Review Article

城市污水处理厂抗菌素耐药性和致病性监测的新一代测序

卷 30, 期 1, 2023

发表于: 26 September, 2022

页: [5 - 29] 页: 25

弟呕挨: 10.2174/0929867329666220802093415

价格: $65

摘要

世界卫生组织(WHO)将抗菌素耐药性(AMR)和各种病原体列为十大健康威胁之一。据估计,到2050年,每年由抗生素耐药性导致的人类死亡人数将达到1000万人。另一方面,在过去20年里,SARS、H1N1流感、埃博拉、寨卡热和COVID-19等几次传染病暴发严重影响了全球人口。这些最近的全球性疾病产生了监测病原体和抗微生物药物耐药性暴发的需要,以制定有效的公共卫生战略。本文综述了与污水处理厂(WWTP)相关的AMR和致病性,重点介绍了下一代测序(NGS)监测作为临床监测的补充系统。在这方面,污水处理厂可以从三个方面进行监测。首先,在入口(原废水或进水口)识别下水道网络服务的居民排泄物中含有的广泛的AMR和病原体,并具有特定的时空位置。其次,在出水方面,考虑到对废水安全回用日益增长的需求,确保消除处理水中的AMR和病原体。第三,在污水污泥或生物固体中,其有益利用或最终处置可能对公众健康构成重大风险。本文以NGS为基础,分两部分阐述了AMR和病原体监测在废水和污水处理厂中的重要性和意义。第一部分介绍了应用于WWTP的监测技术的基本原理(元基因组学、宏基因组学、功能宏基因组学、变质病毒组学和元转录组学)。分析了它们的范围和局限性,以显示微生物和qPCR技术如何补充NGS监测,克服其局限性。第二部分讨论了36篇NGS研究论文在污水处理厂监测方面的贡献,重点介绍了现状和前景。在这两个部分,提出了研究的挑战和机遇。

关键词: 抗生素耐药基因、生物固体、病原体、污水处理、废水监测、SARS CoV-2、下一代测序

[2]
O’Neill, J. Review on antimicrobial resistance. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. 2014. Available from: https://amr-review.org/sites/default/files/AMR Review Paper - Tackling a crisis for the health and wealth of nations_1.pdf
[3]
Sims, N.; Kasprzyk-Hordern, B. Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environ. Int., 2020, 139, 105689.
[4]
Li, A-D.; Ma, L.; Jiang, X.T.; Zhang, T. Cultivation-dependent and high-throughput sequencing approaches studying the co-occurrence of antibiotic resistance genes in municipal sewage system. Appl. Microbiol. Biotechnol., 2017, 101(22), 8197-8207.
[http://dx.doi.org/10.1007/s00253-017-8573-1] [PMID: 29034431]
[5]
Global antimicrobial resistance surveillance system manual for early implementation. 2015. Available from: http://www.who.int/drugresistance/en/
[6]
Hendriksen, R.S.; Munk, P.; Njage, P.; van Bunnik, B.; McNally, L.; Lukjancenko, O.; Röder, T.; Nieuwenhuijse, D.; Pedersen, S.K.; Kjeldgaard, J.; Kaas, R.S.; Clausen, P.T.L.C.; Vogt, J.K.; Leekitcharoenphon, P.; van de Schans, M.G.M.; Zuidema, T.; de Roda Husman, A.M.; Rasmussen, S.; Petersen, B.; Amid, C.; Cochrane, G.; Sicheritz-Ponten, T.; Schmitt, H.; Alvarez, J.R.M.; Aidara-Kane, A.; Pamp, S.J.; Lund, O.; Hald, T.; Woolhouse, M.; Koopmans, M.P.; Vigre, H.; Petersen, T.N.; Aarestrup, F.M. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun., 2019, 10(1), 1124.
[http://dx.doi.org/10.1038/s41467-019-08853-3] [PMID: 30850636]
[7]
Crits-Christoph, A.; Kantor, R.S.; Olm, M.R.; Whitney, O.N.; Al-Shayeb, B.; Lou, Y.C.; Flamholz, A.; Kennedy, L.C.; Greenwald, H.; Hinkle, A.; Hetzel, J.; Spitzer, S.; Koble, J.; Tan, A.; Hyde, F.; Schroth, G.; Kuersten, S.; Banfield, J.F.; Nelson, K.L. Genome sequencing of sewage detects regionally prevalent SARS-CoV-2 variants. MBio, 2021, 12(1), 1-9.
[http://dx.doi.org/10.1128/mBio.02703-20] [PMID: 33468686]
[8]
Yu, K.; Li, P.; Chen, Y.; Zhang, B.; Huang, Y.; Huang, F.Y.; He, Y. Antibiotic resistome associated with microbial communities in an integrated wastewater reclamation system. Water Res., 2020, 173, 115541.
[http://dx.doi.org/10.1016/j.watres.2020.115541] [PMID: 32036288]
[9]
McCall, C.; Wu, H.; Miyani, B.; Xagoraraki, I. Identification of multiple potential viral diseases in a large urban center using wastewater surveillance. Water Res., 2020, 184, 116160.
[http://dx.doi.org/10.1016/j.watres.2020.116160] [PMID: 32738707]
[10]
Dafale, N. A.; Srivastava, S.; Purohit, H. J. Zoonosis: An emerging link to antibiotic resistance under ‘one health approach,’. Indian J. Microbiol., 2020, 60, 139-152.
[11]
Oberoi, A.S.; Jia, Y.; Zhang, H.; Khanal, S.K.; Lu, H. Insights into the fate and removal of antibiotics in engineered biological treatment systems: A critical review. Environ. Sci. Technol., 2019, 53(13), 7234-7264.
[http://dx.doi.org/10.1021/acs.est.9b01131] [PMID: 31244081]
[12]
Maritz, J.M.; Rogers, K.H.; Rock, T.M.; Liu, N.; Joseph, S.; Land, K.M.; Carlton, J.M. An 18S rRNA workflow for characterizing protists in sewage, with a focus on zoonotic trichomonads. Microb. Ecol., 2017, 74(4), 923-936.
[http://dx.doi.org/10.1007/s00248-017-0996-9] [PMID: 28540488]
[13]
Karkman, A.; Do, T.T.; Walsh, F.; Virta, M.P.J. Antibiotic-resistance genes in waste water. Trends Microbiol., 2018, 26(3), 220-228.
[http://dx.doi.org/10.1016/j.tim.2017.09.005] [PMID: 29033338]
[14]
Lira, F.; Vaz-Moreira, I.; Tamames, J.; Manaia, C.M.; Martínez, J.L. Metagenomic analysis of an urban resistome before and after wastewater treatment. Sci. Rep., 2020, 10(1), 8174.
[http://dx.doi.org/10.1038/s41598-020-65031-y] [PMID: 32424207]
[15]
Vere Hodge, A.; Field, H.J. General mechanisms of Antiviral resistance. Genet. Evol. Inf. Diseases, 2011, 339-362.
[16]
Partridge, S. R.; Kwong, S. M.; Firth, N.; Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev., 2018, 31(4), e00088-17.
[http://dx.doi.org/10.1128/CMR.00088-17]
[17]
Sandoval-Motta, S.; Aldana, M. Adaptive resistance to antibiotics in bacteria: A systems biology perspective. Wiley Interdiscip. Rev. Syst. Biol. Med., 2016, 8(3), 253-267.
[http://dx.doi.org/10.1002/wsbm.1335] [PMID: 27103502]
[18]
Fairlamb, A. H.; Gow, N. A. R.; Matthews, K. R.; Waters, A. P. Drug resistance in eukaryotic microorganisms. Nat. Microbiol., 2016, 1, 1-15.
[19]
Nguyen, A.Q.; Vu, H.P.; Nguyen, L.N.; Wang, Q.; Djordjevic, S.P.; Donner, E.; Yin, H.; Nghiem, L.D. Monitoring antibiotic resistance genes in wastewater treatment: Current strategies and future challenges. Sci. Total Environ., 2021, 783, 146964.
[http://dx.doi.org/10.1016/j.scitotenv.2021.146964] [PMID: 33866168]
[20]
Li, X.; Cheng, Z.; Dang, C.; Zhang, M.; Zheng, Y.; Xia, Y. Metagenomic and viromic data mining reveals viral threats in biologically treated domestic wastewater. Environ. Sci. Ecotechnology, 2021, 7, 100105.
[http://dx.doi.org/10.1016/j.ese.2021.100105]
[21]
Karkman, A.; Pärnänen, K.; Larsson, D.G.J. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat. Commun., 2019, 10(1), 80.
[http://dx.doi.org/10.1038/s41467-018-07992-3] [PMID: 30622259]
[22]
Bouki, C.; Venieri, D.; Diamadopoulos, E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review. Ecotoxicol. Environ. Saf., 2013, 91, 1-9.
[23]
Zhao, Q.; Liu, Y. Is anaerobic digestion a reliable barrier for deactivation of pathogens in biosludge? Sci. Tot. Environ., 2019, 668, 893-902.
[24]
Behjati, S.; Tarpey, P.S. What is next generation sequencing? Arch. Dis. Child. Educ. Pract. Ed., 2013, 98(6), 236-238.
[http://dx.doi.org/10.1136/ARCHDISCHILD-2013-304340] [PMID: 23986538]
[25]
Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of next generation sequencing technologies. Curr. Protoc. Mol. Biol., 2018, 122(1), e59.
[http://dx.doi.org/10.1002/cpmb.59.Overview] [PMID: 29851291]
[26]
Yadav, S.; Kapley, A. Antibiotic resistance: Global health crisis and metagenomics. Biotechnol. Rep. (Amst.), 2021, 29, e00604.
[http://dx.doi.org/10.1016/j.btre.2021.e00604] [PMID: 33732632]
[27]
Moreno, Y.; Moreno-Mesonero, L.; Amorós, I.; Pérez, R.; Morillo, J.A.; Alonso, J.L. Multiple identification of most important waterborne protozoa in surface water used for irrigation purposes by 18S rRNA amplicon-based metagenomics. Int. J. Hyg. Environ. Health, 2018, 221(1), 102-111.
[http://dx.doi.org/10.1016/j.ijheh.2017.10.008] [PMID: 29066287]
[28]
Escobar-Zepeda, A.; Vera-Ponce de León, A.; Sanchez-Flores, A. The road to metagenomics: From microbiology to DNA sequencing technologies and bioinformatics. Front. Genet., 2015, 6(348), 348.
[http://dx.doi.org/10.3389/fgene.2015.00348] [PMID: 26734060]
[29]
Di Cesare, A.; Corno, G.; Manaia, C.M.; Rizzo, L. Impact of disinfection processes on bacterial community in urban wastewater: Should we rethink microbial assessment methods? J. Environ. Chem. Eng., 2020, 8(5), p8.
[http://dx.doi.org/10.1016/j.jece.2020.104393]
[30]
Cristescu, M.E. From barcoding single individuals to metabarcoding biological communities: Towards an integrative approach to the study of global biodiversity. Trends Ecol. Evol., 2014, 29(10), 566-571.
[http://dx.doi.org/10.1016/j.tree.2014.08.001] [PMID: 25175416]
[31]
Marchesi, J.R.; Ravel, J. The vocabulary of microbiome research: A proposal. Microbiome, 2015, 3(1), 31.
[http://dx.doi.org/10.1186/s40168-015-0094-5] [PMID: 26229597]
[32]
Gallardo-Escárate, C.; Valenzuela-Muñoz, V.; Núñez-Acuña, G.; Valenzuela-Miranda, D.; Benaventel, B.P.; Sáez-Vera, C.; Urrutia, H.; Novoa, B.; Figueras, A.; Roberts, S.; Assmann, P.; Bravo, M. The wastewater microbiome: A novel insight for COVID-19 surveillance. Sci. Total Environ., 2021, 764, 142867.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142867] [PMID: 33071116]
[33]
Hendriksen, R.S.; Lukjancenko, O.; Munk, P.; Hjelmsø, M.H.; Verani, J.R.; Ng’eno, E.; Bigogo, G.; Kiplangat, S.; Oumar, T.; Bergmark, L.; Röder, T.; Neatherlin, J.C.; Clayton, O.; Hald, T.; Karlsmose, S.; Pamp, S.J.; Fields, B.; Montgomery, J.M.; Aarestrup, F.M. Pathogen surveillance in the informal settlement, Kibera, Kenya, using a metagenomics approach. PLoS One, 2019, 14(10), e0222531.
[http://dx.doi.org/10.1371/journal.pone.0222531] [PMID: 31600207]
[34]
Assress, H.A.; Selvarajan, R.; Nyoni, H.; Ntushelo, K.; Mamba, B.B.; Msagati, T.A.M. Diversity, co-occurrence and implications of fungal communities in wastewater treatment plants. Sci. Rep., 2019, 9(1), 14056.
[http://dx.doi.org/10.1038/s41598-019-50624-z] [PMID: 31575971]
[35]
Rusiñol, M.; Martínez-Puchol, S.; Timoneda, N.; Fernández-Cassi, X.; Pérez-Cataluña, A.; Fernández-Bravo, A.; Moreno-Mesonero, L.; Moreno, Y.; Alonso, J.L.; Figueras, M.J.; Abril, J.F.; Bofill-Mas, S.; Girones, R. Metagenomic analysis of viruses, bacteria and protozoa in irrigation water. Int. J. Hyg. Environ. Health, 2020, 224, 113440.
[http://dx.doi.org/10.1016/j.ijheh.2019.113440] [PMID: 31978735]
[36]
Zahedi, A.; Greay, T. L.; Paparini, A.; Linge, K. L.; Joll, C. A.; Ryan, U. M. Identification of eukaryotic microorganisms with 18S rRNA next-generation sequencing in wastewater treatment plants, with a more targeted NGS approach required for Cryptosporidium detection. Water Research, 2019, 158, 301-312.
[37]
Alhamlan, F.S.; Ederer, M.M.; Brown, C.J.; Coats, E.R.; Crawford, R.L. Metagenomics-based analysis of viral communities in dairy lagoon wastewater. J. Microbiol. Methods, 2013, 92(2), 183-188.
[http://dx.doi.org/10.1016/j.mimet.2012.11.016] [PMID: 23220059]
[38]
Pérez-Cataluña, A.; Chiner-Oms, A.; Cuevas-Ferrando, E.; Díaz-Reolid, A.; Falcó, I.; Randazzo, W.; Girón-Guzmán, I.; Allende, A.; Bracho, M.A.; Comas, I.; Sánchez, G.A. Detection of genomic variants of SARS-CoV-2 circulating in wastewater by high-throughput sequencing. bioRxiv, 2021.
[http://dx.doi.org/10.1101/2021.02.08.21251355]
[39]
Earl, J.P.; Adappa, N.D.; Krol, J.; Bhat, A.S.; Balashov, S.; Ehrlich, R.L.; Palmer, J.N.; Workman, A.D.; Blasetti, M.; Sen, B.; Hammond, J.; Cohen, N.A.; Ehrlich, G.D.; Mell, J.C. Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes. Microbiome, 2018, 6(1), 190.
[http://dx.doi.org/10.1186/S40168-018-0569-2] [PMID: 30352611]
[40]
Kai, S.; Matsuo, Y.; Nakagawa, S.; Kryukov, K.; Matsukawa, S.; Tanaka, H.; Iwai, T.; Imanishi, T.; Hirota, K. Rapid bacterial identification by direct PCR amplification of 16S rRNA genes using the MinION™ nanopore sequencer. FEBS Open Bio, 2019, 9(3), 548-557.
[http://dx.doi.org/10.1002/2211-5463.12590] [PMID: 30868063]
[41]
Mosher, J.J.; Bernberg, E.L.; Shevchenko, O.; Kan, J.; Kaplan, L.A. Efficacy of a 3rd generation high-throughput sequencing platform for analyses of 16S rRNA genes from environmental samples. J. Microbiol. Methods, 2013, 95(2), 175-181.
[http://dx.doi.org/10.1016/J.MIMET.2013.08.009] [PMID: 23999276]
[42]
Nygaard, A.B.; Tunsjø, H.S.; Meisal, R.; Charnock, C. A preliminary study on the potential of Nanopore MinION and Illumina MiSeq 16S rRNA gene sequencing to characterize building-dust microbiomes. Sci. Rep., 2020, 10(1), 3209.
[http://dx.doi.org/10.1038/S41598-020-59771-0] [PMID: 32081924]
[43]
Madhav, H. “Long-Range PCR and PacBio sequencing, a novel method for detection of antibiotic resistance genes in class 1 integrons from waste water treatment plant,” Helsinki Institute of Sustainability Science; HELSUS, 2018.
[44]
Cacace, D.; Fatta-Kassinos, D.; Manaia, C.M.; Cytryn, E.; Kreuzinger, N.; Rizzo, L.; Karaolia, P.; Schwartz, T.; Alexander, J.; Merlin, C.; Garelick, H.; Schmitt, H.; de Vries, D.; Schwermer, C.U.; Meric, S.; Ozkal, C.B.; Pons, M.N.; Kneis, D.; Berendonk, T.U. Antibiotic resistance genes in treated wastewater and in the receiving water bodies: A pan-European survey of urban settings. Water Res., 2019, 162, 320-330.
[http://dx.doi.org/10.1016/j.watres.2019.06.039] [PMID: 31288142]
[45]
Karkman, A.; Berglund, F.; Flach, C.F.; Kristiansson, E.; Larsson, D.G.J. Predicting clinical resistance prevalence using sewage metagenomic data. Commun. Biol., 2020, 3(1), 711.
[http://dx.doi.org/10.1038/s42003-020-01439-6] [PMID: 33244050]
[46]
Garrido-Cardenas, J.A.; Polo-López, M.I.; Oller-Alberola, I. Advanced microbial analysis for wastewater quality monitoring: Metagenomics trend. Appl. Microbiol. Biotechnol., 2017, 101(20), 7445-7458.
[http://dx.doi.org/10.1007/S00253-017-8490-3/FIGURES/3] [PMID: 28894894]
[47]
Wu, L.; Ning, D.; Zhang, B.; Li, Y.; Zhang, P.; Shan, X.; Zhang, Q.; Brown, M.R.; Li, Z.; Van Nostrand, J.D.; Ling, F.; Xiao, N.; Zhang, Y.; Vierheilig, J.; Wells, G.F.; Yang, Y.; Deng, Y.; Tu, Q.; Wang, A.; Zhang, T.; He, Z.; Keller, J.; Nielsen, P.H.; Alvarez, P.J.J.; Criddle, C.S.; Wagner, M.; Tiedje, J.M.; He, Q.; Curtis, T.P.; Stahl, D.A.; Alvarez-Cohen, L.; Rittmann, B.E.; Wen, X.; Zhou, J. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat. Microbiol., 2019, 4(7), 1183-1195.
[http://dx.doi.org/10.1038/s41564-019-0426-5] [PMID: 31086312]
[48]
Gupta, S.K.; Shin, H.; Han, D.; Hur, H.G.; Unno, T. Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment plant. J. Microbiol., 2018, 56(6), 408-415.
[http://dx.doi.org/10.1007/s12275-018-8195-z] [PMID: 29858829]
[49]
Bibby, K.; Peccia, J. Identification of viral pathogen diversity in sewage sludge by metagenome analysis. Environ. Sci. Technol., 2013, 47(4), 1945-1951.
[http://dx.doi.org/10.1038/jid.2014.371] [PMID: 23346855]
[50]
Zambon, M. C. Surveillance for antiviral resistance. Influenza Other Respi, 2013, 7, 37.
[51]
Balikagala, B.; Fukuda, N.; Ikeda, M.; Katuro, O.T.; Tachibana, S.I.; Yamauchi, M.; Opio, W.; Emoto, S.; Anywar, D.A.; Kimura, E.; Palacpac, N.M.Q.; Odongo-Aginya, E.I.; Ogwang, M.; Horii, T.; Mita, T. Evidence of artemisinin-resistant malaria in Africa. N. Engl. J. Med., 2021, 385(13), 1163-1171.
[http://dx.doi.org/10.1056/nejmoa2101746] [PMID: 34551228]
[52]
Lam, K.N.; Cheng, J.; Engel, K.; Neufeld, J.D.; Charles, T.C. Current and future resources for functional metagenomics. Front. Microbiol., 2015, 6, 1196.
[http://dx.doi.org/10.3389/fmicb.2015.01196] [PMID: 26579102]
[53]
Zhang, L.; Calvo-Bado, L.; Murray, A.K.; Amos, G.C.A.; Hawkey, P.M.; Wellington, E.M.; Gaze, W.H. Novel clinically relevant antibiotic resistance genes associated with sewage sludge and industrial waste streams revealed by functional metagenomic screening. Environ. Int., 2019, 132, 105120.
[http://dx.doi.org/10.1016/j.envint.2019.105120] [PMID: 31487611]
[54]
Petrovich, M.L.; Ben Maamar, S.; Hartmann, E.M.; Murphy, B.T.; Poretsky, R.S.; Wells, G.F. Viral composition and context in metagenomes from biofilm and suspended growth municipal wastewater treatment plants. Microb. Biotechnol., 2019, 12(6), 1324-1336.
[http://dx.doi.org/10.1111/1751-7915.13464] [PMID: 31410982]
[55]
Fernandez-Cassi, X.; Timoneda, N.; Gonzales-Gustavson, E.; Abril, J.F.; Bofill-Mas, S.; Girones, R. A metagenomic assessment of viral contamination on fresh parsley plants irrigated with fecally tainted river water. Int. J. Food Microbiol., 2017, 257, 80-90.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2017.06.001] [PMID: 28646670]
[56]
Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet., 2009, 10(1), 57-63.
[http://dx.doi.org/10.1038/nrg2484] [PMID: 19015660]
[57]
Liu, Z.; Klümper, U.; Liu, Y.; Yang, Y.; Wei, Q.; Lin, J.G.; Gu, J.D.; Li, M. Metagenomic and metatranscriptomic analyses reveal activity and hosts of antibiotic resistance genes in activated sludge. Environ. Int., 2019, 129, 208-220.
[http://dx.doi.org/10.1016/j.envint.2019.05.036] [PMID: 31129497]
[58]
Jumat, M. R.; Haroon, M. F.; Al-Jassim, N.; Cheng, H.; Hong, P.-Y. An increase of abundance and transcriptional activity for Acinetobacter junii post wastewater treatment. 2018, 10, 436.
[59]
Sekse, C.; Holst-Jensen, A.; Dobrindt, U.; Johannessen, G.S.; Li, W.; Spilsberg, B.; Shi, J. High throughput sequencing for detection of foodborne pathogens. Front. Microbiol., 2017, 8, 2029.
[http://dx.doi.org/10.3389/FMICB.2017.02029] [PMID: 29104564]
[60]
Wan, J.; Jing, Y.; Rao, Y.; Zhang, S.; Luo, G. Thermophilic alkaline fermentation followed by mesophilic anaerobic digestion for efficient hydrogen and methane production from waste-activated sludge: Dynamics of bacterial pathogens as revealed by the combination of metagenomic and quantitative PCR ana. Appl. Environ. Microbiol., 2018, 84(6), 1-14.
[http://dx.doi.org/10.1128/AEM.02632-17] [PMID: 29330191]
[61]
Maus, I.; Koeck, D.E.; Cibis, K.G.; Hahnke, S.; Kim, Y.S.; Langer, T.; Kreubel, J.; Erhard, M.; Bremges, A.; Off, S.; Stolze, Y.; Jaenicke, S.; Goesmann, A.; Sczyrba, A.; Scherer, P.; König, H.; Schwarz, W.H.; Zverlov, V.V.; Liebl, W.; Pühler, A.; Schlüter, A.; Klocke, M. Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates. Biotechnol. Biofuels, 2016, 9(1), 171.
[http://dx.doi.org/10.1186/s13068-016-0581-3] [PMID: 27525040]
[62]
Wang, Y.; Yan, Y.; Thompson, K.N.; Bae, S.; Accorsi, E.K.; Zhang, Y.; Shen, J.; Vlamakis, H.; Hartmann, E.M.; Huttenhower, C. Whole microbial community viability is not quantitatively reflected by propidium monoazide sequencing approach. Microbiome, 2021, 9(1), 17.
[http://dx.doi.org/10.1186/s40168-020-00961-3] [PMID: 33478576]
[63]
Assress, H.A.; Selvarajan, R.; Nyoni, H.; Ogola, H.J.O.; Mamba, B.B.; Msagati, T.A.M. Azole antifungal resistance in fungal isolates from wastewater treatment plant effluents. Environ. Sci. Pollut. Res. Int., 2021, 28(3), 3217-3229.
[http://dx.doi.org/10.1007/s11356-020-10688-1] [PMID: 32914303]
[64]
Sheludchenko, M.; Padovan, A.; Katouli, M.; Stratton, H. Removal of fecal indicators, pathogenic bacteria, adenovirus, cryptosporidium and giardia (oo)cysts in waste stabilization ponds in Northern and Eastern Australia. Int. J. Environ. Res. Public Health, 2016, 13(1), 96.
[http://dx.doi.org/10.3390/ijerph13010096] [PMID: 26729150]
[65]
Jünemann, S.; Kleinbölting, N.; Jaenicke, S.; Henke, C.; Hassa, J.; Nelkner, J.; Stolze, Y.; Albaum, S.P.; Schlüter, A.; Goesmann, A.; Sczyrba, A.; Stoye, J. Bioinformatics for NGS-based metagenomics and the application to biogas research. J. Biotechnol., 2017, 261(August), 10-23.
[http://dx.doi.org/10.1016/j.jbiotec.2017.08.012] [PMID: 28823476]
[66]
Johnning, A.; Moore, E.R.B.; Svensson-Stadler, L.; Shouche, Y.S.; Larsson, D.G.; Kristiansson, E. Acquired genetic mechanisms of a multiresistant bacterium isolated from a treatment plant receiving wastewater from antibiotic production. Appl. Environ. Microbiol., 2013, 79(23), 7256-7263.
[http://dx.doi.org/10.1128/AEM.02141-13] [PMID: 24038701]
[67]
Singh, N.K.; Khatri, I.; Subramanian, S.; Mayilraj, S. Genome sequencing and annotation of Acinetobacter gerneri strain MTCC 9824(T). Genom. Data, 2013, 2, 7-9.
[http://dx.doi.org/10.1016/j.gdata.2013.10.003] [PMID: 26484054]
[68]
Mullis, K.B. The unusual origin of the polymerase chain reaction. Sci. Am., 1990, 262(4), 56-61, 64-65.
[http://dx.doi.org/10.1038/scientificamerican0490-56] [PMID: 2315679]
[69]
Valasek, M.A.; Repa, J.J. The power of real-time PCR. Adv. Physiol. Educ., 2005, 29(3), 151-159.
[http://dx.doi.org/10.1152/advan] [PMID: 16109794]
[70]
Waseem, H. Contributions and challenges of high throughput qPCR for determining antimicrobial resistance in the environment: A critical review. Molecules, 2019, 24, 163.
[71]
Cuevas-Ferrando, E.; Randazzo, W.; Pérez-Cataluña, A.; Falcó, I.; Navarro, D.; Martin-Latil, S.; Díaz-Reolid, A.; Girón-Guzmán, I.; Allende, A.; Sánchez, G. Platinum chloride-based viability RT-qPCR for SARS-CoV-2 detection in complex samples. Sci. Rep., 2021, 11(1), 18120.
[http://dx.doi.org/10.1038/s41598-021-97700-x] [PMID: 34518622]
[72]
Su, J.Q.; Wei, B.; Ou-Yang, W.Y.; Huang, F.Y.; Zhao, Y.; Xu, H.J.; Zhu, Y.G. Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environ. Sci. Technol., 2015, 49(12), 7356-7363.
[http://dx.doi.org/10.1021/acs.est.5b01012] [PMID: 26018772]
[73]
Zahedi, A.; Gofton, A.W.; Greay, T.; Monis, P.; Oskam, C.; Ball, A.; Bath, A.; Watkinson, A.; Robertson, I.; Ryan, U. Profiling the diversity of cryptosporidium species and genotypes in wastewater treatment plants in Australia using next generation sequencing. Sci. Total Environ., 2018, 644, 635-648.
[http://dx.doi.org/10.1016/j.scitotenv.2018.07.024] [PMID: 30743878]
[74]
Stedtfeld, R.D.; Guo, X.; Stedtfeld, T.M.; Sheng, H.; Williams, M.R.; Hauschild, K.; Gunturu, S.; Tift, L.; Wang, F.; Howe, A.; Chai, B.; Yin, D.; Cole, J.R.; Tiedje, J.M.; Hashsham, S.A. Primer set 2.0 for highly parallel qPCR array targeting antibiotic resistance genes and mobile genetic elements. FEMS Microbiol. Ecol., 2018, 94(9), fiy130.
[http://dx.doi.org/10.1093/femsec/fiy130] [PMID: 30052926]
[75]
Barbau-Piednoir, E.; Mahillon, J.; Pillyser, J.; Coucke, W.; Roosens, N.H.; Botteldoorn, N. Evaluation of viability-qPCR detection system on viable and dead Salmonella serovar Enteritidis. J. Microbiol. Methods, 2014, 103, 131-137.
[http://dx.doi.org/10.1016/J.MIMET.2014.06.003] [PMID: 24927988]
[76]
Golpayegani, A.; Douraghi, M.; Rezaei, F.; Alimohammadi, M.; Nodehi, R.N. Propidium MonoAzide-quantitative Polymerase Chain Reaction (PMA-qPCR) assay for rapid detection of viable and Viable But Non-Culturable (VBNC) Pseudomonas aeruginosa in swimming pools. J. Environ. Health Sci. Eng., 2019, 17(1), 407-416.
[http://dx.doi.org/10.1007/S40201-019-00359-W] [PMID: 31297217]
[77]
Soejima, T.; Iwatsuki, K.J. Innovative use of palladium compounds to selectively detect live Enterobacteriaceae in milk by PCR. Appl. Environ. Microbiol., 2016, 82(23), 6930-6941.
[http://dx.doi.org/10.1128/AEM.01613-16] [PMID: 27663023]
[78]
Li, R.; Tun, H.M.; Jahan, M.; Zhang, Z.; Kumar, A.; Dilantha Fernando, W.G.; Farenhorst, A.; Khafipour, E. Comparison of DNA-, PMA-, and RNA-based 16S rRNA illumina sequencing for detection of live bacteria in water. Sci. Rep., 2017, 7(1), 5752.
[http://dx.doi.org/10.1038/s41598-017-02516-3] [PMID: 28720878]
[79]
Kibbee, R.J.; Örmeci, B. Development of a sensitive and false-positive free PMA-qPCR viability assay to quantify VBNC Escherichia coli and evaluate disinfection performance in wastewater effluent. J. Microbiol. Methods, 2017, 132, 139-147.
[http://dx.doi.org/10.1016/J.MIMET.2016.12.004] [PMID: 27932085]
[80]
Li, D.; Tong, T.; Zeng, S.; Lin, Y.; Wu, S.; He, M. Quantification of viable bacteria in wastewater treatment plants by using propidium monoazide combined with quantitative PCR (PMA-qPCR). J. Environ. Sci., 2014, 26(2), 299-306.
[http://dx.doi.org/10.1016/S1001-0742(13)60425-8] [PMID: 25076521]
[81]
Hiller, C.X.; Hübner, U.; Fajnorova, S.; Schwartz, T.; Drewes, J.E. Antibiotic Microbial Resistance (AMR) removal efficiencies by conventional and advanced wastewater treatment processes: A review. Sci. Total Environ., 2019, 685, 596-608.
[http://dx.doi.org/10.1016/j.scitotenv.2019.05.315] [PMID: 31195321]
[82]
Qin, K. A review of ARGs in WWTPs: Sources, stressors and elimination. Chin. Chem. Lett., 2020, 31(10), 2603-2613.
[http://dx.doi.org/10.1016/j.cclet.2020.04.057]
[83]
Wang, J.; Chen, X. Removal of Antibiotic Resistance Genes (ARGs) in various wastewater treatment processes: An overview. Crit. Rev. Environ. Sci. Technol., 2022, 52, 571-630.
[84]
Xue, G. Critical review of ARGs reduction behavior in various sludge and sewage treatment processes in wastewater treatment plants. Crit. Rev. Environ. Sci. Technol., 2019, 49(18), 1623-1674.
[http://dx.doi.org/10.1080/10643389.2019.1579629]
[85]
Zarei-Baygi, A.; Smith, A.L. Intracellular versus extracellular antibiotic resistance genes in the environment: Prevalence, horizontal transfer, and mitigation strategies. Bioresour. Technol., 2021, 319, 124181.
[86]
Maritz, J.M.; Ten Eyck, T.A.; Elizabeth Alter, S.; Carlton, J.M. Patterns of protist diversity associated with raw sewage in New York City. ISME J., 2019, 13(11), 2750-2763.
[http://dx.doi.org/10.1038/s41396-019-0467-z] [PMID: 31289345]
[87]
Mthethwa, N.P.; Amoah, I.D.; Reddy, P.; Bux, F.; Kumari, S. A review on application of next-generation sequencing methods for profiling of protozoan parasites in water: Current methodologies, challenges, and perspectives. J. Microbiol. Methods, 2021, 187, 106269.
[http://dx.doi.org/10.1016/j.mimet.2021.106269] [PMID: 34129906]
[88]
Sun, C.; Li, W.; Chen, Z.; Qin, W.; Wen, X. Responses of antibiotics, antibiotic resistance genes, and mobile genetic elements in sewage sludge to thermal hydrolysis pre-treatment and various anaerobic digestion conditions. Environ. Int., 2019, 133(Pt A), 105156.
[http://dx.doi.org/10.1016/j.envint.2019.105156] [PMID: 31675532]
[89]
Ju, F.; Li, B.; Ma, L.; Wang, Y.; Huang, D.; Zhang, T. Antibiotic resistance genes and human bacterial pathogens: Co-occurrence, removal, and enrichment in municipal sewage sludge digesters. Water Res., 2016, 91, 1-10.
[http://dx.doi.org/10.1016/j.watres.2015.11.071] [PMID: 26773390]
[90]
Xu, R.; Yang, Z.H.; Zheng, Y.; Wang, Q.P.; Bai, Y.; Liu, J.B.; Zhang, Y.R.; Xiong, W.P.; Lu, Y.; Fan, C.Z. Metagenomic analysis reveals the effects of long-term antibiotic pressure on sludge anaerobic digestion and antimicrobial resistance risk. Bioresour. Technol., 2019, 282, 179-188.
[http://dx.doi.org/10.1016/j.biortech.2019.02.120] [PMID: 30861447]
[91]
Huang, K.; Xia, H.; Zhang, Y.; Li, J.; Cui, G.; Li, F.; Bai, W.; Jiang, Y.; Wu, N. Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis. Bioresour. Technol., 2020, 297, 122451.
[http://dx.doi.org/10.1016/j.biortech.2019.122451] [PMID: 31787516]
[92]
Niu, L.; Li, Y.; Xu, L.; Wang, P.; Zhang, W.; Wang, C.; Cai, W.; Wang, L. Ignored fungal community in activated sludge wastewater treatment plants: Diversity and altitudinal characteristics. Environ. Sci. Pollut. Res. Int., 2017, 24(4), 4185-4193.
[http://dx.doi.org/10.1007/s11356-016-8137-4] [PMID: 27943140]
[93]
Bengtsson-Palme, J.; Milakovic, M.; Švecová, H.; Ganjto, M.; Jonsson, V.; Grabic, R.; Udikovic-Kolic, N. Industrial wastewater treatment plant enriches antibiotic resistance genes and alters the structure of microbial communities. Water Res., 2019, 162, 437-445.
[http://dx.doi.org/10.1016/j.watres.2019.06.073] [PMID: 31301473]
[94]
Heß, S.; Kneis, D.; Österlund, T.; Li, B.; Kristiansson, E.; Berendonk, T.U. Sewage from airplanes exhibits high abundance and diversity of antibiotic resistance genes. Environ. Sci. Technol., 2019, 53(23), 13898-13905.
[http://dx.doi.org/10.1021/acs.est.9b03236] [PMID: 31713420]
[95]
Caucci, S.; Karkman, A.; Cacace, D.; Rybicki, M.; Timpel, P.; Voolaid, V.; Gurke, R.; Virta, M.; Berendonk, T.U. Seasonality of antibiotic prescriptions for outpatients and resistance genes in sewers and wastewater treatment plant outflow. FEMS Microbiol. Ecol., 2016, 92(5), fiw060.
[http://dx.doi.org/10.1093/femsec/fiw060] [PMID: 27073234]
[96]
McCall, C.A.; Bent, E.; Jørgensen, T.S.; Dunfield, K.E.; Habash, M.B. Metagenomic comparison of antibiotic resistance genes associated with liquid and dewatered biosolids. J. Environ. Qual., 2016, 45(2), 463-470.
[http://dx.doi.org/10.2134/jeq2015.05.0255] [PMID: 27065392]
[97]
Forslund, K.; Sunagawa, S.; Kultima, J.R.; Mende, D.R.; Arumugam, M.; Typas, A.; Bork, P. Country-specific antibiotic use practices impact the human gut resistome. Genome Res., 2013, 23(7), 1163-1169.
[http://dx.doi.org/10.1101/gr.155465.113] [PMID: 23568836]
[98]
Kumar, S.; Sharma, A.K.; Kumar, B.; Shakya, M.; Patel, J.A.; Kumar, B.; Bisht, N.; Chigure, G.M.; Singh, K.; Kumar, R.; Kumar, S.; Srivastava, S.; Rawat, P.; Ghosh, S. Characterization of deltamethrin, cypermethrin, coumaphos and ivermectin resistance in populations of Rhipicephalus microplus in India and efficacy of an antitick natural formulation prepared from ageratum conyzoides. Ticks Tick Borne Dis., 2021, 12(6), 101818.
[http://dx.doi.org/10.1016/j.ttbdis.2021.101818] [PMID: 34537543]
[99]
Dauparaitė, E.; Kupčinskas, T.; von Samson-Himmelstjerna, G.; Petkevičius, S. Anthelmintic resistance of horse strongyle nematodes to ivermectin and pyrantel in Lithuania. Acta Vet. Scand., 2021, 63(1), 5.
[http://dx.doi.org/10.1186/s13028-021-00569-z] [PMID: 33494770]
[100]
WHO. Soil-transmitted helminth infections. Lancet, 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections
[101]
Marzano, V.; Mancinelli, L.; Bracaglia, G.; Del Chierico, F.; Vernocchi, P.; Di Girolamo, F.; Garrone, S.; Tchidjou Kuekou, H.; D’Argenio, P.; Dallapiccola, B.; Urbani, A.; Putignani, L. “Omic” investigations of protozoa and worms for a deeper understanding of the human gut “parasitome”. PLoS Negl. Trop. Dis., 2017, 11(11), e0005916.
[http://dx.doi.org/10.1371/JOURNAL.PNTD.0005916] [PMID: 29095820]
[102]
Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in The Netherlands. Cite This Environ. Sci. Technol. Lett, 2020, 7, 511-516.
[http://dx.doi.org/10.1021/acs.estlett.0c00357]
[103]
Balboa, S.; Mauricio-Iglesias, M.; Rodriguez, S.; Martínez-Lamas, L.; Vasallo, F.J.; Regueiro, B.; Lema, J.M. The fate of SARS-COV-2 in WWTPS points out the sludge line as a suitable spot for detection of COVID-19. Sci. Total Environ., 2021, 772, 145268.
[http://dx.doi.org/10.1016/j.scitotenv.2021.145268] [PMID: 33556806]
[104]
Kitajima, M.; Iker, B.C.; Pepper, I.L.; Gerba, C.P. Relative abundance and treatment reduction of viruses during wastewater treatment processes--identification of potential viral indicators. Sci. Total Environ., 2014, 488(1), 290-296.
[http://dx.doi.org/10.1016/j.scitotenv.2014.04.087] [PMID: 24836386]
[105]
Crank, K.; Li, X.; North, D.; Ferraro, G.B.; Iaconelli, M.; Mancini, P.; La Rosa, G.; Bibby, K. CrAssphage abundance and correlation with molecular viral markers in Italian wastewater. Water Res., 2020, 184, 116161.
[http://dx.doi.org/10.1016/j.watres.2020.116161] [PMID: 32810770]
[106]
Bengtsson-Palme, J.; Hammarén, R.; Pal, C.; Östman, M.; Björlenius, B.; Flach, C.F.; Fick, J.; Kristiansson, E.; Tysklind, M.; Larsson, D.G.J. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci. Total Environ., 2016, 572, 697-712.
[http://dx.doi.org/10.1016/j.scitotenv.2016.06.228] [PMID: 27542633]
[107]
Rana, D. Comparison of Cellulose Acetate (CA) membrane and novel CA membranes containing surface modifying macromolecules to remove pharmaceutical and personal care product micropollutants from drinking water. J. Membr. Sci., 2012, 409, 346-354.
[http://dx.doi.org/10.1016/J.MEMSCI.2012.04.005]
[108]
Narbaitz, R.M. Pharmaceutical and personal care products removal from drinking water by modified cellulose acetate membrane: Field testing. Chem. Eng. J., 2013, 225, 848-856.
[http://dx.doi.org/10.1016/J.CEJ.2013.04.050]
[109]
Wang, S.; Ma, X.; Liu, Y.; Yi, X.; Du, G.; Li, J. Fate of antibiotics, antibiotic-resistant bacteria, and cell-free antibiotic-resistant genes in full-scale membrane bioreactor wastewater treatment plants. Bioresour. Technol., 2020, 302(January), 122825.
[http://dx.doi.org/10.1016/j.biortech.2020.122825] [PMID: 31986335]
[110]
Ekowati, Y.; van Diepeningen, A.D.; Ferrero, G.; Kennedy, M.D.; de Roda Husman, A.M.; Schets, F.M. Clinically relevant fungi in water and on surfaces in an indoor swimming pool facility. Int. J. Hyg. Environ. Health, 2017, 220(7), 1152-1160.
[http://dx.doi.org/10.1016/j.ijheh.2017.07.002] [PMID: 28716483]
[111]
Li, P.; Wu, Y.; He, Y.; Zhang, B.; Huang, Y.; Yuan, Q.; Chen, Y. Occurrence and fate of antibiotic residues and antibiotic resistance genes in a reservoir with ecological purification facilities for drinking water sources. Sci. Total Environ., 2020, 707, 135276.
[http://dx.doi.org/10.1016/j.scitotenv.2019.135276] [PMID: 31864005]
[112]
Morrison, C.M.; Betancourt, W.Q.; Quintanar, D.R.; Lopez, G.U.; Pepper, I.L.; Gerba, C.P. Potential indicators of virus transport and removal during soil aquifer treatment of treated wastewater effluent. Water Res., 2020, 177(115812), 115812.
[http://dx.doi.org/10.1016/j.watres.2020.115812] [PMID: 32311575]
[113]
Nnadozie, C. F.; Kumari, S.; Bux, F. Status of pathogens, antibiotic resistance genes and antibiotic residues in wastewater treatment systems. Rev. Environ. Sci. Biotechnol., 2017, 16, 491-515.
[114]
De Los Cobos-Vasconcelos, D.; Villalba-Pastrana, M.E.; Noyola, A. Effective pathogen removal by low temperature thermal pre-treatment and anaerobic digestion for class a biosolids production from sewage sludge. J. Water Sanit. Hyg. Dev., 2015, 5(1), 56-63.
[http://dx.doi.org/10.2166/washdev.2014.036]
[115]
Popova, T.P.; Marinova-Garvanska, S.M.; Kaleva, M.D.; Zaharinov, B.S.; Gencheva, A.B.; Baykov, B.D. Decontamination of sewage sludge by treatment with calcium oxide. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(9), 184-192.
[116]
An, X.L.; Su, J.Q.; Li, B.; Ouyang, W.Y.; Zhao, Y.; Chen, Q.L.; Cui, L.; Chen, H.; Gillings, M.R.; Zhang, T.; Zhu, Y.G. Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR. Environ. Int., 2018, 117, 146-153.
[http://dx.doi.org/10.1016/j.envint.2018.05.011] [PMID: 29751164]
[117]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[118]
Yadav, S.; Kapley, A. Exploration of activated sludge resistome using metagenomics. Sci. Total Environ., 2019, 692, 1155-1164.
[http://dx.doi.org/10.1016/j.scitotenv.2019.07.267] [PMID: 31539947]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy