Review Article

用于革兰氏阴性杆菌感染的驱虫药物

卷 30, 期 1, 2023

发表于: 09 September, 2022

页: [59 - 71] 页: 13

弟呕挨: 10.2174/0929867329666220714092916

价格: $65

conference banner
摘要

细菌感染是世界范围内死亡的主要原因之一。抗微生物药物耐药因素的出现威胁到目前所有抗微生物药物的疗效,其中一些药物已经失效,因此迫切需要新的治疗方法。世界卫生组织和欧洲疾病控制中心等国际组织已经认识到,由耐多药细菌引起的感染是全球卫生行动的优先事项。经典的抗菌药物发现包括体外筛选抗菌候选药物,结构-活性关系分析,然后是体内毒性试验。将药物从实验室带到床边需要花费大量的时间和资源。至少直到最近,由于耐药性的迅速出现,抗生素的治疗应用窗口期相对较短,这导致制药公司对抗生素发现的兴趣逐渐减弱。在这种环境下,正如最近的几项研究所反映的那样,“重新利用”(定义为研究现有已批准药物的新用途)重新引起了人们的兴趣,它可能有助于加快药物开发进程,并节省在抗菌药物开发上投入的多年昂贵研究费用。本综述的目的是对针对革兰氏阴性杆菌(GNB)的潜在驱虫药物的科学证据进行概述。特别是,我们的目标是:(i)强调驱虫药在治疗GNB感染方面的潜力,(ii)回顾它们对这些细菌的作用机制,(iii)总结针对这些细菌的已获批准的驱虫药的临床前研究结果,(iv)为进一步的驱虫药再利用开发提供关键挑战,以及(v)列出更有可能被再利用的特定驱虫药。

关键词: 药物再利用,驱虫药物,细菌,感染,抗微生物药物耐药性和治疗,耐药病原体

« Previous
[1]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N.; Aboderin, A.O.; Al-Abri, S.S.; Awang Jalil, N.; Benzonana, N.; Bhattacharya, S.; Brink, A.J.; Burkert, F.R.; Cars, O.; Cornaglia, G.; Dyar, O.J.; Friedrich, A.W.; Gales, A.C.; Gandra, S.; Giske, C.G.; Goff, D.A.; Goossens, H.; Gottlieb, T.; Guzman Blanco, M.; Hryniewicz, W.; Kattula, D.; Jinks, T.; Kanj, S.S.; Kerr, L.; Kieny, M-P.; Kim, Y.S.; Kozlov, R.S.; Labarca, J.; Laxminarayan, R.; Leder, K.; Leibovici, L.; Levy-Hara, G.; Littman, J.; Malhotra-Kumar, S.; Manchanda, V.; Moja, L.; Ndoye, B.; Pan, A.; Paterson, D.L.; Paul, M.; Qiu, H.; Ramon-Pardo, P.; Rodríguez-Baño, J.; Sanguinetti, M.; Sengupta, S.; Sharland, M.; Si-Mehand, M.; Silver, L.L.; Song, W.; Steinbakk, M.; Thomsen, J.; Thwaites, G.E.; van der Meer, J.W.M.; Van Kinh, N.; Vega, S.; Villegas, M.V.; Wechsler-Fördös, A.; Wertheim, H.F.L.; Wesangula, E.; Woodford, N.; Yilmaz, F.O.; Zorzet, A. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[2]
O’ Neill, J. Tackling drug-resistant infections globally: Final report and recommendations. Review on Antimicrobial resistance, 2016.
[3]
Antimicrobial resistance. 2021. Available from: https://www.who.int/news-room/fact- sheets/detail/antimicrobial-resistance (Accessed date:17 November 2021).
[4]
Viderman, D.; Brotfain, E.; Khamzina, Y.; Kapanova, G.; Zhumadilov, A.; Poddighe, D. Bacterial resistance in the intensive care unit of developing countries: Report from a tertiary hospital in Kazakhstan. J. Glob. Antimicrob. Resist., 2019, 17, 35-38.
[http://dx.doi.org/10.1016/j.jgar.2018.11.010] [PMID: 30448518]
[5]
Simeon, P.; Godman, B.; Kalemeera, F. Antibiotics’ susceptibility patterns of bacterial isolates causing lower respiratory tract infections in ICU patients at referral hospitals in Namibia. Hosp. Pract., 2021, 49(5), 356-363.
[http://dx.doi.org/10.1080/21548331.2021.1973825] [PMID: 34436942]
[6]
Blasco, L.; Bleriot, I.; González de Aledo, M.; Fernández-García, L.; Pacios, O.; Oliveira, H.; López, M.; Ortiz-Cartagena, C.; Fernández-Cuenca, F.; Pascual, Á.; Martínez-Martínez, L.; Pachón, J.; Azeredo, J.; Tomás, M. Development of an Anti-Acinetobacter baumannii biofilm phage cocktail: Genomic adaptation to the host. Antimicrob. Agents Chemother., 2022, 66(3), e01923-21.
[http://dx.doi.org/10.1128/aac.01923-21] [PMID: 35041503]
[7]
Hegarty, J.P.; Stewart, D.B., Sr Advances in therapeutic bacterial antisense biotechnology. Appl. Microbiol. Biotechnol., 2018, 102(3), 1055-1065.
[http://dx.doi.org/10.1007/s00253-017-8671-0] [PMID: 29209794]
[8]
Li, Z.; Lu, W.; Jia, S.; Yuan, H. Backbone-regulated cationic conjugated polymers for combating and monitoring pathogenic bacteria. ACS Appl. Polym. Mater., 2022, 4(1), 29-35.
[http://dx.doi.org/10.1021/acsapm.1c01672]
[9]
Miró-Canturri, A.; Ayerbe-Algaba, R.; Smani, Y. Drug repurposing for the treatment of bacterial and fungal infections. Front. Microbiol., 2019, 10, 41.
[http://dx.doi.org/10.3389/fmicb.2019.00041] [PMID: 30745898]
[10]
Fischbach, M.A.; Walsh, C.T. Antibiotics for emerging pathogens. Science, 2009, 325(5944), 1089-1093.
[http://dx.doi.org/10.1126/science.1176667] [PMID: 19713519]
[11]
Brown, D. Antibiotic resistance breakers: Can repurposed drugs fill the antibiotic discovery void? Nat. Rev. Drug Discov., 2015, 14(12), 821-832.
[http://dx.doi.org/10.1038/nrd4675] [PMID: 26493767]
[12]
Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468.
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[13]
Theuretzbacher, U.; Outterson, K.; Engel, A.; Karlén, A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol., 2020, 18(5), 275-285.
[http://dx.doi.org/10.1038/s41579-019-0288-0] [PMID: 31745331]
[14]
Farha, M.A.; Brown, E.D. Drug repurposing for antimicrobial discovery. Nat. Microbiol., 2019, 4(4), 565-577.
[http://dx.doi.org/10.1038/s41564-019-0357-1] [PMID: 30833727]
[15]
Swan, G.E. The pharmacology of halogenated salicylanilides and their anthelmintic use in animals : Review article. J. S. Afr. Vet. Assoc., 1999, 70(2), 61-70.
[http://dx.doi.org/10.4102/jsava.v70i2.756] [PMID: 10855824]
[16]
Costabile, G.; d’Angelo, I.; Rampioni, G.; Bondì, R.; Pompili, B.; Ascenzioni, F.; Mitidieri, E.; d’Emmanuele di Villa Bianca, R.; Sorrentino, R.; Miro, A.; Quaglia, F.; Imperi, F.; Leoni, L.; Ungaro, F. Toward repositioning niclosamide for antivirulence therapy of Pseudomonas aeruginosa lung infections: Development of inhalable formulations through nanosuspension technology. Mol. Pharm., 2015, 12(8), 2604-2617.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00098] [PMID: 25974285]
[17]
Imperi, F.; Massai, F.; Ramachandran Pillai, C.; Longo, F.; Zennaro, E.; Rampioni, G.; Visca, P.; Leoni, L. New life for an old drug: The anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob. Agents Chemother., 2013, 57(2), 996-1005.
[http://dx.doi.org/10.1128/AAC.01952-12] [PMID: 23254430]
[18]
Tam, J.; Hamza, T.; Ma, B.; Chen, K.; Beilhartz, G.L.; Ravel, J.; Feng, H.; Melnyk, R.A. Host-targeted niclosamide inhibits C. difficile virulence and prevents disease in mice without disrupting the gut microbiota. Nat. Commun., 2018, 9(1), 5233.
[http://dx.doi.org/10.1038/s41467-018-07705-w] [PMID: 30531960]
[19]
Xu, J.; Pachón-Ibáñez, M.E.; Cebrero-Cangueiro, T.; Chen, H.; Sánchez-Céspedes, J.; Zhou, J. Discovery of niclosamide and its O-alkylamino-tethered derivatives as potent antibacterial agents against carbapenemase-producing and/or colistin resistant Enterobacteriaceae isolates. Bioorg. Med. Chem. Lett., 2019, 29(11), 1399-1402.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.032] [PMID: 30954430]
[20]
D’Angelo, F.; Baldelli, V.; Halliday, N.; Pantalone, P.; Polticelli, F.; Fiscarelli, E.; Williams, P.; Visca, P.; Leoni, L.; Rampioni, G. Identification of FDA-approved drugs as antivirulence agents targeting the pqs quorum sensing system of Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2018, 62(11), e01296-18.
[http://dx.doi.org/10.1128/AAC.01296-18] [PMID: 30201815]
[21]
Singh, S.; Bhatia, S. In silico identification of albendazole as a quorum sensing inhibitor and its in vitro verification using CviR and LasB receptors based assay systems. Bioimpacts, 2018, 8(3), 201-209.
[http://dx.doi.org/10.15171/bi.2018.23] [PMID: 30211080]
[22]
Seleem, N.M.; Abd El Latif, H.K.; Shaldam, M.A.; El-Ganiny, A. Drugs with new lease of life as quorum sensing inhibitors: For combating MDR Acinetobacter baumannii infections. Eur. J. Clin. Microbiol. Infect. Dis., 2020, 39(9), 1687-1702.
[http://dx.doi.org/10.1007/s10096-020-03882-z] [PMID: 32328851]
[23]
Sambanthamoorthy, K.; Gokhale, A.A.; Lao, W.; Parashar, V.; Neiditch, M.B.; Semmelhack, M.F.; Lee, I.; Waters, C.M. Identification of a novel benzimidazole that inhibits bacterial biofilm formation in a broad-spectrum manner. Antimicrob. Agents Chemother., 2011, 55(9), 4369-4378.
[http://dx.doi.org/10.1128/AAC.00583-11] [PMID: 21709104]
[24]
Czerwonka, G.; Gmiter, D.; Guzy, A.; Rogala, P.; Jabłońska-Wawrzycka, A.; Borkowski, A.; Cłapa, T.; Narożna, D.; Kowalczyk, P.; Syczewski, M.; Drabik, M.; Dańczuk, M.; Kaca, W. A benzimidazole-based ruthenium(IV) complex inhibits Pseudomonas aeruginosa biofilm formation by interacting with siderophores and the cell envelope, and inducing oxidative stress. Biofouling, 2019, 35(1), 59-74.
[http://dx.doi.org/10.1080/08927014.2018.1564818] [PMID: 30727772]
[25]
Steadman, D.; Lo, A.; Waksman, G.; Remaut, H. Bacterial surface appendages as targets for novel antibacterial therapeutics. Future Microbiol., 2014, 9(7), 887-900.
[http://dx.doi.org/10.2217/fmb.14.46] [PMID: 25156378]
[26]
Chahales, P.; Hoffman, P.S.; Thanassi, D.G. Nitazoxanide inhibits pilus biogenesis by interfering with folding of the usher protein in the outer membrane. Antimicrob. Agents Chemother., 2016, 60(4), 2028-2038.
[http://dx.doi.org/10.1128/AAC.02221-15] [PMID: 26824945]
[27]
Psonis, J.J.; Chahales, P.; Henderson, N.S.; Rigel, N.W.; Hoffman, P.S.; Thanassi, D.G. The small molecule nitazoxanide selectively disrupts BAM-mediated folding of the outer membrane usher protein. J. Biol. Chem., 2019, 294(39), 14357-14369.
[http://dx.doi.org/10.1074/jbc.RA119.009616] [PMID: 31391254]
[28]
Shamir, E.R.; Warthan, M.; Brown, S.P.; Nataro, J.P.; Guerrant, R.L.; Hoffman, P.S. Nitazoxanide inhibits biofilm production and hemagglutination by enteroaggregative Escherichia coli strains by blocking assembly of AafA fimbriae. Antimicrob. Agents Chemother., 2010, 54(4), 1526-1533.
[http://dx.doi.org/10.1128/AAC.01279-09] [PMID: 20086145]
[29]
Ayerbe-Algaba, R.; Gil-Marqués, M.L.; Jiménez-Mejías, M.E.; Sánchez-Encinales, V.; Parra-Millán, R.; Pachón-Ibáñez, M.E.; Pachón, J.; Smani, Y. Synergistic activity of niclosamide in combination with colistin against colistin-susceptible and colistin-resistant Acinetobacter baumannii and Klebsiella pneumoniae. Front. Cell. Infect. Microbiol., 2018, 8, 348.
[http://dx.doi.org/10.3389/fcimb.2018.00348] [PMID: 30338245]
[30]
Miró-Canturri, A.; Ayerbe-Algaba, R.; Villodres, Á.R.; Pachón, J.; Smani, Y. Repositioning rafoxanide to treat Gram-negative bacilli infections. J. Antimicrob. Chemother., 2020, 75(7), 1895-1905.
[http://dx.doi.org/10.1093/jac/dkaa103] [PMID: 32240294]
[31]
Maiden, M.M.; Zachos, M.P.; Waters, C.M. The ionophore oxyclozanide enhances tobramycin killing of Pseudomonas aeruginosa biofilms by permeabilizing cells and depolarizing the membrane potential. J. Antimicrob. Chemother., 2019, 74(4), 894-906.
[http://dx.doi.org/10.1093/jac/dky545] [PMID: 30624737]
[32]
Ayerbe-Algaba, R.; Gil-Marqués, M.L.; Miró-Canturri, A.; Parra-Millán, R.; Pachón-Ibáñez, M.E.; Jiménez-Mejías, M.E.; Pachón, J.; Smani, Y. The anthelmintic oxyclozanide restores the activity of colistin against colistin-resistant Gram-negative bacilli. Int. J. Antimicrob. Agents, 2019, 54(4), 507-512.
[http://dx.doi.org/10.1016/j.ijantimicag.2019.07.006] [PMID: 31299296]
[33]
Miró-Canturri, A.; Ayerbe-Algaba, R.; Pachón-Ibáñez, M.E.; Pachon-Díaz, J.; Smani, Y. In vitro activity of ivermectin in combination with colistin against Gram negative bacilli. 29th European Congress of Clinical Microbiology and Infectious Diseases, Amsterdam, Netherlands 2019.
[34]
Copp, J.N.; Pletzer, D.; Brown, A.S.; Van der Heijden, J.; Miton, C.M.; Edgar, R.J.; Rich, M.H.; Little, R.F.; Williams, E.M.; Hancock, R.E.W.; Tokuriki, N.; Ackerley, D.F. Mechanistic understanding enables the rational design of salicylanilide combination therapies for Gram-negative infections. MBio, 2020, 11(5), e02068-20.
[http://dx.doi.org/10.1128/mBio.02068-20] [PMID: 32934086]
[35]
Wu, C.S.; Li, Y.R.; Chen, J.J.W.; Chen, Y.C.; Chu, C.L.; Pan, I.H.; Wu, Y.S.; Lin, C.C. Antihelminthic niclosamide modulates dendritic cells activation and function. Cell. Immunol., 2014, 288(1-2), 15-23.
[http://dx.doi.org/10.1016/j.cellimm.2013.12.006] [PMID: 24561310]
[36]
Zhang, X.; Song, Y.; Ci, X.; An, N.; Ju, Y.; Li, H.; Wang, X.; Han, C.; Cui, J.; Deng, X. Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice. Inflamm. Res., 2008, 57(11), 524-529.
[http://dx.doi.org/10.1007/s00011-008-8007-8] [PMID: 19109745]
[37]
Zhang, X.; Song, Y.; Xiong, H.; Ci, X.; Li, H.; Yu, L.; Zhang, L.; Deng, X. Inhibitory effects of ivermectin on nitric oxide and prostaglandin E2 production in LPS-stimulated RAW 264.7 macrophages. Int. Immunopharmacol., 2009, 9(3), 354-359.
[http://dx.doi.org/10.1016/j.intimp.2008.12.016] [PMID: 19168156]
[38]
Csóka, B.; Németh, Z.H.; Szabó, I.; Davies, D.L.; Varga, Z.V.; Pálóczi, J.; Falzoni, S.; Di Virgilio, F.; Muramatsu, R.; Yamashita, T.; Pacher, P.; Haskó, G. Macrophage P2X4 receptors augment bacterial killing and protect against sepsis. JCI Insight, 2018, 3(11), e99431.
[http://dx.doi.org/10.1172/jci.insight.99431] [PMID: 29875325]
[39]
Zhang, X.; Li, J.; Chen, C.; Ci, X.; Yu, Q.; Zhang, X.; Deng, X. Protective effect of abamectin on acute lung injury induced by lipopolysaccharide in mice. Fundam. Clin. Pharmacol., 2011, 25(6), 700-707.
[http://dx.doi.org/10.1111/j.1472-8206.2010.00896.x] [PMID: 21118302]
[40]
Garnacho-Montero, J.; Timsit, J.F. Managing Acinetobacter baumannii infections. Curr. Opin. Infect. Dis., 2019, 32(1), 69-76.
[http://dx.doi.org/10.1097/QCO.0000000000000518] [PMID: 30520737]
[41]
Garnacho-Montero, J.; Ortiz-Leyba, C.; Jiménez-Jiménez, F.J.; Barrero-Almodóvar, A.E.; García-Garmendia, J.L.; Bernabeu-WittelI, M.; Gallego-Lara, S.L.; Madrazo-Osuna, J. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: A comparison with imipenem-susceptible VAP. Clin. Infect. Dis., 2003, 36(9), 1111-1118.
[http://dx.doi.org/10.1086/374337] [PMID: 12715304]
[42]
Markou, N.; Markantonis, S.L.; Dimitrakis, E.; Panidis, D.; Boutzouka, E.; Karatzas, S.; Rafailidis, P.; Apostolakos, H.; Baltopoulos, G. Colistin serum concentrations after intravenous administration in critically ill patients with serious multidrug-resistant, gram-negative bacilli infections: A prospective, open-label, uncontrolled study. Clin. Ther., 2008, 30(1), 143-151.
[http://dx.doi.org/10.1016/j.clinthera.2008.01.015] [PMID: 18343250]
[43]
Álvarez-Marín, R.; López-Rojas, R.; Márquez, J.A.; Gómez, M.J.; Molina, J.; Cisneros, J.M.; Ortiz-Leyba, C.; Aznar, J.; Garnacho-Montero, J.; Pachón, J. Colistin dosage without loading dose is efficacious when treating carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia caused by strains with high susceptibility to colistin. PLoS One, 2016, 11(12), e0168468.
[http://dx.doi.org/10.1371/journal.pone.0168468] [PMID: 27992528]
[44]
Domalaon, R.; De Silva, P.M.; Kumar, A.; Zhanel, G.G.; Schweizer, F. The anthelmintic drug niclosamide synergizes with colistin and reverses colistin resistance in Gram-negative bacilli. Antimicrob. Agents Chemother., 2019, 63(4), e02574-18.
[http://dx.doi.org/10.1128/AAC.02574-18] [PMID: 30917988]
[45]
Domalaon, R.; Okunnu, O.; Zhanel, G.G.; Schweizer, F. Synergistic combinations of anthelmintic salicylanilides oxyclozanide, rafoxanide, and closantel with colistin eradicates multidrug-resistant colistin-resistant Gram-negative bacilli. J. Antibiot. (Tokyo), 2019, 72(8), 605-616.
[http://dx.doi.org/10.1038/s41429-019-0186-8] [PMID: 31028351]
[46]
Tran, T.B.; Cheah, S.E.; Yu, H.H.; Bergen, P.J.; Nation, R.L.; Creek, D.J.; Purcell, A.; Forrest, A.; Doi, Y.; Song, J.; Velkov, T.; Li, J. Anthelmintic closantel enhances bacterial killing of polymyxin B against multidrug-resistant Acinetobacter baumannii. J. Antibiot. (Tokyo), 2016, 69(6), 415-421.
[http://dx.doi.org/10.1038/ja.2015.127] [PMID: 26669752]
[47]
Schweizer, L.; Ramirez, D.; Schweizer, F. Effects of lysine N-zeta-methylation in ultrashort tetrabasic lipopeptides (UTBLPs) on the potentiation of rifampicin, novobiocin, and niclosamide in Gram-negative bacteria. Antibiotics (Basel), 2022, 11(3), 335.
[http://dx.doi.org/10.3390/antibiotics11030335] [PMID: 35326798]
[48]
Dokla, E.M.E.; Abutaleb, N.S.; Milik, S.N.; Li, D.; El-Baz, K.; Shalaby, M.A.W.; Al-Karaki, R.; Nasr, M.; Klein, C.D.; Abouzid, K.A.M.; Seleem, M.N. Development of benzimidazole-based derivatives as antimicrobial agents and their synergistic effect with colistin against gram-negative bacteria. Eur. J. Med. Chem., 2020, 186, 111850.
[http://dx.doi.org/10.1016/j.ejmech.2019.111850] [PMID: 31735572]
[49]
Gellatly, S.L.; Hancock, R.E.W. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis., 2013, 67(3), 159-173.
[http://dx.doi.org/10.1111/2049-632X.12033] [PMID: 23620179]
[50]
Kang, C.I.; Kim, S.H.; Kim, H.B.; Park, S.W.; Choe, Y.J.; Oh, M.; Kim, E.C.; Choe, K.W. Pseudomonas aeruginosa bacteremia: Risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin. Infect. Dis., 2003, 37(6), 745-751.
[http://dx.doi.org/10.1086/377200] [PMID: 12955633]
[51]
Vidal, F.; Mensa, J.; Almela, M.; Martínez, J.A.; Marco, F.; Casals, C.; Gatell, J.M.; Soriano, E.; Jimenez de Anta, M.T. Epidemiology and outcome of Pseudomonas aeruginosa bacteremia, with special emphasis on the influence of antibiotic treatment. Analysis of 189 episodes. Arch. Intern. Med., 1996, 156(18), 2121-2126.
[http://dx.doi.org/10.1001/archinte.1996.00440170139015] [PMID: 8862105]
[52]
Vincent, J.L. Nosocomial infections in adult intensive-care units. Lancet, 2003, 361(9374), 2068-2077.
[http://dx.doi.org/10.1016/S0140-6736(03)13644-6] [PMID: 12814731]
[53]
Ali, Z.; Mumtaz, N.; Naz, S.A.; Jabeen, N.; Shafique, M. Multi-drug resistant pseudomonas aeruginosa: A threat of nosocomial infections in tertiary care hospitals. J. Pak. Med. Assoc., 2015, 65(1), 12-16.
[PMID: 25831667]
[54]
Micek, S.T.; Wunderink, R.G.; Kollef, M.H.; Chen, C.; Rello, J.; Chastre, J.; Antonelli, M.; Welte, T.; Clair, B.; Ostermann, H.; Calbo, E.; Torres, A.; Menichetti, F.; Schramm, G.E.; Menon, V. An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: Impact of multidrug resistance. Crit. Care, 2015, 19(1), 219.
[http://dx.doi.org/10.1186/s13054-015-0926-5] [PMID: 25944081]
[55]
Kaye, K.S.; Pogue, J.M. Infections caused by resistant Gram-negative bacteria: Epidemiology and management. Pharmacotherapy, 2015, 35(10), 949-962.
[http://dx.doi.org/10.1002/phar.1636] [PMID: 26497481]
[56]
Wright, H.; Bonomo, R.A.; Paterson, D.L. New agents for the treatment of infections with Gram-negative bacteria: Restoring the miracle or false dawn? Clin. Microbiol. Infect., 2017, 23(10), 704-712.
[http://dx.doi.org/10.1016/j.cmi.2017.09.001] [PMID: 28893690]
[57]
Lu, T.; Zheng, X.; Mao, F.; Cao, Q.; Cao, Q.; Zhu, J.; Li, X.; Lan, L.; Li, B.; Li, J. Novel niclosamide-derived adjuvants elevating the efficacy of polymyxin B against MDR Pseudomonas aeruginosa DK2. Eur. J. Med. Chem., 2022, 236, 114318.
[http://dx.doi.org/10.1016/j.ejmech.2022.114318]
[58]
Berry, L.; Brizuela, M.; Jackson, G.; Schweizer, F. A niclosamide–tobramycin hybrid adjuvant potentiates cefiderocol against P. aeruginosa. RSC Medicinal Chemistry, 2021, 12(9), 1565-1573.
[http://dx.doi.org/10.1039/D1MD00206F] [PMID: 34671738]
[59]
Vila, J.; Sáez-López, E.; Johnson, J.R.; Römling, U.; Dobrindt, U.; Cantón, R.; Giske, C.G.; Naas, T.; Carattoli, A.; Martínez-Medina, M.; Bosch, J.; Retamar, P.; Rodríguez-Baño, J.; Baquero, F.; Soto, S.M. Escherichia coli : An old friend with new tidings. FEMS Microbiol. Rev., 2016, 40(4), 437-463.
[http://dx.doi.org/10.1093/femsre/fuw005] [PMID: 28201713]
[60]
Manges, A.R.; Geum, H.M.; Guo, A.; Edens, T.J.; Fibke, C.D.; Pitout, J.D.D. Globalextraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin. Microbiol. Rev., 2019, 32(3), e00135-18.
[http://dx.doi.org/10.1128/CMR.00135-18] [PMID: 31189557]
[61]
Solomkin, J.S.; Mazuski, J.E.; Bradley, J.S.; Rodvold, K.A.; Goldstein, E.J.C.; Baron, E.J.; O’Neill, P.J.; Chow, A.W.; Dellinger, E.P.; Eachempati, S.R.; Gorbach, S.; Hilfiker, M.; May, A.K.; Nathens, A.B.; Sawyer, R.G.; Bartlett, J.G. Diagnosis and management of complicated intra-abdominal infection in adults and children: Guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin. Infect. Dis., 2010, 50(2), 133-164.
[http://dx.doi.org/10.1086/649554] [PMID: 20034345]
[62]
Paczosa, M.K.; Mecsas, J. Klebsiella pneumoniae: Going on the offense with a strong defense. Microbiol. Mol. Biol. Rev., 2016, 80(3), 629-661.
[http://dx.doi.org/10.1128/MMBR.00078-15] [PMID: 27307579]
[63]
Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev., 2017, 30(2), 557-596.
[http://dx.doi.org/10.1128/CMR.00064-16] [PMID: 28275006]
[64]
Li, H.; Mattingly, A.E.; Jania, L.A.; Smith, R.; Melander, R.J.; Ernst, R.K.; Koller, B.H.; Melander, C. Benzimidazole isosteres of salicylanilides are highly active colistin adjuvants. ACS Infect. Dis., 2021, 7(12), 3303-3313.
[http://dx.doi.org/10.1021/acsinfecdis.1c00463] [PMID: 34752055]
[65]
Pacios, O.; Fernández-García, L.; Bleriot, I.; Blasco, L.; Ambroa, A.; López, M.; Ortiz-Cartagena, C.; González de Aledo, M.; Fernández-Cuenca, F.; Oteo-Iglesias, J.; Pascual, Á.; Martínez-Martínez, L.; Tomás, M. Adaptation of clinical isolates of Klebsiella pneumoniae to the combination of niclosamide with the efflux pump inhibitor phenyl-arginine-β-naphthylamide (PaβN): Co-resistance to antimicrobials. J. Antimicrob. Chemother., 2022, 77(5), 1272-1281.
[http://dx.doi.org/10.1093/jac/dkac044] [PMID: 35238930]
[66]
Racané, L.; Zlatar, I.; Perin, N.; Cindrić, M.; Radovanović, V.; Banjanac, M.; Shanmugam, S.; Stojković, M.R.; Brajša, K.; Hranjec, M. Biological activity of newly synthesized benzimidazole and benzothizole 2,5- disubstituted furane derivatives. Molecules, 2021, 26(16), 4935.
[http://dx.doi.org/10.3390/molecules26164935] [PMID: 34443523]
[67]
Chaurasia, H.; Singh, V.K.; Mishra, R.; Yadav, A.K.; Ram, N.K.; Singh, P.; Singh, R.K. Molecular modelling, synthesis and antimicrobial evaluation of benzimidazole nucleoside mimetics. Bioorg. Chem., 2021, 115, 105227.
[http://dx.doi.org/10.1016/j.bioorg.2021.105227] [PMID: 34399320]
[68]
Bolick, D.T.; Roche, J.K.; Hontecillas, R.; Bassaganya-Riera, J.; Nataro, J.P.; Guerrant, R.L. Enteroaggregative Escherichia coli strain in a novel weaned mouse model: Exacerbation by malnutrition, biofilm as a virulence factor and treatment by nitazoxanide. J. Med. Microbiol., 2013, 62(6), 896-905.
[http://dx.doi.org/10.1099/jmm.0.046300-0] [PMID: 23475903]
[69]
Grayson, M.L.; Cosgrove, S.E.; Crowe, S.; Hope, W.; McCarthy, J.S.; Mills, J. Kucers’ The use of antibiotics: A clinical review of antibacterial, antifungal, antiparasitic and antiviral drugs; 7th; 2017, pp. 1-4841.
[70]
Niclosamide for mild to moderate COVID-19. NCT04399356, 2017.
[71]
Sars-CoV-2/COVID-19 Ivermectin Navarra-ISGlobal Trial (SAINT). NCT04390022, 2017.
[72]
Musher, D.M.; Logan, N.; Hamill, R.J.; DuPont, H.L.; Lentnek, A.; Gupta, A.; Rossignol, J.F. Nitazoxanide for the treatment of Clostridium difficile colitis. Clin. Infect. Dis., 2006, 43(4), 421-427.
[http://dx.doi.org/10.1086/506351] [PMID: 16838229]
[73]
Musher, D.M.; Logan, N.; Bressler, A.M.; Johnson, D.P.; Rossignol, J.F. Nitazoxanide versus vancomycin in Clostridium difficile infection: A randomized, double-blind study. Clin. Infect. Dis., 2009, 48(4), e41-e46.
[http://dx.doi.org/10.1086/596552] [PMID: 19133801]
[74]
Lee, S.; Sneed, G.T.; Brown, J.N. Treatment of Helicobacter pylori with nitazoxanide-containing regimens: A systematic review. Infect. Dis. (Lond.), 2020, 52(6), 381-390.
[http://dx.doi.org/10.1080/23744235.2019.1708454] [PMID: 31900002]
[75]
A unique regimen for treatment of Helicobacter pylori infection. NCT03491995, 2017.
[76]
Study of nitazoxanide (NTZ) for Helicobacter pylori in children. NCT04415983, 2017.
[77]
Inhaled sodium nitrite as an antimicrobial for cystic fibrosis. NCT02694393, 2017.
[78]
Reducing antibiotic tolerance using nitric oxide in CF - a phase 2 pilot study (RATNO). NCT02295566,
[79]
Atorvastatin in bronchiectasis in patients with Pseudomonas aeruginosa. NCT01299194, 2011.
[80]
Anti-inflammatory effects of GTS-21 after LPS. NCT00783068, 2017.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy