Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Research Article

Tertiary Nanosystem Composed of Graphene Quantum Dots, Levofloxacin and Silver Nitrate for Microbiological Control

Author(s): Thamires Oliveira Vieira, Eduardo Ricci-Junior, Aline Oiveira da Silva de Barros, Luciana Magalhães Rebelo Alencar, Marcia Regina Spuri Ferreira, Terezinha de Jesus Andreoli Pinto, Ralph Santos-Oliveira* and Diego de Holanda Saboya Souza

Volume 16, Issue 3, 2022

Published on: 15 August, 2022

Page: [234 - 240] Pages: 7

DOI: 10.2174/2667387816666220715121107

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Infectious diseases have the highest mortality rate in the world and these numbers are associated with scarce and/or ineffective diagnosis and bacterial resistance. Currently, with the development of new pharmaceutical formulations, nanotechnology is gaining prominence.

Methods: Nanomicelles were produced by ultrasonication. The particle size and shape were evaluated by scanning electron microscopy and confirmed by dynamic light scattering, also thermogravimetric analysis was performed to evaluate the thermal stability. Finally, antibacterial activity has been performed.

Results: The results showed that a rod-shaped nanosystem, with 316.1 nm and PDI of 0.243 was formed. The nanosystem was efficient against Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis subsp. spizizenii with MIC inferior to 0.98 and a synergistic effect between silver graphene quantum dots and levofloxacin was observed.

Conclusion: The nanosystem produced may rise as a promising agent against the bacterial threat, especially regarding bacterial resistance.

Keywords: Drug delivery, bacterial, multi-drug resistance, antibacterial, ultrasonication, nanosystem.

Graphical Abstract
[1]
Matai I, Sachdev A, Dubey P, Kumar SU, Bhushan B, Gopinath P. Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids Surf B Biointerfaces 2014; 115: 359-67.
[http://dx.doi.org/10.1016/j.colsurfb.2013.12.005] [PMID: 24412348]
[2]
Gumustas M, Sengel-Turk CT, Gumustas A, Ozkan SA, Uslu B. Effect of polymer-based nanoparticles on the assay of antimicrobial drug delivery Systems. In: Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics. Elsevier 2017; pp. 67-108.
[http://dx.doi.org/10.1016/B978-0-323-52725-5.00005-8]
[3]
Huang F, Gao Y, Zhang Y, et al. Silver-decorated polymeric micelles combined with curcumin for enhanced antibacterial activity. ACS Appl Mater Interfaces 2017; 9(20): 16880-9.
[http://dx.doi.org/10.1021/acsami.7b03347] [PMID: 28481077]
[4]
Liu Y, Ren Y, Li Y, et al. Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models. Acta Biomater 2018; 79: 331-43.
[http://dx.doi.org/10.1016/j.actbio.2018.08.038] [PMID: 30172935]
[5]
Du GF, Zheng YD, Chen J, He QY, Sun X. Novel mechanistic insights into bacterial fluoroquinolone resistance. J Proteome Res 2019; 18(11): 3955-66.
[http://dx.doi.org/10.1021/acs.jproteome.9b00410] [PMID: 31599150]
[6]
Xu Z, Zhang C, Wang X, Liu D. Release strategies of silver ions from materials for bacterial killing. ACS Appl Bio Mater 2021; 4(5): 3985-99.
[http://dx.doi.org/10.1021/acsabm.0c01485] [PMID: 35006818]
[7]
Hutnick MA, Pokorski JK. Polymeric interventions for microbial infections: A review. Mol Pharm 2018; 15(8): 2910-21.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00342] [PMID: 29787274]
[8]
Phillips-Jones MK, Harding SE. Antimicrobial resistance (AMR) nanomachines-mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation. Biophys Rev 2018; 10(2): 347-62.
[http://dx.doi.org/10.1007/s12551-018-0404-9] [PMID: 29525835]
[9]
Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR. Antibiotics, resistome and resistance mechanisms: A bacterial perspective. Front Microbiol 2018; 9: 2066.
[http://dx.doi.org/10.3389/fmicb.2018.02066] [PMID: 30298054]
[10]
Kumar P, Huo P, Zhang R, Liu B. Antibacterial properties of graphene-based nanomaterials. Nanomaterials (Basel) 2019; 9(5): 737-44.
[http://dx.doi.org/10.3390/nano9050737] [PMID: 31086043]
[11]
Pham TDM, Ziora ZM, Blaskovich MAT. Quinolone antibiotics. MedChemComm 2019; 10(10): 1719-39.
[http://dx.doi.org/10.1039/C9MD00120D] [PMID: 31803393]
[12]
Khameneh B, Diab R, Ghazvini K, Fazly Bazzaz BS. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb Pathog 2016; 95: 32-42.
[http://dx.doi.org/10.1016/j.micpath.2016.02.009] [PMID: 26911646]
[13]
Georgina-Solano-Gálvez S, Valencia-Segrove MF, Prado MJO, Boucieguez ABL, Álvarez-Hernández DA, Vázquez-López R. Mechanisms of Resistance to Quinolones. In: Antimicrobial Resistance. Intechopen 2020.
[http://dx.doi.org/10.5772/intechopen.92577]
[14]
Hadiya S, Liu X, Abd El-Hammed W, Elsabahy M, Aly SA. Levofloxacin-loaded nanoparticles decrease emergence of fluoroquinolone resistance in Escherichia coli. Microb Drug Resist 2018; 24(8): 1098-107.
[http://dx.doi.org/10.1089/mdr.2017.0304] [PMID: 29431570]
[15]
Podder V, Sadiq N. Levofloxacin. Florida: StatPearls 2019.
[16]
Agnihotri S, Dhiman NK. Development of nano-antimicrobial biomaterials for biomedical applications. Adv Struct Mater 2017; 66: 479-545.
[http://dx.doi.org/10.1007/978-981-10-3328-5_12]
[17]
Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine 2017; 12: 3941-65.
[http://dx.doi.org/10.2147/IJN.S134526] [PMID: 28579779]
[18]
Nguyen MD, Pham VDK, Nguyen LPT, Hoang MN, Nguyen HH. Synthesis and antibacterial activity of silver/reduced graphene oxide nanocomposites against Salmonella typhimurium and Staphylococcus aureus. Vietnam J Sci Tech Eng 2018; 60(3): 67-73.
[http://dx.doi.org/10.31276/VJSTE.60(3).67]
[19]
Guo LY, Yan SZ, Tao X, et al. Evaluation of hypocrellin A-loaded lipase sensitive polymer micelles for intervening methicillin-resistant Staphylococcus aureus antibiotic-resistant bacterial infection. Mater Sci Eng C 2020; 106: 110230.
[http://dx.doi.org/10.1016/j.msec.2019.110230] [PMID: 31753349]
[20]
Roy A, Srivastava SK, Shrivastava SL, Mandal AK. Hierarchical assembly of nanodimensional silver-silver oxide physical gels controlling nosocomial infections. ACS Omega 2020; 5(50): 32617-31.
[http://dx.doi.org/10.1021/acsomega.0c04957] [PMID: 33376899]
[21]
Fathalipour S, Mardi M. Synthesis of silane ligand-modified graphene oxide and antibacterial activity of modified graphene-silver nanocomposite. Mater Sci Eng C 2017; 79: 55-65.
[http://dx.doi.org/10.1016/j.msec.2017.05.020] [PMID: 28629052]
[22]
Banerjee AN. Graphene and its derivatives as biomedical materials: Future prospects and challenges. Interface Focus 2018; 8(3): 20170056.
[http://dx.doi.org/10.1098/rsfs.2017.0056] [PMID: 29696088]
[23]
Slate AJ, Karaky N, Crowther GS, et al. Graphene matrices as carriers for metal ions against antibiotic susceptible and resistant bacterial pathogens. Coatings 2021; 11(3): 352.
[http://dx.doi.org/10.3390/coatings11030352]
[24]
Mohammed HHH, Abuo-Rahma GEAA, Abbas SH, Abdelhafez EMN. Current trends and future directions of fluoroquinolones. Curr Med Chem 2019; 26(17): 3132-49.
[http://dx.doi.org/10.2174/0929867325666180214122944] [PMID: 29446718]
[25]
Hamad A, Khashan KS, Hadi A. Silver nanoparticles and silver ions as potential antibacterial agents. J Inorg Organomet Polym Mater 2020; 30(12): 4811-28.
[http://dx.doi.org/10.1007/s10904-020-01744-x]
[26]
Ali A, Ovais M, Cui X, Rui Y, Chen C, Chen C. Safety assessment of nanomaterials for antimicrobial applications. Chem Res Toxicol 2020; 33(5): 1082-109.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00519] [PMID: 32302095]
[27]
Majhi KC, Karfa P, Madhuri R. Nanomaterials: Therapeutic agent for antimicrobial therapy. In: Nanostructures for Antimicrobial and Antibiofilm Applications. Elsevier 2020; pp. 1-31.
[http://dx.doi.org/10.1007/978-3-030-40337-9_1]
[28]
Wang S, Gao Y, Jin Q, Ji J. Emerging antibacterial nanomedicine for enhanced antibiotic therapy. Biomater Sci 2020; 8(24): 6825-39.
[http://dx.doi.org/10.1039/D0BM00974A] [PMID: 32996490]
[29]
Apolinário A, Almeida JPV, Pessoa A, Oliveira CRY. Polimerossomos versus lipossomos: A Evolução Da “bala Mágica”. Quim Nova 2017; 40(7): 810-7.
[http://dx.doi.org/10.21577/0100-4042.20170054]
[30]
Managa M, Achadu OJ, Nyokong T. Photophysical studies of graphene quantum dots - Pyrene-derivatized porphyrins conjugates when encapsulated within Pluronic F127 micelles. Dyes Pigments 2018; 148: 405-16.
[http://dx.doi.org/10.1016/j.dyepig.2017.09.031]
[31]
Liu T, Li J, Wu X, et al. Transferrin-targeting redox hyperbranched poly(amido amine)-functionalized graphene oxide for sensitized chemotherapy combined with gene therapy to nasopharyngeal carcinoma. Drug Deliv 2019; 26(1): 744-55.
[http://dx.doi.org/10.1080/10717544.2019.1642421] [PMID: 31340676]
[32]
Liu Y, Shi L, Su L, et al. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem Soc Rev 2019; 48(2): 428-46.
[http://dx.doi.org/10.1039/C7CS00807D] [PMID: 30601473]
[33]
Apolinário A, Salata G, Bianco A, Fukumori C, Lopes L. Opening the pandora’s box of nanomedicines: There really is a lot more ‘space down there’. Quim Nova 2020; 43(2): 212-25.
[http://dx.doi.org/10.21577/0100-4042.20170481]
[34]
Ullah S, Ahmad A, Subhan F, et al. Tobramycin mediated silver nanospheres/graphene oxide composite for synergistic therapy of bacterial infection. J Photochem Photobiol B 2018; 183: 342-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.05.009] [PMID: 29763756]
[35]
Pardhi DM. Şen Karaman D, Timonen J, et al Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens. Int J Pharm 2020; 586: 119531.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119531] [PMID: 32540348]
[36]
Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics 2016; 6(9): 1306-23.
[http://dx.doi.org/10.7150/thno.14858] [PMID: 27375781]
[37]
Francisco FL, Saviano AM, Pinto TJ, Lourenço FR. Development, optimization and validation of a rapid colorimetric microplate bioassay for neomycin sulfate in pharmaceutical drug products. J Microbiol Methods 2014; 103: 104-11.
[http://dx.doi.org/10.1016/j.mimet.2014.05.023] [PMID: 24918989]
[38]
EUCAST - European committee on antimicrobial susceptibility testing. European Society of Clinical Microbiology and Infectious Diseases. MIC determination of non-fastidious and fastidious organisms. 2020. Available from: https://eucast.org/ast_of_bacteria/mic_determination/
[39]
Liu Y, Fu S, Lin L, et al. Redox-sensitive Pluronic F127-tocopherol micelles: Synthesis, characterization, and cytotoxicity evaluation. Int J Nanomedicine 2017; 12: 2635-44.
[http://dx.doi.org/10.2147/IJN.S122746] [PMID: 28435248]
[40]
Wu X, Ge W, Shao T, et al. Enhancing the oral bioavailability of biochanin A by encapsulation in mixed micelles containing Pluronic F127 and Plasdone S630. Int J Nanomedicine 2017; 12: 1475-83.
[http://dx.doi.org/10.2147/IJN.S125041] [PMID: 28260893]
[41]
Almeida TC, Oliveira DT, Luiz A, et al. Antitumoral activity of micellar solutions containing allyl isothiocyanate: An in vitro study. Ars Pharm 2021; 62(1): 40-51.
[http://dx.doi.org/10.30827/ars.v62i1.15845]
[42]
Shaikh S, Ray D, Aswal VK, Sharma RK. Incorporation of lamotrigine drug in the PEO–PPO–PEO triblock copolymer (Pluronic F127) micelles: Effect of hydrophilic polymers. J Surfactants Deterg 2017; 20(3): 695-706.
[http://dx.doi.org/10.1007/s11743-017-1948-6]
[43]
Valenzuela-Oses JK, García MC, Feitosa VA, et al. Development and characterization of miltefosine-loaded polymeric micelles for cancer treatment. Mater Sci Eng C 2017; 81: 327-33.
[http://dx.doi.org/10.1016/j.msec.2017.07.040] [PMID: 28887980]
[44]
Fermino TZ, Awano CM, Moreno LX, Vollet DR, De Vicente FS. Structure and thermal stability in hydrophobic Pluronic F127-modified silica aerogels. Microporous Mesoporous Mater 2018; 267: 242-8.
[http://dx.doi.org/10.1016/j.micromeso.2018.03.039]
[45]
Ahsan A, Farooq MA. Therapeutic potential of green synthesized silver nanoparticles loaded PVA hydrogel patches for wound healing. J Drug Deliv Sci Technol 2019; 54: 101308.
[http://dx.doi.org/10.1016/j.jddst.2019.101308]
[46]
Zhang Y, Zhang X, Song J, Jin L, Wang X, Quan C. Ag/H-ZIF-8 nanocomposite as an effective antibacterial agent against pathogenic bacteria. Nanomaterials (Basel) 2019; 9(11): 1579.
[http://dx.doi.org/10.3390/nano9111579] [PMID: 31703378]
[47]
Kadayifci MS, Gokkaya D, Topuzogullari M, et al. Core-crosslinking as a pathway to develop inherently antibacterial polymeric micelles. J Appl Polym Sci 2020; 137(8): 48393.
[http://dx.doi.org/10.1002/app.48393]
[48]
Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018; 10(2): 57-72.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[49]
Jiang X, Bai C, Liu M, Eds. Nanotechnology and Microfluidics. 2019.
[50]
Firouzjaei MD, Shamsabadi AA, Sharifian GM, Rahimpour A, Soroush M. A novel nanocomposite with superior antibacterial activity: A silver-based metal organic framework embellished with graphene oxide. Adv Mater Interfaces 2018; 5(11): 1701365.
[http://dx.doi.org/10.1002/admi.201701365]
[51]
Singh J, Mittal P, Bonde GV, Ajmal G, Mishra B. Design, optimization, characterization and in-vivo evaluation of Quercetin enveloped Soluplus®/P407 micelles in diabetes treatment. Artif Cells Nanomed Biotechnol 2018; 46: S546-55.
[http://dx.doi.org/10.1080/21691401.2018.1501379] [PMID: 30322273]
[52]
Zhang Z, Shen W, Xue J, et al. Recent advances in synthetic methods and applications of silver nanostructures. Nanoscale Res Lett 2018; 13(1): 54.
[http://dx.doi.org/10.1186/s11671-018-2450-4] [PMID: 29457198]
[53]
Niu J, Yuan M, Chen C, et al. Berberine-loaded thiolated pluronic f127 polymeric micelles for improving skin permeation and retention. Int J Nanomedicine 2020; 15: 9987-10005.
[http://dx.doi.org/10.2147/IJN.S270336] [PMID: 33324058]
[54]
Peng JM, Lin JC, Chen ZY, et al. Enhanced antimicrobial activities of silver-nanoparticle-decorated reduced graphene nanocomposites against oral pathogens. Mater Sci Eng C 2017; 71: 10-6.
[http://dx.doi.org/10.1016/j.msec.2016.09.070] [PMID: 27987652]
[55]
Naskar A, Kim KS. Nanomaterials as delivery vehicles and components of new strategies to combat bacterial infections: Advantages and limitations. Microorganisms 2019; 7(9): 356.
[http://dx.doi.org/10.3390/microorganisms7090356] [PMID: 31527443]
[56]
Ghezzi M, Pescina S, Padula C, et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021; 332: 312-36.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.031] [PMID: 33652113]
[57]
Hagihara M, Kato H, Shibata Y, et al. In vivo pharmacodynamics of lascufloxacin and levofloxacin against Streptococcus pneumoniae and Prevotella intermedia in a pneumonia mixed-infection mouse model. Anaerobe 2021; 69: 102346.
[http://dx.doi.org/10.1016/j.anaerobe.2021.102346] [PMID: 33600958]
[58]
Schön T, Werngren J, Machado D, et al. Antimicrobial susceptibility testing of Mycobacterium tuberculosis complex isolates - the EUCAST broth microdilution reference method for MIC determination. Clin Microbiol Infect 2020; 26(11): 1488-92.
[http://dx.doi.org/10.1016/j.cmi.2020.07.036] [PMID: 32750539]
[59]
Scutera S, Argenziano M, Sparti R, et al. Enhanced antimicrobial and antibiofilm effect of new colistin-loaded human albumin nanoparticles. Antibiotics (Basel) 2021; 10(1): 1-13.
[http://dx.doi.org/10.3390/antibiotics10010057] [PMID: 33430076]
[60]
Al-Jumaili A, Alancherry S, Bazaka K, Jacob MV. Review on the antimicrobial properties of Carbon nanostructures materials. Materials (Basel) 2017; 10(9): 1066-92.
[http://dx.doi.org/10.3390/ma10091066] [PMID: 28892011]
[61]
He K, Zeng Z, Chen A, et al. Advancement of Ag-graphene based nanocomposites: An overview of synthesis and its applications. Small 2018; 14(32): e1800871.
[http://dx.doi.org/10.1002/smll.201800871] [PMID: 29952105]
[62]
Dat NM, Long PNB, Nhi DCU, et al. Synthesis of silver/reduced graphene oxide for antibacterial activity and catalytic reduction of organic dyes. Synth Met 2020; 260: 116260.
[http://dx.doi.org/10.1016/j.synthmet.2019.116260]
[63]
Shen M, Forghani F, Kong X, et al. Antibacterial applications of metal-organic frameworks and their composites. Compr Rev Food Sci Food Saf 2020; 19(4): 1397-419.
[http://dx.doi.org/10.1111/1541-4337.12515] [PMID: 33337086]
[64]
Radhi A, Mohamad D, Rahman FSA, Abdullah AM, Hasan H. Mechanism and factors influence of graphene-based nanomaterials antimicrobial activities and application in dentistry. J Mater Res Technol 2021; 11: 1290-307.
[http://dx.doi.org/10.1016/j.jmrt.2021.01.093]
[65]
Mahmoodzadeh F, Ghamkhari A. Fabrication of silver nanocomposites by thiol-end capped ABC triblock copolymer and investigation of their Inhibitory effect against bacteria and yeast in vitro. Human Health Halal Metrics 2020; 1(2): 56-63.
[http://dx.doi.org/10.30502/jhhhm.2021.222008.1012]
[66]
Fan X, Yang F, Nie C, et al. Mussel-inspired synthesis of NIR-responsive and biocompatible Ag-Graphene 2D nanoagents for versatile bacterial disinfections. ACS Appl Mater Interfaces 2018; 10(1): 296-307.
[http://dx.doi.org/10.1021/acsami.7b16283] [PMID: 29235842]
[67]
Thakur K, Sharma G, Singh B, Chhibber S, Patil AB, Katare OP. Chitosan-tailored lipidic nanoconstructs of Fusidic acid as promising vehicle for wound infections: An explorative study. Int J Biol Macromol 2018; 115: 1012-25.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.092] [PMID: 29680503]
[68]
Bakr RO, Tawfike A, El-Gizawy HA, et al. The metabolomic analysis of five Mentha species: cytotoxicity, anti-Helicobacter assessment, and the development of polymeric micelles for enhancing the anti-Helicobacter activity. RSC Advances 2021; 11(13): 7318-30.
[http://dx.doi.org/10.1039/D0RA09334C] [PMID: 35423273]
[69]
Wong F, Stokes JM, Cervantes B, et al. Cytoplasmic condensation induced by membrane damage is associated with antibiotic lethality. Nat Commun 2021; 12(1): 2321.
[http://dx.doi.org/10.1038/s41467-021-22485-6] [PMID: 33875652]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy