Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Biophotonics

CVD Approach to a Single Gallium Oxide Nanowire for Solar-blind UV Detector

Author(s): Song Liu, Shufang Ma*, Xin Huang, Guang Hui Wang, Bo Liu, Dou Wang, Hui Can Ou Yang, Chao Ming Xu, Sheng Wei Liu, Guo Dong Wei, Bin Han, Xiao Dong Hao and Bing She Xu

Volume 3, Issue 1, 2023

Published on: 22 September, 2022

Page: [23 - 31] Pages: 9

DOI: 10.2174/2210298102666220803091238

Price: $65

Open Access Journals Promotions 2
Abstract

Aims: Finding a simple, energy-saving and low-cost synthesis method to process gallium oxide nanowires by CVD for solar-blind detector.

Background: Due to a bandgap of 4.5 ~ 4.9 eV and a high breakdown field strength of 8 MV/cm, gallium oxide (Ga2O3) has great application prospects in solar blind ultraviolet detection and highpower devices. Notably, Ga2O3 NWs are currently the key research objects of solar-blind UV detection materials because of the characteristics of efficient photocarrier separation and collection, and the bandgap width perfectly matches the energy of deep ultraviolet photons.

Objective: To find a simple method to synthesize Ga2O3 nanowire with smooth surface and uniform diameter, and the prepared single gallium oxide nanowire UV detector has high photoelectric conversion efficiency.

Methods: Ga2O3NWs are prepared on the SiO2/Si substrate by chemical vapor deposition (CVD) approach at low reaction temperature with gold particles serving as the catalyst and gallium arsenide (GaAs) as a gallium source.

Results: X-ray diffraction and Raman spectroscopy characterization indicate the crystal structure of NWs is β-Ga2O3, and scanning electron microscope (SEM) characterization proves that the NWs have a uniform diameter and smooth surface. Moreover, the high-resolution transmission electron microscopy (HRTEM) characterization shows that the material had high crystal quality. Moreover, the photoconductive solar-blind UV detector with a single Ga2O3 NW is prepared, showing the excellent performance of the high responsivity and external quantum efficiency.

Conclusion: The effects of growth temperature and the size of gold catalyst on the morphology of β-Ga2O3 NWs have been investigated. The results show that with the reaction temperature is 625 °C and the diameter of Au catalyst is about 30~50 nm, it is more conducive to the formation of NMs with crystal structure, smooth surface and uniform diameter. The performance of the solar-blind UV photodetector shows that the device has higher sensitivity (R = 149.82 A/W), external quantum efficiency (EQE = 73206%), and response rate τrise = 0.66 s, and τdown = 0.45 s.

Keywords: CVD, β-Ga2O3 nanowires, growth control, solar-blind UV photodetectors, detection performance, external quantum efficiency.

[1]
Rogalski, A.; Razeghi, M. Semiconductor ultraviolet photodetectors. Opto-Electron. Rev., 1996, (1-2), 13-30.http://www.scopus.com/inward/record.url?scp=3142624749&partnerID=8YFLogxK
[2]
Tian, W.; Lu, H.; Li, L. Nanoscale ultraviolet photodetectors based on onedimensional metal oxide nanostructures. Nano Res., 2015, 8(2), 382-405.
[http://dx.doi.org/10.1007/s12274-014-0661-2]
[3]
Parish, G.; Keller, S.; Kozodoy, P.; Ibbetson, J.P.; Tarsa, E.J. High-performance (Al,Ga)n-based solar-blind ultraviolet p-i-n detectors on laterally epitaxially overgrown gan. Appl. Phys. Lett., 1999, 75(2), 247-249.
[http://dx.doi.org/10.1063/1.124337]
[4]
Ng, B.K.; David, J.; Tozer, R.C.; Rees, G.J.; Zhao, J.H. Performance of thin 4H-SiC UC avalanche photodiodes. IEE Proc., Optoelectron., 2003, 150(2), 187-190.
[http://dx.doi.org/10.1049/ip-opt:20030382]
[5]
Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S.A.; Aplin, D.P.; Park, J.; Bao, X.Y.; Lo, Y.H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett., 2007, 7(4), 1003-1009.
[http://dx.doi.org/10.1021/nl070111x] [PMID: 17358092]
[6]
Weng, W.Y.; Hsueh, T.J.; Chang, S.J.; Huang, G.J.; Chang, S.P. A solar-blind beta-Ga2O3 nanowire photodetector. IEEE Photonics Technol. Lett., 2010, 22(10), 709-711.
[http://dx.doi.org/10.1109/LPT.2010.2044570]
[7]
Xuanhu, C.; Fangfang, R.; Shulin, G. Review of gallium-oxide-based solar-blind ultraviolet photodetectors. Photon. Res., 2019, 7(04), 11-45.
[http://dx.doi.org/CNKI:SUN:GZXJ.0.2019-04-002]
[8]
Zhan, J.; Bando, Y.; Hu, J.; Xu, F.; Golberg, D. Unconventional gallium oxide nanowires. Small, 2005, 1(8-9), 883-888.
[http://dx.doi.org/10.1002/smll.200500022] [PMID: 17193543]
[9]
Kim, N.H.; Kim, H.W.; Chang, S. Amorphous gallium oxide nanowires synthesized by metalorganic chemical vapor deposition. Mater. Sci. Eng. B, 2004, 111(2/3), 131-134.
[http://dx.doi.org/10.1016/j.mseb.2004.04.002]
[10]
Park, S.Y.; Su, Y.L.; Seo, S.H.; Noh, D.Y.; Kang, H.C. Self-catalytic growth of β-Ga2O3 nanowires deposited by radio-frequency magnetron sputtering. Appl. Phys. Express, 2013, 6(10)105001
[http://dx.doi.org/10.7567/APEX.6.105001]
[11]
Sharma, S.; Sunkara, M.K. Direct synthesis of gallium oxide tubes, nanowires, and nanopaintbrushes. J. Am. Chem. Soc., 2002, 124(41), 12288-12293.
[http://dx.doi.org/10.1021/ja027086b] [PMID: 12371872]
[12]
Kumar, S.; Tessarek, C.; Christiansen, S.; Singh, R. A comparative study of β-Ga2O3 nanowires grown on different substrates using CVD technique. J. Alloys Compd., 2014, 587, 812-818.
[http://dx.doi.org/10.1016/j.jallcom.2013.10.165]
[13]
Du, J.; Jie, X.; Chen, G.; Hao, L.; Hua, G. Highly sensitive and ultrafast deep UV photodetector based on a β-Ga2O3 nanowire network grown by CVD. J. Phys. D Appl. Phys., 2016, 49(42)425105
[http://dx.doi.org/10.1088/0022-3727/49/42/425105]
[14]
Shunli, W.; Hanlin, S.; Zhe, W.; Xiaohui, Z.; Weihua, T. In situ synthesis of monoclinic β-Ga2O3 nanowires on flexible substrate and solar-blind photodetector. Journal of Alloys and Compounds, 2019, 787(2019), 133-139.
[15]
Li, Y.; Tokizono, T.; Liao, M.; Zhong, M.; Koide, Y.; Yamada, I.; Delaunay, J.J. Efficient assembly of bridged βGa2O3 nanowires for solarblind photodetection. Adv. Funct. Mater., 2010, 20(22), 3972-3978.
[http://dx.doi.org/10.1002/adfm.201001140]
[16]
Mi, A.; Afimb, C. Semiconductor nanowires: to grow or not to grow? Materials Today Nano, 2019, 9100058
[http://dx.doi.org/10.1016/j.mtnano.2019.100058]
[17]
Zhang, J.; Jiang, F.; Yang, Y.; Li, J. Catalyst-assisted vapor-liquid-solid growth of single-crystal Ga2O3 nanobelts. J. Phys. Chem. B, 2005, 109(27), 13143-13147.
[http://dx.doi.org/10.1021/jp0511247] [PMID: 16852636]
[18]
Weng, W.Y.; Hsueh, T.J.; Chang, S.J.; Huang, G.J.; Hung, S.C. Growth of Ga2O3 nanowires and the fabrication of solar-blind photodetector. Nanotechnol. IEEE Transactions on Nanotec, 2011, 10(5), 1047-1052.
[http://dx.doi.org/10.1109/TNANO.2011.2104366]
[19]
Han, N.; Wang, F.; Hou, J.J.; Xiu, F.; Yip, S.; Hui, A.T.; Hung, T.; Ho, J.C. Controllable p-n switching behaviors of GaAs nanowires via an interface effect. ACS Nano, 2012, 6(5), 4428-4433.
[http://dx.doi.org/10.1021/nn3011416] [PMID: 22519669]
[20]
Alhalaili, B.; Bunk, R.J.; Mao, H.; Cansizoglu, H.; Vidu, R.; Woodall, J.; Islam, M.S. Gallium oxide nanowires for UV detection with enhanced growth and material properties. Sci. Rep., 2020, 10(1), 21434.
[http://dx.doi.org/10.1038/s41598-020-78326-x] [PMID: 33293565]
[21]
Kumar, M.; Kumar, V.; Singh, R. Diameter tuning of β-Ga2O3 nanowires using chemical vapor deposition technique. Nanoscale Res. Lett., 2017, 12(1), 184.
[http://dx.doi.org/10.1186/s11671-017-1915-1] [PMID: 28282976]
[22]
Barth, S.; Hernandez-Ramirez, F.; Holmes, J.D.; Romano-Rodriguez, A. Synthesis and applications of one-dimensional semiconductors. Prog. Mater. Sci., 2010, 55(6), 563-627.
[http://dx.doi.org/10.1016/j.pmatsci.2010.02.001]
[23]
Kranert, C.; Sturm, C.; Schmidt-Grund, R.; Grundmann, M. Raman tensor elements of β-Ga2O3. Sci. Rep., 2016, 6(1), 35964.
[http://dx.doi.org/10.1038/srep35964] [PMID: 27808113]
[24]
Dohy, D.; Lucazeau, G.; Revcolevschi, A. Raman spectra and valence force field of single-crystalline β-Ga2O3. J. Solid State Chem., 1982, 45(2), 180-192.
[http://dx.doi.org/10.1016/0022-4596(82)90274-2]
[25]
Kumar, S.; Singh, R. Nanofunctional gallium oxide (Ga2O3) nanowires/nanostructures and their applications in nanodevices. Physica status solidi (RRL). Rapid Res. Lett., 2013, 7(10), 781-792.
[http://dx.doi.org/10.1002/pssr.201307253]
[26]
Mohamed, H.; El-Hagary, M.; Althoyaib, S. Growth of β-Ga2O3 nanowires and their photocatalytic and optical properties using pt as a catalyst. J. Alloys Compd., 2012, 537(5), 291-296.
[http://dx.doi.org/10.1016/j.jallcom.2012.05.048]
[27]
Kelsey, A.M.; Guangsha, S.; Dylan, B; Emmanouil, K First-principles calculations of the near-edge optical properties of beta-Ga2O3. Appl. Phy. letters,, 2016, 109(21), 212104-1-212104-4.
[28]
Xie, C.; Lu, X.T.; Ma, M.R.; Tong, X.W.; Zhang, Z.X.; Wang, L.; Luo, L.B. Catalys -free vapor-solid deposition growth of βGa2O3 nanowires for DUV photodetector and image sensor application. Adv. Opt. Mater., 2019, 7(24)1901257
[http://dx.doi.org/10.1002/adom.201901257]
[29]
Kumar, A.; Bag, A. Ultra-high responsivity (>12.34 ka w-1) of Ga-In bimetallic oxide nanowires based deep-UV photodetector. Nanotechnology, 2020, 31(30), 304001.
[http://dx.doi.org/10.1088/1361-6528/ab851b]
[30]
Tian, W.; Zhi, C.; Zhai, T.; Chen, S.; Wang, X.; Liao, M.; Golberg, D.; Bando, Y. In-doped Ga2O3 nanobelt based photodetector with high sensitivity and wide-range photoresponse. J. Mater. Chem., 2012, 22(34), 17984-17991.
[http://dx.doi.org/10.1039/c2jm33189f]
[31]
Li, L.; Auer, E.; Liao, M.; Fang, X.; Zhai, T.; Gautam, U.K.; Lugstein, A.; Koide, Y.; Bando, Y.; Golberg, D. Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts. Nanoscale, 2011, 3(3), 1120-1126.
[http://dx.doi.org/10.1039/c0nr00702a] [PMID: 21203645]
[32]
Zou, R.; Zhang, Z.; Liu, Q.; Hu, J.; Sang, L.; Liao, M.; Zhang, W. High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga2O3 nanobelts. Small, 2014, 10(9), 1848-1856.
[http://dx.doi.org/10.1002/smll.201302705] [PMID: 24520013]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy