Review Article

脂质吞噬:糖尿病肾病的潜在治疗靶点

卷 30, 期 16, 2023

发表于: 04 October, 2022

页: [1875 - 1886] 页: 12

弟呕挨: 10.2174/0929867329666220727113129

价格: $65

conference banner
摘要

糖尿病肾病(DN)是糖尿病的严重并发症,也是终晚肾病(ESRD)的主要原因之一。导致DN进展的因素很多。脂质代谢紊乱是DN的常见临床表现,异位肾脂质沉积最近被认为是促进DN发展的关键因素。脂质吞噬是一种新发现的选择性自噬,可以清除细胞中过量的脂质以维持脂质稳态。最近,嗜脂性异常也与DN的进展有关。在这里,我们讨论了脂滴的形成,描述了亲脂性及其关键调节信号,总结了目前DN中亲脂性的研究进展,最后提出亲脂性可能是治疗DN的潜在靶点。

关键词: 糖尿病肾病(DN),嗜脂性,脂滴,脂质稳态,自噬,肾脏。

[1]
Yang, M.; Wang, X.; Han, Y.; Li, C.; Wei, L.; Yang, J.; Chen, W.; Zhu, X.; Sun, L. Targeting the NLRP3 inflammasome in diabetic nephropathy. Curr. Med. Chem., 2021, 28(42), 8810-8824.
[http://dx.doi.org/10.2174/0929867328666210705153109] [PMID: 34225600]
[2]
Zhang, P.N.; Zhou, M.Q.; Guo, J.; Zheng, H.J.; Tang, J.; Zhang, C.; Liu, Y.N.; Liu, W.J.; Wang, Y.X. Mitochondrial dysfunction and diabetic nephropathy: Nontraditional therapeutic opportunities. J. Diabetes Res., 2021, 2021, 1010268.
[http://dx.doi.org/10.1155/2021/1010268] [PMID: 34926696]
[3]
Wongmekiat, O.; Lailerd, N.; Kobroob, A.; Peerapanyasut, W. Protective effects of purple rice husk against diabetic nephropathy by modulating PGC-1alpha/SIRT3/SOD2 signaling and maintaining mitochondrial redox equilibrium in rats. Biomolecules, 2021, 11(8), 11.
[http://dx.doi.org/10.3390/biom11081224] [PMID: 34439892]
[4]
Pang, X.; Zhang, Y.; Shi, X.; Li, D.; Han, J. ERp44 depletion exacerbates ER stress and aggravates diabetic nephropathy in db/db mice. Biochem. Biophys. Res. Commun., 2018, 504(4), 921-926.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.037] [PMID: 30224065]
[5]
Huang, W.; Man, Y.; Gao, C.; Zhou, L.; Gu, J.; Xu, H.; Wan, Q.; Long, Y.; Chai, L.; Xu, Y.; Xu, Y. Short-chain fatty acids ameliorate diabetic nephropathy via GPR43-Mediated inhibition of oxidative stress and NF-kappaB signaling. Oxid. Med. Cell. Longev., 2020, 2020, 4074832.
[http://dx.doi.org/10.1155/2020/4074832] [PMID: 32831998]
[6]
Herman-Edelstein, M.; Scherzer, P.; Tobar, A.; Levi, M.; Gafter, U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J. Lipid Res., 2014, 55(3), 561-572.
[http://dx.doi.org/10.1194/jlr.P040501] [PMID: 24371263]
[7]
Lingwood, D.; Simons, K. Lipid rafts as a membrane-organizing principle. Science, 2010, 327(5961), 46-50.
[http://dx.doi.org/10.1126/science.1174621] [PMID: 20044567]
[8]
Walther, T.C.; Farese, R.V., Jr. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem., 2012, 81, 687-714.
[http://dx.doi.org/10.1146/annurev-biochem-061009-102430] [PMID: 22524315]
[9]
Srivastava, S.P.; Shi, S.; Koya, D.; Kanasaki, K. Lipid mediators in diabetic nephropathy. Fibrogenesis Tissue Repair, 2014, 7, 12.
[http://dx.doi.org/10.1186/1755-1536-7-12] [PMID: 25206927]
[10]
Guebre-Egziabher, F.; Alix, P.M.; Koppe, L.; Pelletier, C.C.; Kalbacher, E.; Fouque, D.; Soulage, C.O. Ectopic lipid accumulation: A potential cause for metabolic disturbances and a contributor to the alteration of kidney function. Biochimie, 2013, 95(11), 1971-1979.
[http://dx.doi.org/10.1016/j.biochi.2013.07.017] [PMID: 23896376]
[11]
Chen, X.; Han, Y.; Gao, P.; Yang, M.; Xiao, L.; Xiong, X.; Zhao, H.; Tang, C.; Chen, G.; Zhu, X.; Yuan, S.; Liu, F.; Dong, L.Q.; Liu, F.; Kanwar, Y.S.; Sun, L. Disulfide-bond A oxidoreductase-like protein protects against ectopic fat deposition and lipid-related kidney damage in diabetic nephropathy. Kidney Int., 2019, 95(4), 880-895.
[http://dx.doi.org/10.1016/j.kint.2018.10.038] [PMID: 30791996]
[12]
Yang, M.; Han, Y.; Luo, S.; Xiong, X.; Zhu, X.; Zhao, H.; Jiang, N.; Xiao, Y.; Wei, L.; Li, C.; Yang, J.; Sun, L. MAMs protect against ectopic fat deposition and lipid-related kidney damage in DN patients. Front. Endocrinol. (Lausanne), 2021, 12, 609580.
[http://dx.doi.org/10.3389/fendo.2021.609580] [PMID: 33679616]
[13]
Wu, L.; Liu, C.; Chang, D.Y.; Zhan, R.; Zhao, M.; Man Lam, S.; Shui, G.; Zhao, M.H.; Zheng, L.; Chen, M. The attenuation of diabetic nephropathy by annexin a1 via regulation of lipid metabolism through the AMPK/PPARalpha/CPT1b pathway. Diabetes, 2021, 70(10), 2192-2203.
[http://dx.doi.org/10.2337/db21-0050] [PMID: 34103347]
[14]
Schulze, R.J.; Sathyanarayan, A.; Mashek, D.G. Breaking fat: The regulation and mechanisms of lipophagy. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(10 Pt B), 1178-1187.
[http://dx.doi.org/10.1016/j.bbalip.2017.06.008] [PMID: 28642194]
[15]
Gao, Y.; Zhang, W.; Zeng, L.Q.; Bai, H.; Li, J.; Zhou, J.; Zhou, G.Y.; Fang, C.W.; Wang, F.; Qin, X.J. Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy. Redox Biol., 2020, 36, 101635.
[http://dx.doi.org/10.1016/j.redox.2020.101635] [PMID: 32863214]
[16]
Jackson, C.L. Lipid droplet biogenesis. Curr. Opin. Cell Biol., 2019, 59, 88-96.
[http://dx.doi.org/10.1016/j.ceb.2019.03.018] [PMID: 31075519]
[17]
Jarc, E.; Petan, T. Lipid droplets and the management of cellular stress. Yale J. Biol. Med., 2019, 92(3), 435-452.
[PMID: 31543707]
[18]
Nishimura, T.; Stefan, C.J. Specialized ER membrane domains for lipid metabolism and transport. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2020, 1865(1), 158492.
[http://dx.doi.org/10.1016/j.bbalip.2019.07.001] [PMID: 31349025]
[19]
Chen, F.J.; Yin, Y.; Chua, B.T.; Li, P. CIDE family proteins control lipid homeostasis and the development of metabolic diseases. Traffic, 2020, 21(1), 94-105.
[http://dx.doi.org/10.1111/tra.12717] [PMID: 31746121]
[20]
Walther, T.C.; Chung, J.; Farese, R.V., Jr. Lipid droplet biogenesis. Annu. Rev. Cell Dev. Biol., 2017, 33, 491-510.
[http://dx.doi.org/10.1146/annurev-cellbio-100616-060608] [PMID: 28793795]
[21]
Cui, L.; Liu, P. Two types of contact between lipid droplets and mitochondria. Front. Cell Dev. Biol., 2020, 8, 618322.
[http://dx.doi.org/10.3389/fcell.2020.618322] [PMID: 33385001]
[22]
Mirza, A.H.; Cui, L.; Zhang, S.; Liu, P. Comparative proteomics reveals that lipid droplet-anchored mitochondria are more sensitive to cold in brown adipocytes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2021, 1866(10), 158992.
[http://dx.doi.org/10.1016/j.bbalip.2021.158992] [PMID: 34147658]
[23]
Li, D.; Zhao, Y.G.; Li, D.; Zhao, H.; Huang, J.; Miao, G.; Feng, D.; Liu, P.; Li, D.; Zhang, H. The ER-localized protein DFCP1 modulates ER-Lipid droplet contact formation. Cell Rep., 2019, 27(2), 343-358.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.03.025] [PMID: 30970241]
[24]
Du, X.; Zhou, L.; Aw, Y.C.; Mak, H.Y.; Xu, Y.; Rae, J.; Wang, W.; Zadoorian, A.; Hancock, S.E.; Osborne, B.; Chen, X.; Wu, J.W.; Turner, N.; Parton, R.G.; Li, P.; Yang, H. ORP5 localizes to ER-lipid droplet contacts and regulates the level of PI(4)P on lipid droplets. J. Cell Biol., 2020, 219(1), 219.
[http://dx.doi.org/10.1083/jcb.201905162] [PMID: 31653673]
[25]
Fuchs, C.D.; Claudel, T.; Kumari, P.; Haemmerle, G.; Pollheimer, M.J.; Stojakovic, T.; Scharnagl, H.; Halilbasic, E.; Gumhold, J.; Silbert, D.; Koefeler, H.; Trauner, M. Absence of adipose triglyceride lipase protects from hepatic endoplasmic reticulum stress in mice. Hepatology, 2012, 56(1), 270-280.
[http://dx.doi.org/10.1002/hep.25601] [PMID: 22271167]
[26]
Ohsaki, Y.; Kawai, T.; Yoshikawa, Y.; Cheng, J.; Jokitalo, E.; Fujimoto, T. PML isoform II plays a critical role in nuclear lipid droplet formation. J. Cell Biol., 2016, 212(1), 29-38.
[http://dx.doi.org/10.1083/jcb.201507122] [PMID: 26728854]
[27]
Valm, A.M.; Cohen, S.; Legant, W.R.; Melunis, J.; Hershberg, U.; Wait, E.; Cohen, A.R.; Davidson, M.W.; Betzig, E.; Lippincott-Schwartz, J. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature, 2017, 546(7656), 162-167.
[http://dx.doi.org/10.1038/nature22369] [PMID: 28538724]
[28]
Kaushik, S.; Cuervo, A.M. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol., 2015, 17(6), 759-770.
[http://dx.doi.org/10.1038/ncb3166] [PMID: 25961502]
[29]
Welte, M.A.; Gould, A.P. Lipid droplet functions beyond energy storage. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(10 Pt B), 1260-1272.
[http://dx.doi.org/10.1016/j.bbalip.2017.07.006] [PMID: 28735096]
[30]
Bartness, T.J.; Liu, Y.; Shrestha, Y.B.; Ryu, V. Neural innervation of white adipose tissue and the control of lipolysis. Front. Neuroendocrinol., 2014, 35(4), 473-493.
[http://dx.doi.org/10.1016/j.yfrne.2014.04.001] [PMID: 24736043]
[31]
Shin, D.W. Lipophagy: Molecular mechanisms and implications in metabolic disorders. Mol. Cells, 2020, 43(8), 686-693.
[PMID: 32624503]
[32]
Fredrikson, G.; Tornqvist, H.; Belfrage, P. Hormone-sensitive lipase and monoacylglycerol lipase are both required for complete degradation of adipocyte triacylglycerol. Biochim. Biophys. Acta, 1986, 876(2), 288-293.
[http://dx.doi.org/10.1016/0005-2760(86)90286-9] [PMID: 3955067]
[33]
Kaushik, S.; Cuervo, A.M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol., 2018, 19(6), 365-381.
[http://dx.doi.org/10.1038/s41580-018-0001-6] [PMID: 29626215]
[34]
Andrade-Tomaz, M.; de Souza, I.; Rocha, C.; Gomes, L.R. The role of Chaperone-Mediated autophagy in cell cycle control and its implications in cancer; CELLS-BASEL, 2020, p. 9.
[35]
Onishi, M.; Yamano, K.; Sato, M.; Matsuda, N.; Okamoto, K. Molecular mechanisms and physiological functions of mitophagy. EMBO J., 2021, 40(3), e104705.
[http://dx.doi.org/10.15252/embj.2020104705] [PMID: 33438778]
[36]
Chino, H.; Mizushima, N. ER-Phagy: Quality control and turnover of endoplasmic reticulum. Trends Cell Biol., 2020, 30(5), 384-398.
[http://dx.doi.org/10.1016/j.tcb.2020.02.001] [PMID: 32302550]
[37]
Singh, R.; Kaushik, S.; Wang, Y.; Xiang, Y.; Novak, I.; Komatsu, M.; Tanaka, K.; Cuervo, A.M.; Czaja, M.J. Autophagy regulates lipid metabolism. Nature, 2009, 458(7242), 1131-1135.
[http://dx.doi.org/10.1038/nature07976] [PMID: 19339967]
[38]
Ao, X.; Zou, L.; Wu, Y. Regulation of autophagy by the Rab GTPase network. Cell Death Differ., 2014, 21(3), 348-358.
[http://dx.doi.org/10.1038/cdd.2013.187] [PMID: 24440914]
[39]
Jain, N.; Ganesh, S. Emerging nexus between RAB GTPases, autophagy and neurodegeneration. Autophagy, 2016, 12(5), 900-904.
[http://dx.doi.org/10.1080/15548627.2016.1147673] [PMID: 26985808]
[40]
Schroeder, B.; Schulze, R.J.; Weller, S.G.; Sletten, A.C.; Casey, C.A.; McNiven, M.A. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology, 2015, 61(6), 1896-1907.
[http://dx.doi.org/10.1002/hep.27667] [PMID: 25565581]
[41]
Schulze, R.J.; Rasineni, K.; Weller, S.G.; Schott, M.B.; Schroeder, B.; Casey, C.A.; McNiven, M.A. Ethanol exposure inhibits hepatocyte lipophagy by inactivating the small guanosine triphosphatase Rab7. Hepatol. Commun., 2017, 1(2), 140-152.
[http://dx.doi.org/10.1002/hep4.1021] [PMID: 29404450]
[42]
Li, Z.; Schulze, R.J.; Weller, S.G.; Krueger, E.W.; Schott, M.B.; Zhang, X.; Casey, C.A.; Liu, J.; Stöckli, J.; James, D.E.; McNiven, M.A. A novel Rab10-EHBP1-EHD2 complex essential for the autophagic engulfment of lipid droplets. Sci. Adv., 2016, 2(12), e1601470.
[http://dx.doi.org/10.1126/sciadv.1601470] [PMID: 28028537]
[43]
Li, Z.; Weller, S.G.; Drizyte-Miller, K.; Chen, J.; Krueger, E.W.; Mehall, B.; Casey, C.A.; Cao, H.; McNiven, M.A. Maturation of lipophagic organelles in hepatocytes is dependent upon a Rab10/Dynamin-2 complex. Hepatology, 2020, 72(2), 486-502.
[http://dx.doi.org/10.1002/hep.31059] [PMID: 31808574]
[44]
Bekbulat, F.; Schmitt, D.; Feldmann, A.; Huesmann, H.; Eimer, S.; Juretschke, T.; Beli, P.; Behl, C.; Kern, A. RAB18 loss interferes with lipid droplet catabolism and provokes autophagy network adaptations. J. Mol. Biol., 2020, 432(4), 1216-1234.
[http://dx.doi.org/10.1016/j.jmb.2019.12.031] [PMID: 31874152]
[45]
Feldmann, A.; Bekbulat, F.; Huesmann, H.; Ulbrich, S.; Tatzelt, J.; Behl, C.; Kern, A. The RAB GTPase RAB18 modulates macroautophagy and proteostasis. Biochem. Biophys. Res. Commun., 2017, 486(3), 738-743.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.112] [PMID: 28342870]
[46]
Hirabayashi, T.; Murakami, M.; Kihara, A. The role of PNPLA1 in ω-O-acylceramide synthesis and skin barrier function. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2019, 1864(6), 869-879.
[http://dx.doi.org/10.1016/j.bbalip.2018.09.010] [PMID: 30290227]
[47]
Martinez-Lopez, N.; Garcia-Macia, M.; Sahu, S.; Athonvarangkul, D.; Liebling, E.; Merlo, P.; Cecconi, F.; Schwartz, G.J.; Singh, R. Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver. Cell Metab., 2016, 23(1), 113-127.
[http://dx.doi.org/10.1016/j.cmet.2015.10.008] [PMID: 26698918]
[48]
Sathyanarayan, A.; Mashek, M.T.; Mashek, D.G. ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism. Cell Rep., 2017, 19(1), 1-9.
[http://dx.doi.org/10.1016/j.celrep.2017.03.026] [PMID: 28380348]
[49]
Schwerbel, K.; Kamitz, A.; Krahmer, N.; Hallahan, N.; Jähnert, M.; Gottmann, P.; Lebek, S.; Schallschmidt, T.; Arends, D.; Schumacher, F.; Kleuser, B.; Haltenhof, T.; Heyd, F.; Gancheva, S.; Broman, K.W.; Roden, M.; Joost, H.G.; Chadt, A.; Al-Hasani, H.; Vogel, H.; Jonas, W.; Schürmann, A. Immunity-related GTPase induces lipophagy to prevent excess hepatic lipid accumulation. J. Hepatol., 2020, 73(4), 771-782.
[http://dx.doi.org/10.1016/j.jhep.2020.04.031] [PMID: 32376415]
[50]
Tang, M.; Hu, Z.; Rao, C.; Chen, J.; Yuan, S.; Zhang, J.; Mao, C.; Yan, J.; Xia, Y.; Zhang, M.; Yue, J.; Xiang, Y.; Xie, J.; Mao, X.; Li, Q. Burkholderia pseudomallei interferes with host lipid metabolism via NR1D2-mediated PNPLA2/ATGL suppression to block autophagy-dependent inhibition of infection. Autophagy, 2021, 17(8), 1918-1933.
[http://dx.doi.org/10.1080/15548627.2020.1801270] [PMID: 32777979]
[51]
Basu Ray, S. PNPLA3-I148M: A problem of plenty in non-alcoholic fatty liver disease. Adipocyte, 2019, 8(1), 201-208.
[http://dx.doi.org/10.1080/21623945.2019.1607423] [PMID: 31062641]
[52]
Negoita, F.; Blomdahl, J.; Wasserstrom, S.; Winberg, M.E.; Osmark, P.; Larsson, S.; Stenkula, K.G.; Ekstedt, M.; Kechagias, S.; Holm, C.; Jones, H.A. PNPLA3 variant M148 causes resistance to starvation-mediated lipid droplet autophagy in human hepatocytes. J. Cell. Biochem., 2019, 120(1), 343-356.
[http://dx.doi.org/10.1002/jcb.27378] [PMID: 30171718]
[53]
Xu, B.; Shen, J.; Li, D.; Ning, B.; Guo, L.; Bing, H.; Chen, J.; Li, Y. Overexpression of microRNA-9 inhibits 3T3-L1 cell adipogenesis by targeting PNPLA3 via activation of AMPK. Gene, 2020, 730, 144260.
[http://dx.doi.org/10.1016/j.gene.2019.144260] [PMID: 31759991]
[54]
Dupont, N.; Chauhan, S.; Arko-Mensah, J.; Castillo, E.F.; Masedunskas, A.; Weigert, R.; Robenek, H.; Proikas-Cezanne, T.; Deretic, V. Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr. Biol., 2014, 24(6), 609-620.
[http://dx.doi.org/10.1016/j.cub.2014.02.008] [PMID: 24613307]
[55]
Kim, K.Y.; Jang, H.J.; Yang, Y.R.; Park, K.I.; Seo, J.; Shin, I.W.; Jeon, T.I.; Ahn, S.C.; Suh, P.G.; Osborne, T.F.; Seo, Y.K. SREBP-2/PNPLA8 axis improves non-alcoholic fatty liver disease through activation of autophagy. Sci. Rep., 2016, 6, 35732.
[http://dx.doi.org/10.1038/srep35732] [PMID: 27767079]
[56]
Voisin, M.; Gage, M.C.; Becares, N.; Shrestha, E.; Fisher, E.A.; Pineda-Torra, I.; Garabedian, M.J. LXRalpha phosphorylation in cardiometabolic disease: Insight from mouse models. Endocrinology, 2020, 161(7), 161.
[http://dx.doi.org/10.1210/endocr/bqaa089] [PMID: 32496563]
[57]
Wang, B.; Tontonoz, P. Liver X receptors in lipid signalling and membrane homeostasis. Nat. Rev. Endocrinol., 2018, 14(8), 452-463.
[http://dx.doi.org/10.1038/s41574-018-0037-x] [PMID: 29904174]
[58]
Parikh, M.; Patel, K.; Soni, S.; Gandhi, T. Liver X receptor: A cardinal target for atherosclerosis and beyond. J. Atheroscler. Thromb., 2014, 21(6), 519-531.
[http://dx.doi.org/10.5551/jat.19778] [PMID: 24695022]
[59]
Hashimoto, K.; Mori, M. Crosstalk of thyroid hormone receptor and liver X receptor in lipid metabolism and beyond [Review]. Endocr. J., 2011, 58(11), 921-930. [Review].
[http://dx.doi.org/10.1507/endocrj.EJ11-0114] [PMID: 21908933]
[60]
Fiévet, C.; Staels, B. Liver X receptor modulators: Effects on lipid metabolism and potential use in the treatment of atherosclerosis. Biochem. Pharmacol., 2009, 77(8), 1316-1327.
[http://dx.doi.org/10.1016/j.bcp.2008.11.026] [PMID: 19101522]
[61]
Zhang, Z.; Tang, S.; Gui, W.; Lin, X.; Zheng, F.; Wu, F.; Li, H. Liver X receptor activation induces podocyte injury via inhibiting autophagic activity. J. Physiol. Biochem., 2020, 76(2), 317-328.
[http://dx.doi.org/10.1007/s13105-020-00737-1] [PMID: 32328877]
[62]
Zhang, Y.; Breevoort, S.R.; Angdisen, J.; Fu, M.; Schmidt, D.R.; Holmstrom, S.R.; Kliewer, S.A.; Mangelsdorf, D.J.; Schulman, I.G. Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. J. Clin. Invest., 2012, 122(5), 1688-1699.
[http://dx.doi.org/10.1172/JCI59817] [PMID: 22484817]
[63]
Liang, X.; Wang, C.; Sun, Y.; Song, W.; Lin, J.; Li, J.; Guan, X. p62/mTOR/LXRα pathway inhibits cholesterol efflux mediated by ABCA1 and ABCG1 during autophagy blockage. Biochem. Biophys. Res. Commun., 2019, 514(4), 1093-1100.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.134] [PMID: 31101336]
[64]
Li, F.; Zhao, X.; Li, H.; Liu, Y.; Zhang, Y.; Huang, X.; Cao, J.; Du, F.; Wu, D.; Yu, H. Hepatic lysosomal acid lipase drives the autophagy-lysosomal response and alleviates cholesterol metabolic disorder in ApoE deficient mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2021, 1866(12), 159027.
[http://dx.doi.org/10.1016/j.bbalip.2021.159027] [PMID: 34416392]
[65]
Carotti, S.; Aquilano, K.; Valentini, F.; Ruggiero, S.; Alletto, F.; Morini, S.; Picardi, A.; Antonelli-Incalzi, R.; Lettieri-Barbato, D.; Vespasiani-Gentilucci, U. An overview of deregulated lipid metabolism in nonalcoholic fatty liver disease with special focus on lysosomal acid lipase. Am. J. Physiol. Gastrointest. Liver Physiol., 2020, 319(4), G469-G480.
[http://dx.doi.org/10.1152/ajpgi.00049.2020] [PMID: 32812776]
[66]
Kim, Y.S.; Nam, H.J.; Han, C.Y.; Joo, M.S.; Jang, K.; Jun, D.W.; Kim, S.G. Liver x receptor alpha activation inhibits autophagy and lipophagy in hepatocytes by dysregulating autophagy-related 4B cysteine peptidase and Rab-8B, reducing mitochondrial fuel oxidation. Hepatology, 2021, 73(4), 1307-1326.
[http://dx.doi.org/10.1002/hep.31423] [PMID: 32557804]
[67]
Zhang, C.J.; Zhu, N.; Long, J.; Wu, H.T.; Wang, Y.X.; Liu, B.Y.; Liao, D.F.; Qin, L. Celastrol induces lipophagy via the LXRα/ABCA1 pathway in clear cell renal cell carcinoma. Acta Pharmacol. Sin., 2021, 42(9), 1472-1485.
[http://dx.doi.org/10.1038/s41401-020-00572-6] [PMID: 33303989]
[68]
Xiao, J.; Deng, Y.M.; Liu, X.R.; Cao, J.P.; Zhou, M.; Tang, Y.L.; Xiong, W.H.; Jiang, Z.S.; Tang, Z.H.; Liu, L.S. PCSK9: A new participant in lipophagy in regulating atherosclerosis? Clin. Chim. Acta, 2019, 495, 358-364.
[http://dx.doi.org/10.1016/j.cca.2019.05.005] [PMID: 31075236]
[69]
Farnier, M. PCSK9: From discovery to therapeutic applications. Arch. Cardiovasc. Dis., 2014, 107(1), 58-66.
[http://dx.doi.org/10.1016/j.acvd.2013.10.007] [PMID: 24373748]
[70]
Zhang, D.W.; Lagace, T.A.; Garuti, R.; Zhao, Z.; McDonald, M.; Horton, J.D.; Cohen, J.C.; Hobbs, H.H. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J. Biol. Chem., 2007, 282(25), 18602-18612.
[http://dx.doi.org/10.1074/jbc.M702027200] [PMID: 17452316]
[71]
Ding, Z.; Wang, X.; Liu, S.; Shahanawaz, J.; Theus, S.; Fan, Y.; Deng, X.; Zhou, S.; Mehta, J.L. PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and development of autophagy. Cardiovasc. Res., 2018, 114(13), 1738-1751.
[http://dx.doi.org/10.1093/cvr/cvy128] [PMID: 29800228]
[72]
Sun, H.; Krauss, R.M.; Chang, J.T.; Teng, B.B. PCSK9 deficiency reduces atherosclerosis, apolipoprotein B secretion, and endothelial dysfunction. J. Lipid Res., 2018, 59(2), 207-223.
[http://dx.doi.org/10.1194/jlr.M078360] [PMID: 29180444]
[73]
Liu, W.J.; Huang, W.F.; Ye, L.; Chen, R.H.; Yang, C.; Wu, H.L.; Pan, Q.J.; Liu, H.F. The activity and role of autophagy in the pathogenesis of diabetic nephropathy. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(10), 3182-3189.
[PMID: 29863264]
[74]
Li, A.; Yi, B.; Han, H.; Yang, S.; Hu, Z.; Zheng, L.; Wang, J.; Liao, Q.; Zhang, H. Vitamin D-VDR (vitamin D receptor) regulates defective autophagy in renal tubular epithelial cell in streptozotocin-induced diabetic mice via the AMPK pathway. Autophagy, 2022, 18(4), 877-890.
[PMID: 34432556]
[75]
Wang, X.; Zhao, L.; Ajay, A.K.; Jiao, B.; Zhang, X.; Wang, C.; Gao, X.; Yuan, Z.; Liu, H.; Liu, W.J. QiDiTang- Shen granules activate renal nutrient-sensing associated autophagy in db/db Mice. Front. Physiol., 2019, 10, 1224.
[http://dx.doi.org/10.3389/fphys.2019.01224] [PMID: 31632286]
[76]
Lv, L.; Zhang, J.; Tian, F.; Li, X.; Li, D.; Yu, X. Arbutin protects HK-2 cells against high glucose-induced apoptosis and autophagy by up-regulating microRNA-27a. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2940-2947.
[http://dx.doi.org/10.1080/21691401.2019.1640231] [PMID: 31319730]
[77]
Huang, H.; Ni, H.; Ma, K.; Zou, J. ANGPTL2 regulates autophagy through the MEK/ERK/Nrf-1 pathway and affects the progression of renal fibrosis in diabetic nephropathy. Am. J. Transl. Res., 2019, 11(9), 5472-5486.
[PMID: 31632523]
[78]
Yamahara, K.; Kume, S.; Koya, D.; Tanaka, Y.; Morita, Y.; Chin-Kanasaki, M.; Araki, H.; Isshiki, K.; Araki, S.; Haneda, M.; Matsusaka, T.; Kashiwagi, A.; Maegawa, H.; Uzu, T. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions. J. Am. Soc. Nephrol., 2013, 24(11), 1769-1781.
[http://dx.doi.org/10.1681/ASN.2012111080] [PMID: 24092929]
[79]
Han, Y.; Xiong, S.; Zhao, H.; Yang, S.; Yang, M.; Zhu, X.; Jiang, N.; Xiong, X.; Gao, P.; Wei, L.; Xiao, Y.; Sun, L. Lipophagy deficiency exacerbates ectopic lipid accumulation and tubular cells injury in diabetic nephropathy. Cell Death Dis., 2021, 12(11), 1031.
[http://dx.doi.org/10.1038/s41419-021-04326-y] [PMID: 34718329]
[80]
Kimmelstiel, P.; Wilson, C. Intercapillary lesions in the glomeruli of the kidney. Am. J. Pathol., 1936, 12(1), 83-98, 7.
[PMID: 19970254]
[81]
Su, K.; Yi, B.; Yao, B.Q.; Xia, T.; Yang, Y.F.; Zhang, Z.H.; Chen, C. Liraglutide attenuates renal tubular ectopic lipid deposition in rats with diabetic nephropathy by inhibiting lipid synthesis and promoting lipolysis. Pharmacol. Res., 2020, 156, 104778.
[http://dx.doi.org/10.1016/j.phrs.2020.104778] [PMID: 32247822]
[82]
Wang, C.; Min, C.; Rong, X.; Fu, T.; Huang, X.; Wang, C. Irbesartan can improve blood lipid and the kidney function of diabetic nephropathy. Discov. Med., 2015, 20(108), 67-77.
[PMID: 26321089]
[83]
Grefhorst, A.; van de Peppel, I.P.; Larsen, L.E.; Jonker, J.W.; Holleboom, A.G. The role of lipophagy in the development and treatment of Non-Alcoholic fatty liver disease. Front. Endocrinol. (Lausanne), 2021, 11, 601627.
[http://dx.doi.org/10.3389/fendo.2020.601627] [PMID: 33597924]
[84]
Lanfranco, M.F.; Ng, C.A.; Rebeck, G.W. ApoE lipidation as a therapeutic target in Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(17), 21.
[http://dx.doi.org/10.3390/ijms21176336] [PMID: 32882843]
[85]
Chen, K.; Yuan, R.; Zhang, Y.; Geng, S.; Li, L. Tollip deficiency alters atherosclerosis and steatosis by disrupting lipophagy. J. Am. Heart Assoc., 2017, 6(4), 6.
[http://dx.doi.org/10.1161/JAHA.116.004078] [PMID: 28396568]
[86]
Liu, Q.; Wang, Y.M.; Gu, H.F. Lipophagy in atherosclerosis. Clin. Chim. Acta, 2020, 511, 208-214.
[http://dx.doi.org/10.1016/j.cca.2020.10.025] [PMID: 33096029]
[87]
Papáčková, Z.; Daňková, H.; Páleníčková, E.; Kazdová, L.; Cahová, M. Effect of short- and long-term high-fat feeding on autophagy flux and lysosomal activity in rat liver. Physiol. Res., 2012, 61(Suppl. 2), S67-S76.
[http://dx.doi.org/10.33549/physiolres.932394] [PMID: 23130905]
[88]
Miceli, C.; Roccio, F.; Penalva-Mousset, L.; Burtin, M.; Leroy, C.; Nemazanyy, I.; Kuperwasser, N.; Pontoglio, M.; Friedlander, G.; Morel, E.; Terzi, F.; Codogno, P.; Dupont, N. The primary cilium and lipophagy translate mechanical forces to direct metabolic adaptation of kidney epithelial cells. Nat. Cell Biol., 2020, 22(9), 1091-1102.
[http://dx.doi.org/10.1038/s41556-020-0566-0] [PMID: 32868900]
[89]
Yoo, J.; Jeong, I.K.; Ahn, K.J.; Chung, H.Y.; Hwang, Y.C. Fenofibrate, a PPARα agonist, reduces hepatic fat accumulation through the upregulation of TFEB-mediated lipophagy. Metabolism, 2021, 120, 154798.
[http://dx.doi.org/10.1016/j.metabol.2021.154798] [PMID: 33984335]
[90]
Reyes-Farias, M.; Carrasco-Pozo, C. The Anti-Cancer effect of quercetin: Molecular implications in cancer metabolism. Int. J. Mol. Sci., 2019, 20(13), 20.
[http://dx.doi.org/10.3390/ijms20133177] [PMID: 31261749]
[91]
Zhu, X.; Xiong, T.; Liu, P.; Guo, X.; Xiao, L.; Zhou, F.; Tang, Y.; Yao, P. Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway. Food Chem. Toxicol., 2018, 114, 52-60.
[http://dx.doi.org/10.1016/j.fct.2018.02.019] [PMID: 29438776]
[92]
Sinha, R.A.; Farah, B.L.; Singh, B.K.; Siddique, M.M.; Li, Y.; Wu, Y.; Ilkayeva, O.R.; Gooding, J.; Ching, J.; Zhou, J.; Martinez, L.; Xie, S.; Bay, B.H.; Summers, S.A.; Newgard, C.B.; Yen, P.M. Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology, 2014, 59(4), 1366-1380.
[http://dx.doi.org/10.1002/hep.26667] [PMID: 23929677]
[93]
Lin, C.W.; Zhang, H.; Li, M.; Xiong, X.; Chen, X.; Chen, X.; Dong, X.C.; Yin, X.M. Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice. J. Hepatol., 2013, 58(5), 993-999.
[http://dx.doi.org/10.1016/j.jhep.2013.01.011] [PMID: 23339953]
[94]
Sinha, R.A.; You, S.H.; Zhou, J.; Siddique, M.M.; Bay, B.H.; Zhu, X.; Privalsky, M.L.; Cheng, S.Y.; Stevens, R.D.; Summers, S.A.; Newgard, C.B.; Lazar, M.A.; Yen, P.M. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. J. Clin. Invest., 2012, 122(7), 2428-2438.
[http://dx.doi.org/10.1172/JCI60580] [PMID: 22684107]
[95]
Panda, P.K.; Patra, S.; Naik, P.P.; Praharaj, P.P.; Mukhopadhyay, S.; Meher, B.R.; Gupta, P.K.; Verma, R.S.; Maiti, T.K.; Bhutia, S.K. Deacetylation of LAMP1 drives lipophagy-dependent generation of free fatty acids by Abrus agglutinin to promote senescence in prostate cancer. J. Cell. Physiol., 2020, 235(3), 2776-2791.
[http://dx.doi.org/10.1002/jcp.29182] [PMID: 31544977]
[96]
Qiu, S.; Xu, H.; Lin, Z.; Liu, F.; Tan, F. The blockade of lipophagy pathway is necessary for docosahexaenoic acid to regulate lipid droplet turnover in hepatic stellate cells. Biomed. Pharmacother., 2019, 109, 1841-1850.
[http://dx.doi.org/10.1016/j.biopha.2018.11.035] [PMID: 30551439]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy