers for big payloads. Trends Pharmacol. Sci., 2021, 42(11), 957-972.
[http://dx.doi.org/10.1016/j.tips.2021.08.005] [PMID: 34593258]
[80]
Thomas, C.; Rawat, A.; Hope-Weeks, L.; Ahsan, F. Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Mol. Pharm., 2011, 8(2), 405-415.
[http://dx.doi.org/10.1021/mp100255c] [PMID: 21189035]
[81]
Pippa, N.; Gazouli, M.; Pispas, S. Recent advances and future perspectives in polymer-based nanovaccines. Vaccines (Basel), 2021, 9(6), 558.
[http://dx.doi.org/10.3390/vaccines9060558] [PMID: 34073648]
[82]
Shen, C.; Li, J.; Zhang, Y.; Li, Y.; Shen, G.; Zhu, J.; Tao, J. Polyethylenimine-based micro/nanoparticles as vaccine adjuvants. Int. J. Nanomedicine, 2017, 12, 5443-5460.
[http://dx.doi.org/10.2147/IJN.S137980] [PMID: 28814862]
[83]
Matta, J.; Maalouf, R. Delivery of siRNA therapeutics: PLGA nanoparticles approach. Front. Biosci. (Schol. Ed.), 2019, 11(1), 56-74.
[http://dx.doi.org/10.2741/s526] [PMID: 30844736]
[84]
Eusébio, D.; Neves, A.R.; Costa, D.; Biswas, S.; Alves, G.; Cui, Z.; Sousa, Â. Methods to improve the immunogenicity of plasmid DNA vaccines. Drug Discov. Today, 2021, 26(11), 2575-2592.
[http://dx.doi.org/10.1016/j.drudis.2021.06.008] [PMID: 34214667]
[85]
Neerooa, B.N.H.M.; Ooi, L-T.; Shameli, K.; Dahlan, N.A.; Islam, J.M.M.; Pushpamalar, J.; Teow, S-Y. Development of polymer-assisted nanoparticles and nanogels for cancer therapy: An update. Gels, 2021, 7(2), 60.
[http://dx.doi.org/10.3390/gels7020060] [PMID: 34067587]
[86]
Dragojevic, S.; Ryu, J.S.; Raucher, D. Polymer-based prodrugs: Improving tumor targeting and the solubility of small molecule drugs in cancer therapy. Molecules, 2015, 20(12), 21750-21769.
[http://dx.doi.org/10.3390/molecules201219804] [PMID: 26690101]
[87]
Williford, J-M.; Archang, M.M.; Minn, I.; Ren, Y.; Wo, M.; Vandermark, J.; Fisher, P.B.; Pomper, M.G.; Mao, H-Q. Critical length of PEG grafts on lPEI/DNA nanoparticles for efficient in vivo delivery. ACS Biomater. Sci. Eng., 2016, 2(4), 567-578.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00551] [PMID: 27088129]
[88]
Jafari, A.; Yan, L.; Mohamed, M.A.; Wu, Y.; Cheng, C. Well-defined diblock poly(ethylene glycol)-b-poly(ε-caprolactone)-based poly-mer-drug conjugate micelles for pH-responsive delivery of doxorubicin. Materials (Basel), 2020, 13(7), 1510.
[http://dx.doi.org/10.3390/ma13071510] [PMID: 32224890]
[89]
Hashemian, M.; Ghasemi-Kasman, M.; Ghasemi, S.; Akbari, A.; Moalem-Banhangi, M.; Zare, L.; Ahmadian, S.R. Fabrication and evalua-tion of novel quercetin-conjugated Fe3O4-β-cyclodextrin nanoparticles for potential use in epilepsy disorder. Int. J. Nanomedicine, 2019, 14, 6481-6495.
[http://dx.doi.org/10.2147/IJN.S218317] [PMID: 31496698]
[90]
Parhi, B.; Bharatiya, D.; Swain, S.K. Application of quercetin flavonoid based hybrid nanocomposites: A review. Saudi Pharm. J., 2020, 28(12), 1719-1732.
[http://dx.doi.org/10.1016/j.jsps.2020.10.017] [PMID: 33424263]
[91]
Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M.; Kılıç, C.S.; Sytar, O.; Sharifi-Rad, M.; Sharopov, F.; Martins, N.; Martorell, M.; Cho, W.C. Therapeutic potential of quercetin: new insights and perspectives for human health. ACS Omega, 2020, 5(20), 11849-11872.
[http://dx.doi.org/10.1021/acsomega.0c01818] [PMID: 32478277]
[92]
Verma, N.K.; Crosbie-Staunton, K.; Satti, A.; Gallagher, S.; Ryan, K.B.; Doody, T.; McAtamney, C.; MacLoughlin, R.; Galvin, P.; Burke, C.S.; Volkov, Y.; Gun’ko, Y.K. Magnetic core-shell nanoparticles for drug delivery by nebulization. J. Nanobiotechnology, 2013, 11, 1.
[http://dx.doi.org/10.1186/1477-3155-11-1] [PMID: 23343139]
[93]
Puri, A.; Loomis, K.; Smith, B.; Lee, J-H.; Yavlovich, A.; Heldman, E.; Blumenthal, R. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst., 2009, 26(6), 523-580.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10] [PMID: 20402623]
[94]
Attama, A.A.; Momoh, M.A.; Builders, P.F. Lipid nanoparticulate drug delivery systems: A revolution in dosage form design and development. In: Sezer, A.D.; Ed. Recent Advances in Novel Drug Carrier Systems, IntechOpen: London, 2012, pp. 107-140.
[95]
Salvi, V.R.; Pawar, P. Nanostructured Lipid Carriers (NLC) system: A novel drug targeting carrier. J. Drug Deliv. Sci. Technol., 2019, 51, 255-267.
[http://dx.doi.org/10.1016/j.jddst.2019.02.017]
[96]
McCarthy, S.D.; González, H.E.; Higgins, B.D. Future trends in nebulized therapies for pulmonary disease. J. Pers. Med., 2020, 10(2), 37.
[http://dx.doi.org/10.3390/jpm10020037] [PMID: 32397615]
[97]
Li, S.; Wang, L.; Li, N.; Liu, Y.; Su, H. Combination lung cancer chemotherapy: Design of a pH-sensitive transferrin-PEG-Hz-lipid conju-gate for the co-delivery of docetaxel and baicalin. Biomed. Pharmacother., 2017, 95, 548-555.
[http://dx.doi.org/10.1016/j.biopha.2017.08.090] [PMID: 28869892]
[98]
Jyoti, K.; Kaur, K.; Pandey, R.S.; Jain, U.K.; Chandra, R.; Madan, J. Inhalable nanostructured lipid particles of 9-bromo-noscapine, a tubu-lin-binding cytotoxic agent: in vitro and in vivo studies. J. Colloid Interface Sci., 2015, 445, 219-230.
[http://dx.doi.org/10.1016/j.jcis.2014.12.092] [PMID: 25622047]
[99]
Sun, L.; Wan, K.; Hu, X.; Zhang, Y.; Yan, Z.; Feng, J.; Zhang, J. Functional nanoemulsion-hybrid lipid nanocarriers enhance the bioavail-ability and anti-cancer activity of lipophilic diferuloylmethane. Nanotechnology, 2016, 27(8), 085102.
[http://dx.doi.org/10.1088/0957-4484/27/8/085102] [PMID: 26808001]
[100]
Wan, K.; Sun, L.; Hu, X.; Yan, Z.; Zhang, Y.; Zhang, X.; Zhang, J. Novel nanoemulsion based lipid nanosystems for favorable in vitro and in vivo characteristics of curcumin. Int. J. Pharm., 2016, 504(1-2), 80-88.
[http://dx.doi.org/10.1016/j.ijpharm.2016.03.055] [PMID: 27034002]
[101]
Asmawi, A.A.; Salim, N.; Ngan, C.L.; Ahmad, H.; Abdulmalek, E.; Masarudin, M.J.; Abdul Rahman, M.B. Excipient selection and aerody-namic characterization of nebulized lipid-based nanoemulsion loaded with docetaxel for lung cancer treatment. Drug Deliv. Transl. Res., 2019, 9(2), 543-554.
[http://dx.doi.org/10.1007/s13346-018-0526-4] [PMID: 29691812]
[102]
Lu, B.; Sun, L.; Yan, X.; Ai, Z.; Xu, J. Intratumoral chemotherapy with paclitaxel liposome combined with systemic chemotherapy: A new method of neoadjuvant chemotherapy for stage III unresectable non-small cell lung cancer. Med. Oncol., 2015, 32(1), 345.
[http://dx.doi.org/10.1007/s12032-014-0345-5] [PMID: 25429832]
[103]
d’Angelo, I.; Costabile, G.; Durantie, E.; Brocca, P.; Rondelli, V.; Russo, A.; Russo, G.; Miro, A.; Quaglia, F.; Petri-Fink, A.; Rothen-Rutishauser, B.; Ungaro, F. Hybrid lipid/polymer nanoparticles for pulmonary delivery of siRNA: Development and fate upon in vitro deposition on the human epithelial airway barrier. J. Aerosol Med. Pulm. Drug Deliv., 2018, 31(3), 170-181.
[http://dx.doi.org/10.1089/jamp.2017.1364] [PMID: 29035132]
[104]
Chimote, G.; Banerjee, R. In vitro evaluation of inhalable isoniazid-loaded surfactant liposomes as an adjunct therapy in pulmonary tuber-culosis. J. Biomed. Mater. Res. B Appl. Biomater., 2010, 94(1), 1-10.
[http://dx.doi.org/10.1002/jbm.b.31608] [PMID: 20524179]
[105]
Acosta, M.F.; Abrahamson, M.D.; Encinas-Basurto, D.; Fineman, J.R.; Black, S.M.; Mansour, H.M. Inhalable nanoparticles/microparticles of an AMPK and Nrf2 activator for targeted pulmonary drug delivery as dry powder inhalers. AAPS J., 2020, 23(1), 2-2.
[http://dx.doi.org/10.1208/s12248-020-00531-3] [PMID: 33200330]
[106]
Dos Santos Ramos, M.A.; Dos Santos, K.C.; da Silva, P.B.; de Toledo, L.G.; Marena, G.D.; Rodero, C.F.; de Camargo, B.A.F.; Fortunato, G.C.; Bauab, T.M.; Chorilli, M. Nanotechnological strategies for systemic microbial infections treatment: A review. Int. J. Pharm., 2020, 589, 119780-119780.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119780] [PMID: 32860856]
[107]
Qiu, M.; Tang, Y.; Chen, J.; Muriph, R.; Ye, Z.; Huang, C.; Evans, J.; Henske, E.P.; Xu, Q. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc. Natl. Acad. Sci. USA, 2022, 119(8), e2116271119.
[http://dx.doi.org/10.1073/pnas.2116271119] [PMID: 35173043]
[108]
Almeida, B.; Nag, O.K.; Rogers, K.E.; Delehanty, J.B. Recent progress in bioconjugation strategies for liposome-mediated drug delivery. Molecules, 2020, 25(23), 5672.
[http://dx.doi.org/10.3390/molecules25235672] [PMID: 33271886]
[109]
Rahnfeld, L.; Luciani, P. Injectable lipid-based depot formulations: Where do we stand? Pharmaceutics, 2020, 12(6), 567.
[http://dx.doi.org/10.3390/pharmaceutics12060567] [PMID: 32575406]
[110]
Hoffmann, M.; Hersch, N.; Gerlach, S.; Dreissen, G.; Springer, R.; Merkel, R.; Csiszár, A.; Hoffmann, B. Complex size and surface charge determine nucleic acid transfer by fusogenic liposomes. Int. J. Mol. Sci., 2020, 21(6), 2244.
[http://dx.doi.org/10.3390/ijms21062244] [PMID: 32213928]
[111]
Cipolla, D.; Gonda, I.; Chan, H-K. Liposomal formulations for inhalation. Ther. Deliv., 2013, 4(8), 1047-1072.
[http://dx.doi.org/10.4155/tde.13.71] [PMID: 23919478]
[112]
Garg, T.; Goyal, K.; Liposomes, A. Targeted and controlled delivery system. Drug Deliv. Lett., 2014, 4, 62-71.
[http://dx.doi.org/10.2174/22103031113036660015]
[113]
Gerde, P.; Nowenwik, M.; Sjöberg, C-O.; Selg, E. Adapting the aerogen mesh nebulizer for dried aerosol exposures using the precisein-hale platform. J. Aerosol Med. Pulm. Drug Deliv., 2020, 33(2), 116-126.
[http://dx.doi.org/10.1089/jamp.2019.1554] [PMID: 31613690]
[114]
Passi, M.; Shahid, S.; Chockalingam, S.; Sundar, I.K.; Packirisamy, G. Conventional and nanotechnology based approaches to combat chronic obstructive pulmonary disease: Implications for chronic airway diseases. Int. J. Nanomedicine, 2020, 15, 3803-3826.
[http://dx.doi.org/10.2147/IJN.S242516] [PMID: 32547029]
[115]
Witika, B.A.; Makoni, P.A.; Matafwali, S.K.; Chabalenge, B.; Mwila, C.; Kalungia, A.C.; Nkanga, C.I.; Bapolisi, A.M.; Walker, R.B. Bio-compatibility of biomaterials for nanoencapsulation: Current approaches. Nanomaterials (Basel), 2020, 10(9), 1649.
[http://dx.doi.org/10.3390/nano10091649] [PMID: 32842562]
[116]
Liu, C.; Zhang, L.; Zhu, W.; Guo, R.; Sun, H.; Chen, X.; Deng, N. Barriers and strategies of cationic liposomes for cancer gene therapy. Mol. Ther. Methods Clin. Dev., 2020, 18, 751-764.
[http://dx.doi.org/10.1016/j.omtm.2020.07.015] [PMID: 32913882]
[117]
Clancy, J.P.; Dupont, L.; Konstan, M.W.; Billings, J.; Fustik, S.; Goss, C.H.; Lymp, J.; Minic, P.; Quittner, A.L.; Rubenstein, R.C.; Young, K.R.; Saiman, L.; Burns, J.L.; Govan, J.R.W.; Ramsey, B.; Gupta, R. Phase II studies of nebulised Arikace in CF patients with Pseudomo-nas aeruginosa infection. Thorax, 2013, 68(9), 818-825.
[http://dx.doi.org/10.1136/thoraxjnl-2012-202230] [PMID: 23749840]
[118]
Lin, C.; Wong, B.C.K.; Chen, H.; Bian, Z.; Zhang, G.; Zhang, X.; Kashif Riaz, M.; Tyagi, D.; Lin, G.; Zhang, Y.; Wang, J.; Lu, A.; Yang, Z. Pulmonary delivery of triptolide-loaded liposomes decorated with anti-carbonic anhydrase IX antibody for lung cancer therapy. Sci. Rep., 2017, 7(1), 1097-1097.
[http://dx.doi.org/10.1038/s41598-017-00957-4] [PMID: 28428618]
[119]
Maurya, P.; Singh, S.; Saraf, S.A. Inhalable hybrid nanocarriers for respiratory disorders. In: Dua, K.; Hansbro, P.M.; Wadhwa, R.; Haghi, M.; Pont, L.G.; Williams, K.A.; Eds. Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems; Academic Press: Cambridge, Massachusetts, 2020, pp. 281-302.
[120]
Mukherjee, A.; Waters, A.K.; Kalyan, P.; Achrol, A.S.; Kesari, S.; Yenugonda, V.M. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: State of the art, emerging technologies, and perspectives. Int. J. Nanomedicine, 2019, 14, 1937-1952.
[http://dx.doi.org/10.2147/IJN.S198353] [PMID: 30936695]
[121]
Xi, J.; Talaat, M. Nanoparticle deposition in rhythmically moving acinar models with interalveolar septal apertures. Nanomaterials (Basel), 2019, 9(8), 1126.
[http://dx.doi.org/10.3390/nano9081126] [PMID: 31382669]
[122]
García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J.M. Lipid-based nanoparti-cles: Application and recent advances in cancer treatment. Nanomaterials (Basel), 2019, 9(4), 638.
[http://dx.doi.org/10.3390/nano9040638] [PMID: 31010180]
[123]
Kuzmov, A.; Minko, T. Nanotechnology approaches for inhalation treatment of lung diseases. J. Control. Release, 2015, 219, 500-518.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.024] [PMID: 26297206]
[124]
Karthikeyan, A.; Senthil, N.; Min, T. Nanocurcumin: A promising candidate for therapeutic applications. Front. Pharmacol., 2020, 11, 487.
[http://dx.doi.org/10.3389/fphar.2020.00487] [PMID: 32425772]
[125]
Khan, S.; Baboota, S.; Ali, J.; Khan, S.; Narang, R.S.; Narang, J.K. Nanostructured lipid carriers: An emerging platform for improving oral bioavailability of lipophilic drugs. Int. J. Pharm. Investig., 2015, 5(4), 182-191.
[http://dx.doi.org/10.4103/2230-973X.167661] [PMID: 26682188]
[126]
Taratula, O.; Kuzmov, A.; Shah, M.; Garbuzenko, O.B.; Minko, T. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J. Control. Release, 2013, 171(3), 349-357.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.018] [PMID: 23648833]
[127]
Haider, M.; Abdin, S.M.; Kamal, L.; Orive, G. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics, 2020, 12(3), 288.
[http://dx.doi.org/10.3390/pharmaceutics12030288] [PMID: 32210127]
[128]
Gaspar, R.; Coelho, F.; Silva, B.F.B. Lipid-nucleic acid complexes: Physicochemical aspects and prospects for cancer treatment. Molecules, 2020, 25(21), 5006.
[http://dx.doi.org/10.3390/molecules25215006] [PMID: 33126767]
[129]
Azandaryani, A.H.; Kashanian, S.; Jamshidnejad-Tosaramandani, T. Recent insights into effective nanomaterials and biomacromolecules conjugation in advanced drug targeting. Curr. Pharm. Biotechnol., 2019, 20(7), 526-541.
[http://dx.doi.org/10.2174/1389201020666190417125101] [PMID: 31038063]
[130]
Garbuzenko, O.B.; Kuzmov, A.; Taratula, O.; Pine, S.R.; Minko, T. Strategy to enhance lung cancer treatment by five essential elements: Inhalation delivery, nanotechnology, tumor-receptor targeting, chemo- and gene therapy. Theranostics, 2019, 9(26), 8362-8376.
[http://dx.doi.org/10.7150/thno.39816] [PMID: 31754402]
[131]
Majumder, J.; Minko, T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin. Drug Deliv., 2021, 18(2), 205-227.
[http://dx.doi.org/10.1080/17425247.2021.1828339] [PMID: 32969740]
[132]
Majumder, J.; Taratula, O.; Minko, T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv. Drug Deliv. Rev., 2019, 144, 57-77.
[http://dx.doi.org/10.1016/j.addr.2019.07.010] [PMID: 31400350]
[133]
Tesauro, D.; Accardo, A.; Diaferia, C.; Milano, V.; Guillon, J.; Ronga, L.; Rossi, F. Peptide-based drug-delivery systems in biotechnologi-cal applications: Recent advances and perspectives. Molecules, 2019, 24(2), 351.
[http://dx.doi.org/10.3390/molecules24020351] [PMID: 30669445]
[134]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[135]
Liechty, W.B.; Kryscio, D.R.; Slaughter, B.V.; Peppas, N.A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng., 2010, 1, 149-173.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100847] [PMID: 22432577]
[136]
Alven, S.; Aderibigbe, B.A. The therapeutic efficacy of dendrimer and micelle formulations for breast cancer treatment. Pharmaceutics, 2020, 12(12), 1212.
[http://dx.doi.org/10.3390/pharmaceutics12121212] [PMID: 33333778]
[137]
Oiso, Y.; Akita, T.; Kato, D.; Yamashita, C. Method for pulmonary administration using negative pressure generated by inspiration in mice. Pharmaceutics, 2020, 12(3), 200.
[http://dx.doi.org/10.3390/pharmaceutics12030200] [PMID: 32106551]
[138]
Kuerban, K.; Gao, X.; Zhang, H.; Liu, J.; Dong, M.; Wu, L.; Ye, R.; Feng, M.; Ye, L. Doxorubicin-loaded bacterial outer-membrane vesi-cles exert enhanced anti-tumor efficacy in non-small-cell lung cancer. Acta Pharm. Sin. B, 2020, 10(8), 1534-1548.
[http://dx.doi.org/10.1016/j.apsb.2020.02.002] [PMID: 32963948]
[139]
Paris, J.L.; Vallet-Regí, M. Mesoporous silica nanoparticles for co-delivery of drugs and nucleic acids in oncology: A review. Pharmaceutics, 2020, 12(6), 526.
[http://dx.doi.org/10.3390/pharmaceutics12060526] [PMID: 32521800]
[140]
Chow, M.Y.T.; Qiu, Y.; Lam, J.K.W. Inhaled RNA therapy: From promise to reality. Trends Pharmacol. Sci., 2020, 41(10), 715-729.
[http://dx.doi.org/10.1016/j.tips.2020.08.002] [PMID: 32893004]
[141]
Xiao, Y.; Shi, K.; Qu, Y.; Chu, B.; Qian, Z. Engineering nanoparticles for targeted delivery of nucleic acid therapeutics in tumor. Mol. Ther. Methods Clin. Dev., 2018, 12, 1-18.
[http://dx.doi.org/10.1016/j.omtm.2018.09.002] [PMID: 30364598]
[142]
Cao, Y.; Tan, Y.F.; Wong, Y.S.; Liew, M.W.J.; Venkatraman, S. Recent advances in chitosan-based carriers for gene delivery. Mar. Drugs, 2019, 17(6), 381.
[http://dx.doi.org/10.3390/md17060381] [PMID: 31242678]
[143]
Zhu, L.; Mahato, R.I. Lipid and polymeric carrier-mediated nucleic acid delivery. Expert Opin. Drug Deliv., 2010, 7(10), 1209-1226.
[http://dx.doi.org/10.1517/17425247.2010.513969] [PMID: 20836625]
[144]
Patil, S.; Gao, Y-G.; Lin, X.; Li, Y.; Dang, K.; Tian, Y.; Zhang, W-J.; Jiang, S-F.; Qadir, A.; Qian, A-R. The development of functional non-viral vectors for gene delivery. Int. J. Mol. Sci., 2019, 20(21), 5491.
[http://dx.doi.org/10.3390/ijms20215491] [PMID: 31690044]
[145]
Kafil, V.; Omidi, Y. Cytotoxic impacts of linear and branched polyethylenimine nanostructures in a431 cells. Bioimpacts, 2011, 1(1), 23-30.
[PMID: 23678404]
[146]
Jiang, H-L.; Hong, S-H.; Kim, Y-K.; Islam, M.A.; Kim, H-J.; Choi, Y-J.; Nah, J-W.; Lee, K-H.; Han, K-W.; Chae, C.; Cho, C.S.; Cho, M.H. Aerosol delivery of spermine-based poly(amino ester)/Akt1 shRNA complexes for lung cancer gene therapy. Int. J. Pharm., 2011, 420(2), 256-265.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.045] [PMID: 21911043]
[147]
Wu, Y.; Rashidpour, A.; Almajano, M.P.; Metón, I. Chitosan-based drug delivery system: Applications in fish biotechnology. Polymers (Basel), 2020, 12(5), 1177.
[http://dx.doi.org/10.3390/polym12051177] [PMID: 32455572]
[148]
Jalal, A.R.; Dixon, J.E. Efficient delivery of transducing polymer nanoparticles for gene-mediated induction of osteogenesis for bone re-generation. Front. Bioeng. Biotechnol., 2020, 8, 849-849.
[http://dx.doi.org/10.3389/fbioe.2020.00849] [PMID: 32850720]
[149]
Pontón, I.; Martí Del Rio, A.; Gómez Gómez, M.; Sánchez-García, D. Preparation and applications of organo-silica hybrid mesoporous silica nanoparticles for the co-delivery of drugs and nucleic acids. Nanomaterials (Basel), 2020, 10(12), 2466.
[http://dx.doi.org/10.3390/nano10122466] [PMID: 33317099]
[150]
Weng, Y.; Huang, Q.; Li, C.; Yang, Y.; Wang, X.; Yu, J.; Huang, Y.; Liang, X-J. Improved nucleic acid therapy with advanced nanoscale biotechnology. Mol. Ther. Nucleic Acids, 2020, 19, 581-601.
[http://dx.doi.org/10.1016/j.omtn.2019.12.004] [PMID: 31927331]
[151]
Anderson, S.D.; Gwenin, V.V.; Gwenin, C.D. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applica-tions. Nanoscale Res. Lett., 2019, 14(1), 188.
[http://dx.doi.org/10.1186/s11671-019-3019-6] [PMID: 31147786]
[152]
Sun, C.; Lee, J.S.H.; Zhang, M. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev., 2008, 60(11), 1252-1265.
[http://dx.doi.org/10.1016/j.addr.2008.03.018] [PMID: 18558452]
[153]
Zhao, S.; Yu, X.; Qian, Y.; Chen, W.; Shen, J. Multifunctional magnetic iron oxide nanoparticles: An advanced platform for cancer theranostics. Theranostics, 2020, 10(14), 6278-6309.
[http://dx.doi.org/10.7150/thno.42564] [PMID: 32483453]
[154]
Suciu, M.; Ionescu, C.M.; Ciorita, A.; Tripon, S.C.; Nica, D.; Al-Salami, H.; Barbu-Tudoran, L. Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements. Beilstein J. Nanotechnol., 2020, 11, 1092-1109.
[http://dx.doi.org/10.3762/bjnano.11.94] [PMID: 32802712]
[155]
Laffleur, F.; Keckeis, V. Advances in drug delivery systems: Work in progress still needed? Int. J. Pharm. X, 2020, 2, 100050.
[http://dx.doi.org/10.1016/j.ijpx.2020.100050] [PMID: 32577616]
[156]
Chung, P.A.; Dilling, D.F. Immunosuppressive strategies in lung transplantation. Ann. Transl. Med., 2020, 8(6), 409.
[http://dx.doi.org/10.21037/atm.2019.12.117] [PMID: 32355853]
[157]
Snell, G.I.; Westall, G.P.; Paraskeva, M.A. Immunosuppression and allograft rejection following lung transplantation: Evidence to date. Drugs, 2013, 73(16), 1793-1813.
[http://dx.doi.org/10.1007/s40265-013-0136-x] [PMID: 24142409]
[158]
Geube, M.A.; Perez-Protto, S.E.; McGrath, T.L.; Yang, D.; Sessler, D.I.; Budev, M.M.; Kurz, A.; McCurry, K.R.; Duncan, A.E. Increased intraoperative fluid administration is associated with severe primary graft dysfunction after lung transplantation. Anesth. Analg., 2016, 122(4), 1081-1088.
[http://dx.doi.org/10.1213/ANE.0000000000001163] [PMID: 26991618]
[159]
Sedyakina, N.; Kuskov, A.; Velonia, K.; Feldman, N.; Lutsenko, S.; Avramenko, G. Modulation of entrapment efficiency and in vitro release properties of bsa-loaded chitosan microparticles cross-linked with citric acid as a potential protein-drug delivery system. Materials (Basel), 2020, 13(8), 1989.
[http://dx.doi.org/10.3390/ma13081989] [PMID: 32344606]
[160]
Alipour, S.; Montaseri, H.; Tafaghodi, M. Preparation and characterization of biodegradable paclitaxel loaded alginate microparticles for pulmonary delivery. Colloids Surf. B Biointerfaces, 2010, 81(2), 521-529.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.050] [PMID: 20732796]
[161]
Zhou, Y.; Niu, B.; Wu, B.; Luo, S.; Fu, J.; Zhao, Y.; Quan, G.; Pan, X.; Wu, C. A homogenous nanoporous pulmonary drug delivery sys-tem based on metal-organic frameworks with fine aerosolization performance and good compatibility. Acta Pharm. Sin. B, 2020, 10(12), 2404-2416.
[http://dx.doi.org/10.1016/j.apsb.2020.07.018] [PMID: 33354510]
[162]
Rasul, R.M.; Tamilarasi Muniandy, M.; Zakaria, Z.; Shah, K.; Chee, C.F.; Dabbagh, A.; Rahman, N.A.; Wong, T.W. A review on chitosan and its development as pulmonary particulate anti-infective and anti-cancer drug carriers. Carbohydr. Polym., 2020, 250, 116800.
[http://dx.doi.org/10.1016/j.carbpol.2020.116800] [PMID: 33049807]
[163]
Araújo, R.V.; Santos, S.D.S.; Igne Ferreira, E.; Giarolla, J. New advances in general biomedical applications of PAMAM dendrimers. Molecules, 2018, 23(11), 2849.
[http://dx.doi.org/10.3390/molecules23112849] [PMID: 30400134]
[164]
Chis, A.A.; Dobrea, C.; Morgovan, C.; Arseniu, A.M.; Rus, L.L.; Butuca, A.; Juncan, A.M.; Totan, M.; Vonica-Tincu, A.L.; Cormos, G.; Muntean, A.C.; Muresan, M.L.; Gligor, F.G.; Frum, A. Applications and limitations of dendrimers in biomedicine. Molecules, 2020, 25(17), 3982.
[http://dx.doi.org/10.3390/molecules25173982] [PMID: 32882920]
[165]
Kumarathas, I.; Harsløf, T.; Andersen, C.U.; Langdahl, B.; Hilberg, O.; Bjermer, L.; Løkke, A. The risk of osteoporosis in patients with asthma. Eur. Clin. Respir. J., 2020, 7(1), 1763612.
[http://dx.doi.org/10.1080/20018525.2020.1763612] [PMID: 32595917]
[166]
Taylor, K.M.G.; Elhissi, A.M.A. Preparation of liposomes for pulmonary delivery using medical nebulizers. In: Gregoriadis, G.; Ed. Liposome Technology Liposome Preparation and Related Techniques, CRC Press: Boca, Raton, 2006, 1, 67-84.
[http://dx.doi.org/10.1201/9780849397264.ch5]
[167]
Aramendia, I.; Fernandez-Gamiz, U.; Lopez-Arraiza, A.; Rey-Santano, C.; Mielgo, V.; Basterretxea, F.J.; Sancho, J.; Gomez-Solaetxe, M.A. Experimental evaluation of perfluorocarbon aerosol generation with two novel nebulizer prototypes. Pharmaceutics, 2019, 11(1), 19.
[http://dx.doi.org/10.3390/pharmaceutics11010019] [PMID: 30621300]
[168]
Carvalho, T.C.; McConville, J.T. The function and performance of aqueous aerosol devices for inhalation therapy. J. Pharm. Pharmacol., 2016, 68(5), 556-578.
[http://dx.doi.org/10.1111/jphp.12541] [PMID: 27061412]
[169]
Suwartha, N.; Syamzida, D.; Priadi, C.R.; Moersidik, S.S.; Ali, F. Effect of size variation on microbubble mass transfer coefficient in flota-tion and aeration processes. Heliyon, 2020, 6(4), e03748.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03748] [PMID: 32280808]
[170]
Pucek, A.; Tokarek, B.; Waglewska, E.; Bazylińska, U. Recent advances in the structural design of photosensitive agent formulations using “soft” colloidal nanocarriers. Pharmaceutics, 2020, 12(6), 587.
[http://dx.doi.org/10.3390/pharmaceutics12060587] [PMID: 32599791]
[171]
Sandoval-Yañez, C.; Castro Rodriguez, C. Dendrimers: Amazing platforms for bioactive molecule delivery systems. Materials (Basel), 2020, 13(3), 570.
[http://dx.doi.org/10.3390/ma13030570] [PMID: 31991703]
[172]
Mehta, P.; Kadam, S.; Pawar, A.; Bothiraja, C. Dendrimers for pulmonary delivery: Current perspectives and future challenges. New J. Chem., 2019, 43, 8396-8409.
[http://dx.doi.org/10.1039/C9NJ01591D]
[173]
Luo, M-X.; Hua, S.; Shang, Q-Y. Application of nanotechnology in drug delivery systems for respiratory diseases. (Review). Mol. Med. Rep., 2021, 23(5), 1-17.
[http://dx.doi.org/10.3892/mmr.2021.11964] [PMID: 33760125]
[174]
Ortega, M.Á.; Guzmán Merino, A.; Fraile-Martínez, O.; Recio-Ruiz, J.; Pekarek, L.G.; Guijarro, L.; García-Honduvilla, N.; Álvarez-Mon, M.; Buján, J.; García-Gallego, S. Dendrimers and dendritic materials: From laboratory to medical practice in infectious diseases. Pharmaceutics, 2020, 12, 874.
[http://dx.doi.org/10.3390/pharmaceutics12090874]
[175]
Nasr, M.; Najlah, M.; D’Emanuele, A.; Elhissi, A. PAMAM dendrimers as aerosol drug nanocarriers for pulmonary delivery via nebuliza-tion. Int. J. Pharm., 2014, 461(1-2), 242-250.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.023] [PMID: 24275446]
[176]
Fana, M.; Gallien, J.; Srinageshwar, B.; Dunbar, G.L.; Rossignol, J. PAMAM dendrimer nanomolecules utilized as drug delivery systems for potential treatment of glioblastoma: A systematic review. Int. J. Nanomedicine, 2020, 15, 2789-2808.
[http://dx.doi.org/10.2147/IJN.S243155] [PMID: 32368055]
[177]
Barjaktarevic, I.Z.; Milstone, A.P. Nebulized therapies in COPD: Past, present, and the future. Int. J. Chron. Obstruct. Pulmon. Dis., 2020, 15, 1665-1677.
[http://dx.doi.org/10.2147/COPD.S252435] [PMID: 32764912]
[178]
Doroudian, M.; O’ Neill, A.; Mac Loughlin, R.; Prina-Mello, A.; Volkov, Y.; Donnelly, S.C. Nanotechnology in pulmonary medicine. Curr. Opin. Pharmacol., 2021, 56, 85-92.
[http://dx.doi.org/10.1016/j.coph.2020.11.002] [PMID: 33341460]
[179]
Yıldız-Peköz, A.; Ehrhardt, C. Advances in pulmonary drug delivery. Pharmaceutics, 2020, 12(10), 911.
[http://dx.doi.org/10.3390/pharmaceutics12100911] [PMID: 32977672]
[180]
Patil, J.S.; Sarasija, S. Pulmonary drug delivery strategies: A concise, systematic review. Lung India, 2012, 29(1), 44-49.
[http://dx.doi.org/10.4103/0970-2113.92361] [PMID: 22345913]
[181]
Ou, C.; Hang, J.; Deng, Q. Particle deposition in human lung airways: Effects of airflow, particle size, and mechanisms. Aerosol Air Qual. Res., 2020, 20, 2846-2858.
[http://dx.doi.org/10.4209/aaqr.2020.02.0067]
[182]
Bao, L.; Zhang, C.; Dong, J.; Zhao, L.; Li, Y.; Sun, J. Oral microbiome and SARS-CoV-2: Beware of lung co-infection. Front. Microbiol., 2020, 11, 1840-1840.
[http://dx.doi.org/10.3389/fmicb.2020.01840] [PMID: 32849438]
[183]
Bussi, C.; Gutierrez, M.G. Mycobacterium tuberculosis infection of host cells in space and time. FEMS Microbiol. Rev., 2019, 43(4), 341-361.
[http://dx.doi.org/10.1093/femsre/fuz006] [PMID: 30916769]
[184]
Lawlor, C.; O’Connor, G.; O’Leary, S.; Gallagher, P.J.; Cryan, S-A.; Keane, J.; O’Sullivan, M.P. Treatment of Mycobacterium tuberculosis-infected macrophages with poly(lactic-co-glycolic acid) microparticles drives NFκB and autophagy dependent bacillary killing. PLoS One, 2016, 11(2), e0149167.
[http://dx.doi.org/10.1371/journal.pone.0149167] [PMID: 26894562]
[185]
Wang, Q.; Ge, L.; Wang, L.; Xu, Y.; Miao, S.; Yu, G.; Shen, Y. Formulation optimization and in vitro antibacterial ability investigation of azithromycin loaded FDKP microspheres dry powder inhalation. Chin. Chem. Lett., 2021, 32, 1071-1076.
[http://dx.doi.org/10.1016/j.cclet.2020.03.062]
[186]
Ho, D-K.; Nichols, B.L.B.; Edgar, K.J.; Murgia, X.; Loretz, B.; Lehr, C-M. Challenges and strategies in drug delivery systems for treat-ment of pulmonary infections. Eur. J. Pharm. Biopharm., 2019, 144, 110-124.
[http://dx.doi.org/10.1016/j.ejpb.2019.09.002] [PMID: 31493510]
[187]
Toussi, D.N.; Massari, P. Immune adjuvant effect of molecularly-defined toll-like receptor ligands. Vaccines (Basel), 2014, 2(2), 323-353.
[http://dx.doi.org/10.3390/vaccines2020323] [PMID: 26344622]
[188]
Thakur, A.; Foged, C. Nanoparticles for mucosal vaccine delivery. In: Mozafari, M.; Ed. Nanoengineered Biomaterials for Advanced Drug Delivery; Elsevier: Amsterdam, 2020, pp. 603-646.
[189]
Ramvikas, M.; Arumugam, M.; Chakrabarti, S.R.; Jaganathan, K.S. Nasal vaccine delivery. In: Micro and Nanotechnology in Vaccine Development; Skwarczynski, M.; Toth, I., Eds.; Elsevier: Amsterdam, 2017; pp. 279-301.
[190]
Ganesan, S.; Comstock, A.T.; Sajjan, U.S. Barrier function of airway tract epithelium. Tissue Barriers, 2013, 1(4), e24997.
[http://dx.doi.org/10.4161/tisb.24997] [PMID: 24665407]
[191]
Boisvert, A-A.; Cheng, M.P.; Sheppard, D.C.; Nguyen, D. Microbial biofilms in pulmonary and critical care diseases. Ann. Am. Thorac. Soc., 2016, 13(9), 1615-1623.
[http://dx.doi.org/10.1513/AnnalsATS.201603-194FR] [PMID: 27348071]
[192]
Sardi, Jde. C.; Pitangui, Nde.S.; Rodríguez-Arellanes, G.; Taylor, M.L.; Fusco-Almeida, A.M.; Mendes-Giannini, M.J.S. Highlights in path-ogenic fungal biofilms. Rev. Iberoam. Micol., 2014, 31(1), 22-29.
[http://dx.doi.org/10.1016/j.riam.2013.09.014] [PMID: 24252828]
[193]
Sterzenbach, T.; Helbig, R.; Hannig, C.; Hannig, M. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clin. Oral Investig., 2020, 24(12), 4237-4260.
[http://dx.doi.org/10.1007/s00784-020-03646-1] [PMID: 33111157]
[194]
Meyers, S.R.; Grinstaff, M.W. Biocompatible and bioactive surface modifications for prolonged in vivo efficacy. Chem. Rev., 2012, 112(3), 1615-1632.
[http://dx.doi.org/10.1021/cr2000916] [PMID: 22007787]
[195]
Mangal, U.; Kwon, J-S.; Choi, S-H. Bio-interactive zwitterionic dental biomaterials for improving biofilm resistance: Characteristics and applications. Int. J. Mol. Sci., 2020, 21(23), 9087.
[http://dx.doi.org/10.3390/ijms21239087] [PMID: 33260367]
[196]
Rao, H.; Choo, S.; Rajeswari Mahalingam, S.R.; Adisuri, D.S.; Madhavan, P.; Md Akim, A.; Chong, P.P. Approaches for mitigating micro-bial biofilm-related drug resistance: A focus on micro- and nanotechnologies. Molecules, 2021, 26(7), 1870.
[http://dx.doi.org/10.3390/molecules26071870] [PMID: 33810292]
[197]
Barnes, M.; Feit, C.; Grant, T-A.; Brisbois, E.J. Antimicrobial polymer modifications to reduce microbial bioburden on endotracheal tubes and ventilator associated pneumonia. Acta Biomater., 2019, 91, 220-234.
[http://dx.doi.org/10.1016/j.actbio.2019.04.042] [PMID: 31022549]
[198]
Berra, L.; Curto, F.; Li Bassi, G.; Laquerriere, P.; Pitts, B.; Baccarelli, A.; Kolobow, T. Antimicrobial-coated endotracheal tubes: An exper-imental study. Intensive Care Med., 2008, 34(6), 1020-1029.
[http://dx.doi.org/10.1007/s00134-008-1099-3] [PMID: 18418572]
[199]
Muhammad, M.H.; Idris, A.L.; Fan, X.; Guo, Y.; Yu, Y.; Jin, X.; Qiu, J.; Guan, X.; Huang, T. Beyond risk: Bacterial biofilms and their regulating approaches. Front. Microbiol., 2020, 11, 928-928.
[http://dx.doi.org/10.3389/fmicb.2020.00928] [PMID: 32508772]
[200]
Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mecha-nisms of action. Virulence, 2018, 9(1), 522-554.
[http://dx.doi.org/10.1080/21505594.2017.1313372] [PMID: 28362216]
[201]
Su, T.; He, J.; Li, N.; Liu, S.; Xu, S.; Gu, L. A rational designed PslG with normal biofilm hydrolysis and enhanced resistance to trypsin-like protease digestion. Front. Microbiol., 2020, 11, 760.
[http://dx.doi.org/10.3389/fmicb.2020.00760] [PMID: 32477285]
[202]
Tan, Y.; Ma, S.; Leonhard, M.; Moser, D.; Schneider-Stickler, B. β-1,3-glucanase disrupts biofilm formation and increases antifungal susceptibility of Candida albicans DAY185. Int. J. Biol. Macromol., 2018, 108, 942-946.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.003] [PMID: 29104052]
[203]
Jiang, Y.; Geng, M.; Bai, L. Targeting biofilms therapy: Current research strategies and development hurdles. Microorganisms, 2020, 8(8), 1222.
[http://dx.doi.org/10.3390/microorganisms8081222] [PMID: 32796745]
[204]
Ahmad Khan, M.S.; Alshehrei, F.; Al-Ghamdi, S.B.; Bamaga, M.A.; Al-Thubiani, A.S.; Alam, M.Z. Virulence and biofilms as promising targets in developing antipathogenic drugs against candidiasis. Future Sci. OA, 2020, 6(2), FSO440-FSO440.
[http://dx.doi.org/10.2144/fsoa-2019-0027] [PMID: 32025329]
[205]
Van Dyck, K.; Pinto, R.M.; Pully, D.; Van Dijck, P. Microbial interkingdom biofilms and the quest for novel therapeutic strategies. Microorganisms, 2021, 9(2), 412.
[http://dx.doi.org/10.3390/microorganisms9020412] [PMID: 33671126]
[206]
Linssen, R.S.N.; Ma, J.; Bem, R.A.; Rubin, B.K. Rational use of mucoactive medications to treat pediatric airway disease. Paediatr. Respir. Rev., 2020, 36, 8-14.
[PMID: 32653467]
[207]
Vestby, L.K.; Grønseth, T.; Simm, R.; Nesse, L.L. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics (Basel), 2020, 9(2), 59.
[http://dx.doi.org/10.3390/antibiotics9020059] [PMID: 32028684]
[208]
Aparna, M.S.; Yadav, S. Biofilms: Microbes and disease. Braz. J. Infect. Dis., 2008, 12(6), 526-530.
[http://dx.doi.org/10.1590/S1413-86702008000600016] [PMID: 19287843]
[209]
Campodónico, V.L.; Gadjeva, M.; Paradis-Bleau, C.; Uluer, A.; Pier, G.B. Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis. Trends Mol. Med., 2008, 14(3), 120-133.
[http://dx.doi.org/10.1016/j.molmed.2008.01.002] [PMID: 18262467]
[210]
Zeb, A.; Rana, I.; Choi, H-I.; Lee, C-H.; Baek, S-W.; Lim, C-W.; Khan, N.; Arif, S.T.; Sahar, N.U.; Alvi, A.M.; Shah, F.A.; Din, F.U.; Bae, O.N.; Park, J.S.; Kim, J.K. Potential and applications of nanocarriers for efficient delivery of biopharmaceuticals. Pharmaceutics, 2020, 12(12), 1184.
[http://dx.doi.org/10.3390/pharmaceutics12121184] [PMID: 33291312]
[211]
Hidalgo, A.; Cruz, A.; Pérez-Gil, J. Pulmonary surfactant and nanocarriers: Toxicity versus combined nanomedical applications. Biochim. Biophys. Acta Biomembr., 2017, 1859(9 Pt B), 1740-1748.
[http://dx.doi.org/10.1016/j.bbamem.2017.04.019] [PMID: 28450046]
[212]
López-Esparza, R.; Balderas Altamirano, M.A.; Pérez, E.; Gama Goicochea, A. Importance of molecular interactions in colloidal disper-sions. Adv. Condens. Matter Phys., 2015, 2015, 683716.
[http://dx.doi.org/10.1155/2015/683716]
[213]
Profili, J.; Levasseur, O.; Blaisot, J-B.; Koronai, A.; Stafford, L.; Gherardi, N. Nebulization of nanocolloidal suspensions for the growth of nanocomposite coatings in dielectric barrier discharges. Plasma Process. Polym., 2016, 13, 981-989.
[http://dx.doi.org/10.1002/ppap.201500223]
[214]
Pham, D.T.; Chokamonsirikun, A.; Phattaravorakarn, V.; Tiyaboonchai, W. Polymeric micelles for pulmonary drug delivery: A compre-hensive review. J. Mater. Sci., 2021, 56, 2016-2036.
[http://dx.doi.org/10.1007/s10853-020-05361-4]
[215]
Sou, T.; Bergström, C.A.S. Contemporary formulation development for inhaled pharmaceuticals. J. Pharm. Sci., 2021, 110(1), 66-86.
[http://dx.doi.org/10.1016/j.xphs.2020.09.006] [PMID: 32916138]
[216]
Mehta, P. Imagine the superiority of dry powder inhalers from carrier engineering. J. Drug Deliv., 2018, 2018, 5635010-5635010.
[http://dx.doi.org/10.1155/2018/5635010] [PMID: 29568652]
[217]
García-Fojeda, B.; González-Carnicero, Z.; de Lorenzo, A.; Minutti, C.M.; de Tapia, L.; Euba, B.; Iglesias-Ceacero, A.; Castillo-Lluva, S.; Garmendia, J.; Casals, C. Lung surfactant lipids provide immune protection against Haemophilus influenzae respiratory infection. Front. Immunol., 2019, 10, 458-458.
[http://dx.doi.org/10.3389/fimmu.2019.00458] [PMID: 30936871]
[218]
Benke, E.; Farkas, Á.; Szabó-Révész, P.; Ambrus, R. Development of an innovative, carrier-based dry powder inhalation formulation containing spray-dried meloxicam potassium to improve the in vitro and in silico aerodynamic properties. Pharmaceutics, 2020, 12(6), 535.
[http://dx.doi.org/10.3390/pharmaceutics12060535] [PMID: 32532040]
[219]
Lechanteur, A.; Evrard, B. Influence of composition and spray-drying process parameters on carrier-free DPI properties and behaviors in the lung: A review. Pharmaceutics, 2020, 12(1), 55.
[http://dx.doi.org/10.3390/pharmaceutics12010055] [PMID: 31936628]
[220]
Moreno-Sastre, M.; Pastor, M.; Salomon, C.J.; Esquisabel, A.; Pedraz, J.L. Pulmonary drug delivery: A review on nanocarriers for antibac-terial chemotherapy. J. Antimicrob. Chemother., 2015, 70(11), 2945-2955.
[http://dx.doi.org/10.1093/jac/dkv192] [PMID: 26203182]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy