Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Indoleamine 2,3-dioxygenase (IDO)-activity in Severe Psychiatric Disorders: A Systemic Review

Author(s): Frederike T. Fellendorf, Nina Bonkat, Nina Dalkner*, Elena M.D. Schönthaler, Mirko Manchia, Dietmar Fuchs and Eva Z. Reininghaus

Volume 22, Issue 25, 2022

Published on: 13 September, 2022

Page: [2107 - 2118] Pages: 12

DOI: 10.2174/1568026622666220718155616

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Indoleamine 2,3-dioxygenase (IDO) activity is induced by cellular immune activation and therefore associated with inflammatory diseases, among others psychiatric disorders. This review aims to elucidate IDO activity reflected by kynurenine (KYN) to tryptophan (TRP) ratio in severe mental disorders.

Methods: A systematic literature search in MEDLINE and EMBASE was conducted targeting clinical trials in English language measuring KYN/TRP in individuals with a diagnosis of depression, bipolar disorder, or schizophrenia.

Results: Five out of 15 studies found higher levels of KYN/TRP in depression compared to a control group while the same amount found no difference. Moreover, three studies showed lower levels. In bipolar disorder, four out of six, and in psychotic disorders, three out of four trials found higher levels in patients compared to controls. There are only two studies comparing KYN/TRP in major depression and bipolar disorder, showing conflicting results. Eight studies focused on associations between KYN/TRP and clinical parameters, whereas two studies found positive correlations between KYN/TRP and severity of depressive symptoms. In contrast, four studies did not show an association. IDO activity during specific psychiatric treatment was analyzed by eight studies.

Conclusion: In summary, this review demonstrates an inconsistency in the findings of studies investigating KYN/TRP in severe mental disorders. Although there are hints that inflammation associated with TRP catabolism towards the KYN pathway via elevated IDO activity seems likely, no conclusive statements can be drawn. Presumably, the consideration of influencing factors such as inflammatory processes, metabolic activities and psychological/neuropsychiatric symptoms are pivotal for a deeper understanding of the underlying mechanisms.

Keywords: Kynurenine to tryptophan ratio, Indoleamine 2, 3-dioxygenase, IDO, Psychiatry, Inflammation, Tryptophan catabolism.

Graphical Abstract
[1]
Dai, X.; Zhu, B.T. Indoleamine 2,3-dioxygenase tissue distribution and cellular localization in mice: Implications for its biological func-tions. J. Histochem. Cytochem., 2010, 58(1), 17-28.
[http://dx.doi.org/10.1369/jhc.2009.953604] [PMID: 19741271]
[2]
Badawy, A.A.B.; Guillemin, G. The plasma [Kynurenine]/] [Tryptophan] ratio and indoleamine 2,3-dioxygenase: Time for appraisal. Int. J. Tryptophan Res., 2019, 12, 1178646919868978.
[http://dx.doi.org/10.1177/1178646919868978] [PMID: 31488951]
[3]
Comai, S.; Bertazzo, A.; Brughera, M.; Crotti, S. Tryptophan in health and disease. Adv. Clin. Chem., 2020, 95, 165-218.
[http://dx.doi.org/10.1016/bs.acc.2019.08.005] [PMID: 32122523]
[4]
Gostner, J.M.; Geisler, S.; Stonig, M.; Mair, L.; Sperner-Unterweger, B.; Fuchs, D. Tryptophan metabolism and related pathways in psy-choneuroimmunology: The impact of nutrition and lifestyle. Neuropsychobiology, 2020, 79(1), 89-99.
[http://dx.doi.org/10.1159/000496293] [PMID: 30808841]
[5]
Musso, T.; Gusella, G.L.; Brooks, A.; Longo, D.L.; Varesio, L. Interleukin-4 inhibits indoleamine 2,3-dioxygenase expression in human monocytes. Blood, 1994, 83(5), 1408-1411.
[http://dx.doi.org/10.1182/blood.V83.5.1408.1408] [PMID: 8118042]
[6]
Taylor, M.W.; Feng, G. Relationship between interferon‐γ, indoleamine 2,3‐dioxygenase, and tryptophan catabolism. FASEB J., 1991, 5(11), 2516-2522.
[http://dx.doi.org/10.1096/fasebj.5.11.1907934] [PMID: 1907934]
[7]
Brandacher, G.; Hoeller, E.; Fuchs, D.; Weiss, H. Chronic immune activation underlies morbid obesity: Is IDO a key player? Curr. Drug Metab., 2007, 8(3), 289-295.
[http://dx.doi.org/10.2174/138920007780362590] [PMID: 17430117]
[8]
de Bie, J.; Guest, J.; Guillemin, G.J.; Grant, R. Central kynurenine pathway shift with age in women. J. Neurochem., 2016, 136(5), 995-1003.
[http://dx.doi.org/10.1111/jnc.13496] [PMID: 26670548]
[9]
Fuchs, D.; Möller, A.A.; Reibnegger, G.; Stöckle, E.; Werner, E.R.; Wachter, H. Decreased serum tryptophan in patients with HIV-1 in-fection correlates with increased serum neopterin and with neurologic/psychiatric symptoms. J. Acquir. Immune Defic. Syndr., 1990, 3(9), 873-876.
[PMID: 2166783]
[10]
O’Farrell, K.; Harkin, A. Stress-related regulation of the kynurenine pathway: Relevance to neuropsychiatric and degenerative disorders. Neuropharmacology, 2017, 112(Pt B), 307-323.
[http://dx.doi.org/10.1016/j.neuropharm.2015.12.004] [PMID: 26690895]
[11]
Solvang, S.E.H.; Nordrehaug, J.E.; Tell, G.S.; Nygård, O.; McCann, A.; Ueland, P.M.; Midttun, Ø.; Meyer, K.; Vedeler, C.A.; Aarsland, D.; Refsum, H.; Smith, A.D.; Giil, L.M. The kynurenine pathway and cognitive performance in community-dwelling older adults. The Hordaland Health Study. Brain Behav. Immun., 2019, 75, 155-162.
[http://dx.doi.org/10.1016/j.bbi.2018.10.003] [PMID: 30675874]
[12]
Myint, A.M.; Kim, Y.K.; Verkerk, R.; Park, S.H.; Scharpé, S.; Steinbusch, H.W.M.; Leonard, B.E. Tryptophan breakdown pathway in bipolar mania. J. Affect. Disord., 2007, 102(1-3), 65-72.
[http://dx.doi.org/10.1016/j.jad.2006.12.008] [PMID: 17270276]
[13]
Myint, A.M. Kynurenines: From the perspective of major psychiatric disorders. FEBS J., 2012, 279(8), 1375-1385.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08551.x] [PMID: 22404766]
[14]
Schwarcz, R.; Stone, T.W. The kynurenine pathway and the brain: Challenges, controversies and promises. Neuropharmacology, 2017, 112(Pt B), 237-247.
[http://dx.doi.org/10.1016/j.neuropharm.2016.08.003] [PMID: 27511838]
[15]
Lee, G.K.; Park, H.J.; Macleod, M.; Chandler, P.; Munn, D.H.; Mellor, A.L. Tryptophan deprivation sensitizes activated T cells to apop-tosis prior to cell division. Immunology, 2002, 107(4), 452-460.
[http://dx.doi.org/10.1046/j.1365-2567.2002.01526.x] [PMID: 12460190]
[16]
Schröcksnadel, K.; Wirleitner, B.; Winkler, C.; Fuchs, D. Monitoring tryptophan metabolism in chronic immune activation. Clin. Chim. Acta, 2006, 364(1-2), 82-90.
[http://dx.doi.org/10.1016/j.cca.2005.06.013] [PMID: 16139256]
[17]
Miura, H.; Ando, Y.; Noda, Y.; Isobe, K.; Ozaki, N. Long-lasting effects of inescapable-predator stress on brain tryptophan metabolism and the behavior of juvenile mice. Stress, 2011, 14(3), 262-272.
[http://dx.doi.org/10.3109/10253890.2010.541539] [PMID: 21294659]
[18]
Widner, B.; Leblhuber, F.; Walli, J.; Tilz, G.P.; Demel, U.; Fuchs, D. Tryptophan degradation and immune activation in Alzheimer’s dis-ease. J. Neural Transm. (Vienna), 2000, 107(3), 343-353.
[http://dx.doi.org/10.1007/s007020050029] [PMID: 10821443]
[19]
Maddison, D.C.; Giorgini, F. The kynurenine pathway and neurodegenerative disease. Semin. Cell Dev. Biol., 2015, 40, 134-141.
[http://dx.doi.org/10.1016/j.semcdb.2015.03.002] [PMID: 25773161]
[20]
De Hert, M.; Dekker, J.M.; Wood, D.; Kahl, K.G.; Holt, R.I.G.; Möller, H.J. Cardiovascular disease and diabetes in people with severe mental illness position statement from the European Psychiatric Association (EPA), supported by the European Association for the Study of Diabetes (EASD) and the European Society of Cardiology (ESC). Eur. Psychiatry, 2009, 24(6), 412-424.
[http://dx.doi.org/10.1016/j.eurpsy.2009.01.005] [PMID: 19682863]
[21]
Howren, M.B.; Lamkin, D.M.; Suls, J. Associations of depression with C-reactive protein, IL-1, and IL-6: A meta-analysis. Psychosom. Med., 2009, 71(2), 171-186.
[http://dx.doi.org/10.1097/PSY.0b013e3181907c1b] [PMID: 19188531]
[22]
Leboyer, M.; Soreca, I.; Scott, J.; Frye, M.; Henry, C.; Tamouza, R.; Kupfer, D.J. Can bipolar disorder be viewed as a multi-system in-flammatory disease? J. Affect. Disord., 2012, 141(1), 1-10.
[http://dx.doi.org/10.1016/j.jad.2011.12.049] [PMID: 22497876]
[23]
Tandon, R.; Keshavan, M.; Nasrallah, H. Schizophrenia, “Just the Facts” What we know in 2008. 2. Epidemiology and etiology. Schizophr. Res., 2008, 102(1-3), 1-18.
[http://dx.doi.org/10.1016/j.schres.2008.04.011] [PMID: 18514488]
[24]
Maes, M.; Meltzer, H.Y.; Bosmans, E.; Bergmans, R.; Vandoolaeghe, E.; Ranjan, R.; Desnyder, R. Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2 and transferrin receptor in major depression. J. Affect. Disord., 1995, 34(4), 301-309.
[http://dx.doi.org/10.1016/0165-0327(95)00028-L] [PMID: 8550956]
[25]
Bai, Y.M.; Su, T.P.; Li, C.T.; Tsai, S.J.; Chen, M.H.; Tu, P.C.; Chiou, W.F. Comparison of pro-inflammatory cytokines among patients with bipolar disorder and unipolar depression and normal controls. Bipolar Disord., 2015, 17(3), 269-277.
[http://dx.doi.org/10.1111/bdi.12259] [PMID: 25257835]
[26]
Anderson, G.; Maes, M. Bipolar disorder: role of immune-inflammatory cytokines, oxidative and nitrosative stress and tryptophan ca-tabolites. Curr. Psychiatry Rep., 2015, 17(2), 8.
[http://dx.doi.org/10.1007/s11920-014-0541-1] [PMID: 25620790]
[27]
Munkholm, K.; Braüner, J.V.; Kessing, L.V.; Vinberg, M. Cytokines in bipolar disorder vs. healthy control subjects: A systematic review and meta-analysis. J. Psychiatr. Res., 2013, 47(9), 1119-1133.
[http://dx.doi.org/10.1016/j.jpsychires.2013.05.018] [PMID: 23768870]
[28]
Rodrigues-Amorim, D.; Rivera-Baltanás, T.; Spuch, C.; Caruncho, H.J.; González-Fernandez, Á.; Olivares, J.M.; Agís-Balboa, R.C. Cyto-kines dysregulation in schizophrenia: A systematic review of psychoneuroimmune relationship. Schizophr. Res., 2018, 197, 19-33.
[http://dx.doi.org/10.1016/j.schres.2017.11.023] [PMID: 29239785]
[29]
Momtazmanesh, S.; Zare-Shahabadi, A.; Rezaei, N. Cytokine alterations in schizophrenia: An updated review. Front. Psychiatry, 2019, 10, 892.
[http://dx.doi.org/10.3389/fpsyt.2019.00892] [PMID: 31908647]
[30]
Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—a web and mobile app for systematic reviews. Syst. Rev., 2016, 5(1), 210.
[http://dx.doi.org/10.1186/s13643-016-0384-4] [PMID: 27919275]
[31]
Arteaga-Henriquez, G.; Burger, B.; Weidinger, E.; Grosse, L.; Moll, N.; Schuetze, G.; Schwarz, M.; Wijkhuijs, A.; Op de Beeck, G.; Berghmans, R.; Versnel, M.A.; Arolt, V.; Müller, N.; Drexhage, H.A. Activation and deactivation steps in the tryptophan breakdown pathway in major depressive disorder: A link to the monocyte inflammatory state of patients. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 107, 110226.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110226] [PMID: 33346015]
[32]
Baranyi, A.; Amouzadeh-Ghadikolai, O.; von Lewinski, D.; Breitenecker, R.J.; Rothenhäusler, H.B.; Robier, C.; Baranyi, M.; Theokas, S.; Meinitzer, A. Revisiting the tryptophan-serotonin deficiency and the inflammatory hypotheses of major depression in a biopsychosocial approach. PeerJ, 2017, 5, e3968.
[http://dx.doi.org/10.7717/peerj.3968] [PMID: 29109914]
[33]
Wu, Y.; Zhong, X.; Mai, N.; Wen, Y.; Shang, D.; Hu, L.; Chen, B.; Zhang, M.; Ning, Y. Kynurenine pathway changes in late-life depres-sion. J. Affect. Disord., 2018, 235, 76-81.
[http://dx.doi.org/10.1016/j.jad.2018.04.007] [PMID: 29655078]
[34]
Zoga, M.; Oulis, P.; Chatzipanagiotou, S.; Masdrakis, V.G.; Pliatsika, P.; Boufidou, F.; Foteli, S.; Soldatos, C.R.; Nikolaou, C.; Papageor-giou, C. Indoleamine 2,3-dioxygenase and immune changes under antidepressive treatment in major depression in females. In Vivo, 2014, 28(4), 633-638.
[PMID: 24982234]
[35]
Chiu, Y.C.; Yang, B.H.; Yang, K.C.; Liu, M.N.; Hu, L.Y.; Liou, Y.J.; Chan, L.Y.; Chou, Y.H. A study of tryptophan, kynurenine and serotonin transporter in first-episode drug-naïve major depressive disorder. Psychiatry Res. Neuroimaging, 2021, 312, 111296.
[http://dx.doi.org/10.1016/j.pscychresns.2021.111296] [PMID: 33945927]
[36]
Hestad, K.A.; Engedal, K.; Whist, J.E.; Farup, P.G. The relationships among tryptophan, kynurenine, indoleamine 2,3-dioxygenase, de-pression, and neuropsychological performance. Front. Psychol., 2017, 8, 1561.
[http://dx.doi.org/10.3389/fpsyg.2017.01561] [PMID: 29046648]
[37]
Maes, M.; Galecki, P.; Verkerk, R.; Rief, W. Somatization, but not depression, is characterized by disorders in the tryptophan catabolite (TRYCAT) pathway, indicating increased indoleamine 2,3-dioxygenase and lowered kynurenine aminotransferase activity. Neuroendocrinol. Lett., 2011, 32(3), 264-273.
[PMID: 21712776]
[38]
Messaoud, A.; Mensi, R.; Douki, W.; Neffati, F.; Najjar, M.F.; Gobbi, G.; Valtorta, F.; Gaha, L.; Comai, S. Reduced peripheral availability of tryptophan and increased activation of the kynurenine pathway and cortisol correlate with major depression and suicide. World J. Biol. Psychiatry, 2019, 20(9), 703-711.
[http://dx.doi.org/10.1080/15622975.2018.1468031] [PMID: 29683396]
[39]
Myint, A.M.; Kim, Y.K.; Verkerk, R.; Scharpé, S.; Steinbusch, H.; Leonard, B. Kynurenine pathway in major depression: Evidence of impaired neuroprotection. J. Affect. Disord., 2007, 98(1-2), 143-151.
[http://dx.doi.org/10.1016/j.jad.2006.07.013] [PMID: 16952400]
[40]
Quak, J.; Doornbos, B.; Roest, A.M.; Duivis, H.E.; Vogelzangs, N.; Nolen, W.A.; Penninx, B.W.J.H.; Kema, I.P.; de Jonge, P. Does tryp-tophan degradation along the kynurenine pathway mediate the association between pro-inflammatory immune activity and depressive symptoms? Psychoneuroendocrinology, 2014, 45, 202-210.
[http://dx.doi.org/10.1016/j.psyneuen.2014.03.013] [PMID: 24845191]
[41]
Sorgdrager, F.J.H.; Doornbos, B.; Penninx, B.W.J.H.; de Jonge, P.; Kema, I.P. The association between the hypothalamic pituitary adrenal axis and tryptophan metabolism in persons with recurrent major depressive disorder and healthy controls. J. Affect. Disord., 2017, 222, 32-39.
[http://dx.doi.org/10.1016/j.jad.2017.06.052] [PMID: 28668713]
[42]
Umehara, H.; Numata, S.; Watanabe, S.; Hatakeyama, Y.; Kinoshita, M.; Tomioka, Y.; Nakahara, K.; Nikawa, T.; Ohmori, T. Altered KYN/TRP, Gln/Glu, and Met/methionine sulfoxide ratios in the blood plasma of medication-free patients with major depressive disorder. Sci. Rep., 2017, 7(1), 4855.
[http://dx.doi.org/10.1038/s41598-017-05121-6] [PMID: 28687801]
[43]
Fellendorf, F.T.; Gostner, J.M.; Lenger, M.; Platzer, M.; Birner, A.; Maget, A.; Queissner, R.; Tmava-Berisha, A.; Pater, C.A.; Ratzenho-fer, M.; Wagner-Skacel, J.; Bengesser, S.A.; Dalkner, N.; Fuchs, D.; Reininghaus, E.Z. Tryptophan metabolism in bipolar disorder in a longitudinal setting. Antioxidants, 2021, 10(11), 1795.
[http://dx.doi.org/10.3390/antiox10111795] [PMID: 34829665]
[44]
Trepci, A.; Sellgren, C.M.; Pålsson, E.; Brundin, L.; Khanlarkhani, N.; Schwieler, L.; Landén, M.; Erhardt, S. Central levels of tryptophan metabolites in subjects with bipolar disorder. Eur. Neuropsychopharmacol., 2021, 43, 52-62.
[http://dx.doi.org/10.1016/j.euroneuro.2020.11.018] [PMID: 33339712]
[45]
Ameele, S.; Nuijs, A.L.N.; Lai, F.Y.; Schuermans, J.; Verkerk, R.; Diermen, L.; Coppens, V.; Fransen, E.; Boer, P.; Timmers, M.; Sabbe, B.; Morrens, M. A mood state‐specific interaction between kynurenine metabolism and inflammation is present in bipolar disorder. Bipolar Disord., 2020, 22(1), 59-69.
[http://dx.doi.org/10.1111/bdi.12814] [PMID: 31398273]
[46]
Mukherjee, D.; Krishnamurthy, V.B.; Millett, C.E.; Reider, A.; Can, A.; Groer, M.; Fuchs, D.; Postolache, T.T.; Saunders, E.F.H. Total sleep time and kynurenine metabolism associated with mood symptom severity in bipolar disorder. Bipolar Disord., 2018, 20(1), 27-34.
[http://dx.doi.org/10.1111/bdi.12529] [PMID: 28833866]
[47]
Reininghaus, E.Z.; McIntyre, R.S.; Reininghaus, B.; Geisler, S.; Bengesser, S.A.; Lackner, N.; Hecht, K.; Birner, A.; Kattnig, F.; Unter-weger, R.; Kapfhammer, H.P.; Zelzer, S.; Fuchs, D.; Mangge, H. Tryptophan breakdown is increased in euthymic overweight individuals with bipolar disorder: A preliminary report. Bipolar Disord., 2014, 16(4), 432-440.
[http://dx.doi.org/10.1111/bdi.12166] [PMID: 24330408]
[48]
Poletti, S.; Melloni, E.; Aggio, V.; Colombo, C.; Valtorta, F.; Benedetti, F.; Comai, S. Grey and white matter structure associates with the activation of the tryptophan to kynurenine pathway in bipolar disorder. J. Affect. Disord., 2019, 259, 404-412.
[http://dx.doi.org/10.1016/j.jad.2019.08.034] [PMID: 31610997]
[49]
Liu, H.; Ding, L.; Zhang, H.; Mellor, D.; Wu, H.; Zhao, D.; Wu, C.; Lin, Z.; Yuan, J.; Peng, D. The metabolic factor kynurenic acid of kynurenine pathway predicts major depressive disorder. Front. Psychiatry, 2018, 9, 552.
[http://dx.doi.org/10.3389/fpsyt.2018.00552] [PMID: 30510519]
[50]
Zhou, Y.; Zheng, W.; Liu, W.; Wang, C.; Zhan, Y.; Li, H.; Chen, L.; Li, M.; Ning, Y. Antidepressant effect of repeated ketamine admin-istration on kynurenine pathway metabolites in patients with unipolar and bipolar depression. Brain Behav. Immun., 2018, 74, 205-212.
[http://dx.doi.org/10.1016/j.bbi.2018.09.007] [PMID: 30213652]
[51]
Pompili, M.; Lionetto, L.; Curto, M.; Forte, A.; Erbuto, D.; Montebovi, F.; Seretti, M.E.; Berardelli, I.; Serafini, G.; Innamorati, M.; Amore, M.; Baldessarini, R.J.; Girardi, P.; Simmaco, M. Tryptophan and kynurenine metabolites: Are they related to depression? Neuropsychobiology, 2019, 77(1), 23-28.
[http://dx.doi.org/10.1159/000491604] [PMID: 30110684]
[52]
Barry, S.; Clarke, G.; Scully, P.; Dinan, T.G. Kynurenine pathway in psychosis: Evidence of increased tryptophan degradation. J. Psychopharmacol., 2009, 23(3), 287-294.
[http://dx.doi.org/10.1177/0269881108089583] [PMID: 18562404]
[53]
Okamoto, N.; Natsuyama, T.; Igata, R.; Konishi, Y.; Tesen, H.; Ikenouchi, A.; Yoshimura, R. Associations between the kynurenine pathway, proinflammatory cytokines, and brain-derived neurotrophic factor in hospitalized patients with chronic schizophrenia: A pre-liminary study. Front. Psychiatry, 2021, 12, 696059.
[http://dx.doi.org/10.3389/fpsyt.2021.696059] [PMID: 34393855]
[54]
Kindler, J.; Lim, C.K.; Weickert, C.S.; Boerrigter, D.; Galletly, C.; Liu, D.; Jacobs, K.R.; Balzan, R.; Bruggemann, J.; O’Donnell, M.; Len-root, R.; Guillemin, G.J.; Weickert, T.W. Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Mol. Psychiatry, 2020, 25(11), 2860-2872.
[http://dx.doi.org/10.1038/s41380-019-0401-9] [PMID: 30940904]
[55]
Chiappelli, J.; Postolache, T.T.; Kochunov, P.; Rowland, L.M.; Wijtenburg, S.A.; Shukla, D.K.; Tagamets, M.; Du, X.; Savransky, A.; Lowry, C.A.; Can, A.; Fuchs, D.; Hong, L.E. Tryptophan metabolism and white matter integrity in schizophrenia. Neuropsychopharmacology, 2016, 41(10), 2587-2595.
[http://dx.doi.org/10.1038/npp.2016.66] [PMID: 27143602]
[56]
Comai, S.; Melloni, E.; Lorenzi, C.; Bollettini, I.; Vai, B.; Zanardi, R.; Colombo, C.; Valtorta, F.; Benedetti, F.; Poletti, S. Selective asso-ciation of cytokine levels and kynurenine/tryptophan ratio with alterations in white matter microstructure in bipolar but not in unipolar depression. Eur. Neuropsychopharmacol., 2022, 55, 96-109.
[http://dx.doi.org/10.1016/j.euroneuro.2021.11.003] [PMID: 34847455]
[57]
Hüfner, K.; Giesinger, J.M.; Gostner, J.M.; Egeter, J.; Koudouovoh-Tripp, P.; Vill, T.; Fuchs, D.; Sperner-Unterweger, B. Neurotransmit-ter precursor amino acid ratios show differential, inverse correlations with depression severity in the low and high depression score range. Int. J. Tryptophan Res., 2021, 14, 11786469211039220.
[http://dx.doi.org/10.1177/11786469211039220] [PMID: 34483668]
[58]
Messaoud, A.; Rym, M.; Wahiba, D.; Neffati, F.; Najjar, M.F.; Gobbi, G.; Manchia, M.; Valtorta, F.; Lotfi, G.; Comai, S. Investigation of the relationship among cortisol, pro-inflammatory cytokines, and the degradation of tryptophan into kynurenine in patients with major depression and suicidal behavior. Curr. Top. Med. Chem., 2021, 21.
[http://dx.doi.org/10.2174/1568026621666210909160210] [PMID: 34503408]
[59]
Kadriu, B.; Farmer, C.A.; Yuan, P.; Park, L.T.; Deng, Z.D.; Moaddel, R.; Henter, I.D.; Shovestul, B.; Ballard, E.D.; Kraus, C.; Gold, P.W.; Machado-Vieira, R.; Zarate, C.A., Jr The kynurenine pathway and bipolar disorder: Intersection of the monoaminergic and glutamatergic systems and immune response. Mol. Psychiatry, 2021, 26(8), 4085-4095.
[http://dx.doi.org/10.1038/s41380-019-0589-8] [PMID: 31732715]
[60]
Reininghaus, B.; Riedrich, K.; Dalkner, N.; Bengesser, S.A.; Birner, A.; Platzer, M.; Hamm, C.; Gostner, J.M.; Fuchs, D.; Reininghaus, E.Z. Changes in the tryptophan-kynurenine axis in association to therapeutic response in clinically depressed patients undergoing psy-chiatric rehabilitation. Psychoneuroendocrinology, 2018, 94, 25-30.
[http://dx.doi.org/10.1016/j.psyneuen.2018.04.029] [PMID: 29753175]
[61]
Guloksuz, S.; Arts, B.; Walter, S.; Drukker, M.; Rodriguez, L.; Myint, A.M.; Schwarz, M.J.; Ponds, R.; van Os, J.; Kenis, G.; Rutten, B.P.F. The impact of electroconvulsive therapy on the tryptophan-kynurenine metabolic pathway. Brain Behav. Immun., 2015, 48, 48-52.
[http://dx.doi.org/10.1016/j.bbi.2015.02.029] [PMID: 25765557]
[62]
Leblhuber, F.; Geisler, S.; Ehrlich, D.; Steiner, K.; Reibnegger, G.; Fuchs, D.; Kurz, K. Repetitive transcranial magnetic stimulation in the treatment of resistant depression: Changes of specific neurotransmitter precursor amino acids. J. Neural Transm. (Vienna), 2021, 128(8), 1225-1231.
[http://dx.doi.org/10.1007/s00702-021-02363-7] [PMID: 34244826]
[63]
Tateishi, H.; Setoyama, D.; Kang, D.; Matsushima, J.; Kojima, R.; Fujii, Y.; Mawatari, S.; Kikuchi, J.; Sakemura, Y.; Fukuchi, J.; Shirai-shi, T.; Maekawa, T.; Kato, T.A.; Asami, T.; Mizoguchi, Y.; Monji, A. The changes in kynurenine metabolites induced by rTMS in treatment-resistant depression: A pilot study. J. Psychiatr. Res., 2021, 138, 194-199.
[http://dx.doi.org/10.1016/j.jpsychires.2021.04.009] [PMID: 33865168]
[64]
Reininghaus, E.Z.; Dalkner, N.; Riedrich, K.; Fuchs, D.; Gostner, J.M.; Reininghaus, B. Sex specific changes in tryptophan breakdown over a 6 week treatment period. Front. Psychiatry, 2019, 10, 74.
[http://dx.doi.org/10.3389/fpsyt.2019.00074] [PMID: 30846946]
[65]
Marx, W.; McGuinness, A.J.; Rocks, T.; Ruusunen, A.; Cleminson, J.; Walker, A.J. The kynurenine pathway in major depressive disor-der, bipolar disorder, and schizophrenia: A meta-analysis of 101 studies. Mol. Psychiatry, 2020, 4158-4178.
[http://dx.doi.org/10.1038/s41380-020-00951-9] [PMID: 33230205]
[66]
Cathomas, F.; Guetter, K.; Seifritz, E.; Klaus, F.; Kaiser, S. Quinolinic acid is associated with cognitive deficits in schizophrenia but not major depressive disorder. Sci. Rep., 2021, 11(1), 9992.
[http://dx.doi.org/10.1038/s41598-021-89335-9] [PMID: 33976271]
[67]
Raheja, U.K.; Fuchs, D.; Giegling, I.; Brenner, L.A.; Rovner, S.F.; Mohyuddin, I.; Weghuber, D.; Mangge, H.; Rujescu, D.; Postolache, T.T. In psychiatrically healthy individuals, overweight women but not men have lower tryptophan levels. Pteridines, 2015, 26(2), 79-84.
[http://dx.doi.org/10.1515/pterid-2015-0002] [PMID: 26251562]
[68]
Mangge, H.; Summers, K.L.; Meinitzer, A.; Zelzer, S.; Almer, G.; Prassl, R.; Schnedl, W.J.; Reininghaus, E.; Paulmichl, K.; Weghuber, D.; Fuchs, D. Obesity‐related dysregulation of the Tryptophan-Kynurenine metabolism: Role of age and parameters of the metabolic syn-drome. Obesity (Silver Spring), 2014, 22(1), 195-201.
[http://dx.doi.org/10.1002/oby.20491] [PMID: 23625535]
[69]
Sellgren, C.M.; Gracias, J.; Jungholm, O.; Perlis, R.H.; Engberg, G.; Schwieler, L.; Landen, M.; Erhardt, S. Peripheral and central levels of kynurenic acid in bipolar disorder subjects and healthy controls. Transl. Psychiatry, 2019, 9(1), 37.
[http://dx.doi.org/10.1038/s41398-019-0378-9] [PMID: 30696814]
[70]
Widner, B.; Laich, A.; Spernerunterweger, B.; Ledochowski, M.; Fuchs, D. Neopterin production, tryptophan degradation, and mental depression-What is the link? Brain Behav. Immun., 2002, 16(5), 590-595.
[http://dx.doi.org/10.1016/S0889-1591(02)00006-5] [PMID: 12401473]
[71]
Vadodaria, K.C.; Stern, S.; Marchetto, M.C.; Gage, F.H. Serotonin in psychiatry: In vitro disease modeling using patient-derived neurons. Cell Tissue Res., 2018, 371(1), 161-170.
[http://dx.doi.org/10.1007/s00441-017-2670-4] [PMID: 28812143]
[72]
Leblhuber, F.; Walli, J.; Demel, U.; Tilz, G.P.; Widner, B.; Fuchs, D. Increased serum neopterin concentrations in patients with Alz-heimer’s disease. Clin. Chem. Lab. Med., 1999, 37(4), 429-431.
[http://dx.doi.org/10.1515/CCLM.1999.070] [PMID: 10369114]
[73]
Vojvodic, J.; Mihajlovic, G.; Vojvodic, P.; Radomirovic, D.; Vojvodic, A.; Vlaskovic-Jovicevic, T.; Peric-Hajzler, Z.; Matovic, D.; Dimi-trijevic, S.; Sijan, G.; Roccia, M.G.; Fioranelli, M.; Lotti, T. The impact of immunological factors on depression treatment - relation be-tween antidepressants and immunomodulation agents. Open Access Maced. J. Med. Sci., 2019, 7(18), 3064-3069.
[http://dx.doi.org/10.3889/oamjms.2019.779] [PMID: 31850124]
[74]
Zhao, Z.; Okusaga, O.O.; Quevedo, J.; Soares, J.C.; Teixeira, A.L. The potential association between obesity and bipolar disorder: A meta-analysis. J. Affect. Disord., 2016, 202, 120-123.
[http://dx.doi.org/10.1016/j.jad.2016.05.059] [PMID: 27262632]
[75]
Smith, E.; Singh, R.; Lee, J.; Colucci, L.; Graff-Guerrero, A.; Remington, G.; Hahn, M.; Agarwal, S.M. Adiposity in schizophrenia: A systematic review and meta‐analysis. Acta Psychiatr. Scand., 2021, 144(6), 524-536.
[http://dx.doi.org/10.1111/acps.13365] [PMID: 34458979]
[76]
Jenkins, T.; Nguyen, J.; Polglaze, K.; Bertrand, P. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients, 2016, 8(1), 56.
[http://dx.doi.org/10.3390/nu8010056] [PMID: 26805875]
[77]
Zhou, Y.; Zheng, W.; Liu, W.; Wang, C.; Zhan, Y.; Li, H.; Chen, L.; Ning, Y. Cross-sectional relationship between kynurenine pathway metabolites and cognitive function in major depressive disorder. Psychoneuroendocrinology, 2019, 101, 72-79.
[http://dx.doi.org/10.1016/j.psyneuen.2018.11.001] [PMID: 30419374]
[78]
Erhardt, S.; Schwieler, L.; Imbeault, S.; Engberg, G. The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology, 2017, 112(Pt B), 297-306.
[http://dx.doi.org/10.1016/j.neuropharm.2016.05.020]
[79]
Qin, Y.; Wang, N.; Zhang, X.; Han, X.; Zhai, X.; Lu, Y. IDO and TDO as a potential therapeutic target in different types of depression. Metab. Brain Dis., 2018, 33(6), 1787-1800.
[http://dx.doi.org/10.1007/s11011-018-0290-7] [PMID: 30014175]
[80]
Sun, Y.; Drevets, W.; Turecki, G.; Li, Q.S. The relationship between plasma serotonin and kynurenine pathway metabolite levels and the treatment response to escitalopram and desvenlafaxine. Brain Behav. Immun., 2020, 87, 404-412.
[http://dx.doi.org/10.1016/j.bbi.2020.01.011] [PMID: 31978524]
[81]
Brooks, A.K.; Janda, T.M.; Lawson, M.A.; Rytych, J.L.; Smith, R.A.; Ocampo-Solis, C.; McCusker, R.H. Desipramine decreases expres-sion of human and murine indoleamine-2,3-dioxygenases. Brain Behav. Immun., 2017, 62, 219-229.
[http://dx.doi.org/10.1016/j.bbi.2017.02.010] [PMID: 28212884]
[82]
Dong, H.; Zhang, X.; Dai, X.; Lu, S.; Gui, B.; Jin, W.; Zhang, S.; Zhang, S.; Qian, Y. Lithium ameliorates lipopolysaccharide-induced microglial activation via inhibition of toll-like receptor 4 expression by activating the PI3K/Akt/FoxO1 pathway. J. Neuroinflammation, 2014, 11(1), 140.
[http://dx.doi.org/10.1186/s12974-014-0140-4] [PMID: 25115727]
[83]
Tran, H.Q.; Shin, E.J.; Saito, K.; Tran, T.V.; Phan, D.H.; Sharma, N.; Kim, D.W.; Choi, S.Y.; Jeong, J.H.; Jang, C.G.; Cheong, J.H.; Na-beshima, T.; Kim, H.C. Indoleamine-2,3-dioxygenase-1 is a molecular target for the protective activity of mood stabilizers against mania-like behavior induced by d-amphetamine. Food Chem. Toxicol., 2020, 136, 110986.
[http://dx.doi.org/10.1016/j.fct.2019.110986] [PMID: 31760073]
[84]
Bonaccorso, S.; Marino, V.; Puzella, A.; Pasquini, M.; Biondi, M.; Artini, M.; Almerighi, C.; Verkerk, R.; Meltzer, H.; Maes, M. In-creased depressive ratings in patients with hepatitis C receiving interferon-α-based immunotherapy are related to interferon-α-induced changes in the serotonergic system. J. Clin. Psychopharmacol., 2002, 22(1), 86-90.
[http://dx.doi.org/10.1097/00004714-200202000-00014] [PMID: 11799348]
[85]
Comai, S.; Cavalletto, L.; Chemello, L.; Bernardinello, E.; Ragazzi, E.; Costa, C.V.L.; Bertazzo, A. Effects of PEG-interferon alpha plus ribavirin on tryptophan metabolism in patients with chronic hepatitis C. Pharmacol. Res., 2011, 63(1), 85-92.
[http://dx.doi.org/10.1016/j.phrs.2010.10.009] [PMID: 20940053]
[86]
Schroecksnadel, K.; Winkler, C.; Wirleitner, B.; Schennach, H.; Fuchs, D. Aspirin down-regulates tryptophan degradation in stimulated human peripheral blood mononuclear cells in vitro. Clin. Exp. Immunol., 2005, 140(1), 41-45.
[http://dx.doi.org/10.1111/j.1365-2249.2005.02746.x] [PMID: 15762873]
[87]
Abuelezz, S.A.; Hendawy, N.; Magdy, Y. Targeting oxidative stress, cytokines and serotonin interactions via indoleamine 2, 3 dioxygen-ase by coenzyme Q10: Role in suppressing depressive like behavior in rats. J. Neuroimmune Pharmacol., 2017, 12(2), 277-291.
[http://dx.doi.org/10.1007/s11481-016-9712-7] [PMID: 27730347]
[88]
Wang, B.; Lian, Y.J.; Dong, X.; Peng, W.; Liu, L.L.; Su, W.J.; Gong, H.; Zhang, T.; Jiang, C.L.; Li, J.S.; Wang, Y.X. Glycyrrhizic acid ameliorates the kynurenine pathway in association with its antidepressant effect. Behav. Brain Res., 2018, 353, 250-257.
[http://dx.doi.org/10.1016/j.bbr.2018.01.024] [PMID: 29366745]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy