Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Therapeutics for the Management of Cytokine Release Syndrome in COVID-19

Author(s): Shampa Ghosh, Shantanu Durgvanshi, Sung Soo Han, Rakesh Bhaskar* and Jitendra Kumar Sinha*

Volume 23, Issue 2, 2023

Published on: 22 July, 2022

Page: [128 - 142] Pages: 15

DOI: 10.2174/1568026622666220707114121

Price: $65

Open Access Journals Promotions 2
Abstract

Coronavirus disease (COVID-19) is the greatest pandemic of this era and has affected more than 10 million people across 213 nations. However, the etiology, management, and treatment of COVID-19 remain unknown. A better understanding of the novel virus would help in developing accurate diagnostic methods and efficacious drugs for the treatment of patients of all age groups. To control the pandemic urgently, many drugs are being repurposed and several clinical trials are in progress for the same. As cytokine storm has been observed to be one of the common mechanisms of immune response in COVID-19 patients, several drugs are under trials to control the cytokine storm. In this review, we discuss the different categories of drugs in clinical trials for the management of cytokine storms in COVID-19 patients. Hitherto, several promising candidates such as IL-1 and IL-6 inhibitors have failed to display efficacy in the trials. Only corticosteroid therapy has shown benefit so far, albeit limited to patients on ventilator support. Thus, it is crucial to seek novel strategies to combat hyperinflammation and increase survival in COVID-19 afflicted patients.

Keywords: Cytokine storm, Pneumonia, Viral infection, Severe acute respiratory syndrome, Repurposed drugs, SARS-CoV-2.

Graphical Abstract
[1]
Sun, J.; He, W.T.; Wang, L.; Lai, A.; Ji, X.; Zhai, X.; Li, G.; Suchard, M.A.; Tian, J.; Zhou, J.; Veit, M.; Su, S. COVID-19: Epidemiology, evolution, and cross-disciplinary perspectives. Trends Mol. Med., 2020, 26(5), 483-495.
[http://dx.doi.org/10.1016/j.molmed.2020.02.008] [PMID: 32359479]
[2]
Ghosh, S.; Sharma, G.; Sinha, J.K. The pandemic of COVID-19 needs awareness and preparedness instead of stigma and panic. IndiaRxiv, 2020, 2020, gy2t7.
[http://dx.doi.org/10.35543/osf.io/gy2t7]
[3]
Shaikh, M.F.; Shaikh, F.A. COVID-19 and mental health: Our reactions to its actions. Neurosci. Res. Notes, 2020, 3(2), 1-3.
[http://dx.doi.org/10.31117/neuroscirn.v3i2.46]
[4]
Danis, K.; Fonteneau, L.; Georges, S.; Daniau, C.; Bernard-Stoecklin, S.; Domegan, L.; O’Donnell, J.; Hauge, S.H.; Dequeker, S.; Vandael, E.; Van der Heyden, J.; Renard, F.; Sierra, N.B.; Ricchizzi, E.; Schweickert, B.; Schmidt, N.; Abu Sin, M.; Eckmanns, T.; Paiva, J.A.; Schneider, E. High impact of COVID-19 in long-term care facilities, suggestion for monitoring in the EU/EEA, May 2020. Euro Surveill., 2020, 25(22), 2000956.
[PMID: 32524949]
[5]
Cyranoski, D. Mystery deepens over animal source of coronavirus. Nature, 2020, 579(7797), 18-19.
[http://dx.doi.org/10.1038/d41586-020-00548-w] [PMID: 32127703]
[6]
Bedford, T. Genomic analysis of nCoV spread., 2020. Available from: https://nextstrain.org/narratives/ncov/sit-rep/2020-01-30
[7]
Petrosillo, N.; Viceconte, G.; Ergonul, O.; Ippolito, G.; Petersen, E. COVID-19, SARS and MERS: Are they closely related? Clin. Microbiol. Infect., 2020, 26(6), 729-734.
[http://dx.doi.org/10.1016/j.cmi.2020.03.026] [PMID: 32234451]
[8]
Güner, R.; Hasanoğlu, I.; Aktaş, F. COVID-19: Prevention and control measures in community. Turk. J. Med. Sci., 2020, 50(SI-1), 571-577.
[http://dx.doi.org/10.3906/sag-2004-146] [PMID: 32293835]
[9]
Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect., 2020, 104(3), 246-251.
[http://dx.doi.org/10.1016/j.jhin.2020.01.022] [PMID: 32035997]
[10]
Suman, R.; Javaid, M.; Haleem, A.; Vaishya, R.; Bahl, S.; Nandan, D. Sustainability of Coronavirus on different surfaces. J. Clin. Exp. Hepatol., 2020, 10(4), 386-390.
[http://dx.doi.org/10.1016/j.jceh.2020.04.020] [PMID: 32377058]
[11]
Triplett, M. Evidence that higher temperatures are associated with lower incidence of COVID-19 in pandemic state, cumulative cases reported up to March 27, 2020. medRxiv, 2020, 2020, 20051524.
[12]
Gorkhali, R.; Koirala, P.; Rijal, S.; Mainali, A.; Baral, A.; Bhattarai, H.K. Structure and Function of Major SARS-CoV-2 and SARS-CoV Proteins. Bioinform. Biol. Insights, 2021, 15, 11779322211025876.
[http://dx.doi.org/10.1177/11779322211025876] [PMID: 34220199]
[13]
Kadam, S.B.; Sukhramani, G.S.; Bishnoi, P.; Pable, A.A.; Barvkar, V.T. SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights. J. Basic Microbiol., 2021, 61(3), 180-202.
[http://dx.doi.org/10.1002/jobm.202000537] [PMID: 33460172]
[14]
Naqvi, A.A.T.; Fatima, K.; Mohammad, T.; Fatima, U.; Singh, I.K.; Singh, A.; Atif, S.M.; Hariprasad, G.; Hasan, G.M.; Hassan, M.I. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10), 165878.
[http://dx.doi.org/10.1016/j.bbadis.2020.165878] [PMID: 32544429]
[15]
Jia, H.P.; Look, D.C.; Shi, L.; Hickey, M.; Pewe, L.; Netland, J.; Farzan, M.; Wohlford-Lenane, C.; Perlman, S.; McCray, P.B., Jr ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol., 2005, 79(23), 14614-14621.
[http://dx.doi.org/10.1128/JVI.79.23.14614-14621.2005] [PMID: 16282461]
[16]
El-Arif, G.; Farhat, A.; Khazaal, S.; Annweiler, C.; Kovacic, H.; Wu, Y.; Cao, Z.; Fajloun, Z.; Khattar, Z.A.; Sabatier, J.M. The Renin-Angiotensin system: A key role in SARS-CoV-2-Induced COVID-19. Molecules, 2021, 26(22), 6945.
[http://dx.doi.org/10.3390/molecules26226945] [PMID: 34834033]
[17]
Letko, M.; Marzi, A.; Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol., 2020, 5(4), 562-569.
[http://dx.doi.org/10.1038/s41564-020-0688-y] [PMID: 32094589]
[18]
Gandhi, S.; Srivastava, A.K.; Ray, U.; Tripathi, P.P. Is the collapse of the respiratory center in the brain responsible for respiratory breakdown in COVID-19 Patients? ACS Chem. Neurosci., 2020, 11(10), 1379-1381.
[http://dx.doi.org/10.1021/acschemneuro.0c00217] [PMID: 32348111]
[19]
Asadi-Pooya, A.A.; Simani, L. Central nervous system manifestations of COVID-19: A systematic review. J. Neurol. Sci., 2020, 413, 116832.
[http://dx.doi.org/10.1016/j.jns.2020.116832] [PMID: 32299017]
[20]
Pirola, C.J.; Sookoian, S. COVID-19 and ACE2 in the liver and gastrointestinal tract: Putative biological explanations of sexual dimorphism. Gastroenterology, 2020, 159(4), 1620-1621.
[http://dx.doi.org/10.1053/j.gastro.2020.04.050] [PMID: 32348773]
[21]
Hamming, I.; Timens, W.; Bulthuis, M.L.; Lely, A.T.; Navis, G.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol., 2004, 203(2), 631-637.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[22]
Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA, 2020, 323(18), 1843-1844.
[http://dx.doi.org/10.1001/jama.2020.3786] [PMID: 32159775]
[23]
Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[24]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[25]
Deng, G.; Yin, M.; Chen, X.; Zeng, F. Clinical determinants for fatality of 44,672 patients with COVID-19. Crit. Care, 2020, 24(1), 179.
[http://dx.doi.org/10.1186/s13054-020-02902-w] [PMID: 32345311]
[26]
Sun, X.; Wang, T.; Cai, D.; Hu, Z.; Chen, J.; Liao, H.; Zhi, L.; Wei, H.; Zhang, Z.; Qiu, Y.; Wang, J.; Wang, A. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev., 2020, 53, 38-42.
[http://dx.doi.org/10.1016/j.cytogfr.2020.04.002] [PMID: 32360420]
[27]
Zaim, S.; Chong, J.H.; Sankaranarayanan, V.; Harky, A. COVID-19 and multiorgan response. Curr. Probl. Cardiol., 2020, 45(8), 100618.
[http://dx.doi.org/10.1016/j.cpcardiol.2020.100618] [PMID: 32439197]
[28]
Kaneko, N. The loss of Bcl-6 expressing T follicular helper cells and the absence of germinal centers in COVID-19. SSRN, 2020, 2020, 3652322.
[http://dx.doi.org/10.2139/ssrn.3652322]
[29]
Popescu, M.; Cabrera-Martinez, B.; Winslow, G.M. TNF-α contributes to lymphoid tissue disorganization and germinal center B cell suppression during intracellular bacterial infection. J. Immunol., 2019, 203(9), 2415-2424.
[http://dx.doi.org/10.4049/jimmunol.1900484] [PMID: 31570507]
[30]
Longui, C.A. Glucocorticoid therapy: Minimizing side effects. J. Pediatr. (Rio J.), 2007, 83(5), S163-S177.
[http://dx.doi.org/10.1590/S0021-75572007000700007] [PMID: 18000630]
[31]
Perretti, M.; Dalli, J. Exploiting the Annexin A1 pathway for the development of novel anti-inflammatory therapeutics. Br. J. Pharmacol., 2009, 158(4), 936-946.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00483.x] [PMID: 19845684]
[32]
Colucci, M.; Stefanucci, A.; Mollica, A.; Aloisi, A.M.; Maione, F.; Pieretti, S. New insights on formyl peptide receptor type 2 involvement in nociceptive processes in the spinal cord. Life (Basel), 2022, 12(4), 500.
[http://dx.doi.org/10.3390/life12040500] [PMID: 35454990]
[33]
Bonavita, A.G. Ac2-26 mimetic peptide of annexin A1 to treat severe COVID-19: A hypothesis. Med. Hypotheses, 2020, 145, 110352.
[http://dx.doi.org/10.1016/j.mehy.2020.110352] [PMID: 33129009]
[34]
Gianfrancesco, M.A.; Hyrich, K.L.; Gossec, L.; Strangfeld, A.; Carmona, L.; Mateus, E.F.; Sufka, P.; Grainger, R.; Wallace, Z.; Bhana, S.; Sirotich, E.; Liew, J.; Hausmann, J.S.; Costello, W.; Robinson, P.; Machado, P.M.; Yazdany, J. Rheumatic disease and COVID-19: Initial data from the COVID-19 Global Rheumatology Alliance provider registries. Lancet Rheumatol., 2020, 2(5), e250-e253.
[http://dx.doi.org/10.1016/S2665-9913(20)30095-3] [PMID: 32309814]
[35]
Giovannoni, G.; Hawkes, C.; Lechner-Scott, J.; Levy, M.; Waubant, E.; Gold, J. The COVID-19 pandemic and the use of MS disease-modifying therapies. Mult. Scler. Relat. Disord., 2020, 39, 102073.
[http://dx.doi.org/10.1016/j.msard.2020.102073] [PMID: 32334820]
[36]
Du, F.H.; Mills, E.A.; Mao-Draayer, Y. Next-generation anti-CD20 monoclonal antibodies in autoimmune disease treatment. Auto Immun. Highlights, 2017, 8(1), 12.
[http://dx.doi.org/10.1007/s13317-017-0100-y] [PMID: 29143151]
[37]
Novi, G.; Mikulska, M.; Briano, F.; Toscanini, F.; Tazza, F.; Uccelli, A.; Inglese, M. COVID-19 in a MS patient treated with ocrelizumab: Does immunosuppression have a protective role? Mult. Scler. Relat. Disord., 2020, 42, 102120.
[http://dx.doi.org/10.1016/j.msard.2020.102120] [PMID: 32315980]
[38]
Montero-Escribano, P.; Matías-Guiu, J.; Gómez-Iglesias, P.; Porta-Etessam, J.; Pytel, V.; Matias-Guiu, J.A. Anti-CD20 and COVID-19 in multiple sclerosis and related disorders: A case series of 60 patients from Madrid, Spain. Mult. Scler. Relat. Disord., 2020, 42, 102185.
[http://dx.doi.org/10.1016/j.msard.2020.102185] [PMID: 32408147]
[39]
Giovannoni, G. Anti-CD20 immunosuppressive disease-modifying therapies and COVID-19. Mult. Scler. Relat. Disord., 2020, 41, 102135.
[http://dx.doi.org/10.1016/j.msard.2020.102135] [PMID: 32339915]
[40]
Li, Z.; Richards, S.; Surks, H.K.; Jacobs, A.; Panzara, M.A. Clinical pharmacology of alemtuzumab, an anti-CD52 immunomodulator, in multiple sclerosis. Clin. Exp. Immunol., 2018, 194(3), 295-314.
[http://dx.doi.org/10.1111/cei.13208] [PMID: 30144037]
[41]
Fraser, G.; Smith, C.A.; Imrie, K.; Meyer, R. Alemtuzumab in chronic lymphocytic leukemia. Curr. Oncol., 2007, 14(3), 96-109.
[http://dx.doi.org/10.3747/co.2007.118] [PMID: 17593982]
[42]
Hartung, H-P.; Aktas, O.; Boyko, A.N. Alemtuzumab: A new therapy for active relapsing-remitting multiple sclerosis. Mult. Scler., 2015, 21(1), 22-34.
[http://dx.doi.org/10.1177/1352458514549398] [PMID: 25344374]
[43]
Matías-Guiu, J.; Montero-Escribano, P.; Pytel, V.; Porta-Etessam, J.; Matias-Guiu, J.A. Potential COVID-19 infection in patients with severe multiple sclerosis treated with alemtuzumab. Mult. Scler. Relat. Disord., 2020, 44, 102297.
[http://dx.doi.org/10.1016/j.msard.2020.102297] [PMID: 32554284]
[44]
Fiorella, C.; Lorna, G. COVID-19 in a multiple sclerosis (MS) patient treated with alemtuzumab: Insight to the immune response after COVID. Mult. Scler. Relat. Disord., 2020, 46, 102447.
[http://dx.doi.org/10.1016/j.msard.2020.102447] [PMID: 32835901]
[45]
Aziz, M.; Fatima, R.; Assaly, R. Elevated interleukin-6 and severe COVID-19: A meta-analysis. J. Med. Virol., 2020, 92(11), 2283-2285.
[http://dx.doi.org/10.1002/jmv.25948] [PMID: 32343429]
[46]
Soraya, G.V.; Ulhaq, Z.S. Interleukin-6 levels in children developing SARS-CoV-2 infection. Pediatr. Neonatol., 2020, 61(3), 253-254.
[http://dx.doi.org/10.1016/j.pedneo.2020.04.007] [PMID: 32414693]
[47]
Choy, E.H.; De Benedetti, F.; Takeuchi, T.; Hashizume, M.; John, M.R.; Kishimoto, T. Translating IL-6 biology into effective treatments. Nat. Rev. Rheumatol., 2020, 16(6), 335-345.
[http://dx.doi.org/10.1038/s41584-020-0419-z] [PMID: 32327746]
[48]
Campochiaro, C.; Dagna, L. The conundrum of interleukin-6 blockade in COVID-19. Lancet Rheumatol., 2020, 2(10), e579-e580.
[http://dx.doi.org/10.1016/S2665-9913(20)30287-3] [PMID: 32838322]
[49]
Biran, N.; Ip, A.; Ahn, J.; Go, R.C.; Wang, S.; Mathura, S.; Sinclaire, B.A.; Bednarz, U.; Marafelias, M.; Hansen, E.; Siegel, D.S.; Goy, A.H.; Pecora, A.L.; Sawczuk, I.S.; Koniaris, L.S.; Simwenyi, M.; Varga, D.W.; Tank, L.K.; Stein, A.A.; Allusson, V.; Lin, G.S.; Oser, W.F.; Tuma, R.A.; Reichman, J.; Brusco, L., Jr.; Carpenter, K.L.; Costanzo, E.J.; Vivona, V.; Goldberg, S.L. Tocilizumab among patients with COVID-19 in the intensive care unit: A multicentre observational study. Lancet Rheumatol., 2020, 2(10), e603-e612.
[http://dx.doi.org/10.1016/S2665-9913(20)30277-0] [PMID: 32838323]
[50]
Hossen, M.S.; Barek, M.A.; Jahan, N.; Safiqul Islam, M. A review on current repurposing drugs for the treatment of COVID-19: reality and challenges. SN Compr. Clin. Med., 2020, 2(10), 1777-1789.
[http://dx.doi.org/10.1007/s42399-020-00485-9] [PMID: 32904710]
[51]
Vaidya, G. Successful treatment of severe COVID-19 pneumonia with clazakizumab in a heart transplant recipient: Case report. In: Transplantation Proceedings; Elsevier, 2020.
[http://dx.doi.org/10.1016/j.transproceed.2020.06.003]
[52]
Dinarello, C.A.; Simon, A.; van der Meer, J.W. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov., 2012, 11(8), 633-652.
[http://dx.doi.org/10.1038/nrd3800] [PMID: 22850787]
[53]
Coronavirus Disease. 2019 (COVID-19). Treatment Guidelines. National Institutes of Health., 2020. Available from: https://www.covid19treatmentguidelines.nih.gov/
[54]
Cavalli, G.; De Luca, G.; Campochiaro, C.; Della-Torre, E.; Ripa, M.; Canetti, D.; Oltolini, C.; Castiglioni, B.; Tassan Din, C.; Boffini, N.; Tomelleri, A.; Farina, N.; Ruggeri, A.; Rovere-Querini, P.; Di Lucca, G.; Martinenghi, S.; Scotti, R.; Tresoldi, M.; Ciceri, F.; Landoni, G.; Zangrillo, A.; Scarpellini, P.; Dagna, L. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: A retrospective cohort study. Lancet Rheumatol., 2020, 2(6), e325-e331.
[http://dx.doi.org/10.1016/S2665-9913(20)30127-2] [PMID: 32501454]
[55]
Azzi, J.R.; Sayegh, M.H.; Mallat, S.G. Calcineurin inhibitors: 40 years later, can’t live without. J. Immunol., 2013, 191(12), 5785-5791.
[http://dx.doi.org/10.4049/jimmunol.1390055] [PMID: 24319282]
[56]
Willicombe, M.; Thomas, D.; McAdoo, S. COVID-19 and calcineurin inhibitors: should they get left out in the storm? J. Am. Soc. Nephrol., 2020, 31(6), 1145-1146.
[http://dx.doi.org/10.1681/ASN.2020030348] [PMID: 32312797]
[57]
Bhoori, S.; Rossi, R.E.; Citterio, D.; Mazzaferro, V. COVID-19 in long-term liver transplant patients: Preliminary experience from an Italian transplant centre in Lombardy. Lancet Gastroenterol. Hepatol., 2020, 5(6), 532-533.
[http://dx.doi.org/10.1016/S2468-1253(20)30116-3] [PMID: 32278366]
[58]
Sanchez-Pernaute, O.; Romero-Bueno, F.I.; Selva-O’Callaghan, A. Why choose cyclosporin a as first-line therapy in COVID-19 pneumonia. Reumatol. Clin., 2021, 17(9), 555-557.
[PMID: 32354685]
[59]
Fragoulis, G.E.; McInnes, I.B.; Siebert, S. JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatology (Oxford), 2019, 58(Suppl. 1), i43-i54.
[http://dx.doi.org/10.1093/rheumatology/key276] [PMID: 30806709]
[60]
Cao, Y.; Wei, J.; Zou, L.; Jiang, T.; Wang, G.; Chen, L.; Huang, L.; Meng, F.; Huang, L.; Wang, N.; Zhou, X.; Luo, H.; Mao, Z.; Chen, X.; Xie, J.; Liu, J.; Cheng, H.; Zhao, J.; Huang, G.; Wang, W.; Zhou, J. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. J. Allergy Clin. Immunol., 2020, 146(1), 137-146.e3.
[http://dx.doi.org/10.1016/j.jaci.2020.05.019] [PMID: 32470486]
[61]
Neubauer, A.; Johow, J.; Mack, E.; Burchert, A.; Meyn, D.; Kadlubiec, A.; Torje, I.; Wulf, H.; Vogelmeier, C.F.; Hoyer, J.; Skevaki, C.; Muellenbach, R.M.; Keller, C.; Schade-Brittinger, C.; Rolfes, C.; Wiesmann, T. Publisher Correction: The janus-kinase inhibitor ruxolitinib in SARS-CoV-2 induced acute respiratory distress syndrome (ARDS). Leukemia, 2021, 35(10), 3038.
[http://dx.doi.org/10.1038/s41375-021-01412-0] [PMID: 34518646]
[62]
Cantini, F.; Niccoli, L.; Nannini, C.; Matarrese, D.; Natale, M.E.D.; Lotti, P.; Aquilini, D.; Landini, G.; Cimolato, B.; Pietro, M.A.D.; Trezzi, M.; Stobbione, P.; Frausini, G.; Navarra, A.; Nicastri, E.; Sotgiu, G.; Goletti, D. Beneficial impact of Baricitinib in COVID-19 moderate pneumonia; multicentre study. J. Infect., 2020, 81(4), 647-679.
[http://dx.doi.org/10.1016/j.jinf.2020.06.052] [PMID: 32592703]
[63]
Titanji, B.K. Use of Baricitinib in patients with moderate and severe COVID-19. Clin. Infect. Dis., 2020, 72(7), 1247-50.
[64]
Cantini, F.; Niccoli, L.; Matarrese, D.; Nicastri, E.; Stobbione, P.; Goletti, D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J. Infect., 2020, 81(2), 318-356.
[http://dx.doi.org/10.1016/j.jinf.2020.04.017] [PMID: 32333918]
[65]
Favalli, E.G.; Biggioggero, M.; Maioli, G.; Caporali, R. Baricitinib for COVID-19: A suitable treatment? Lancet Infect. Dis., 2020, 20(9), 1012-1013.
[http://dx.doi.org/10.1016/S1473-3099(20)30262-0] [PMID: 32251638]
[66]
Tufan, A.; Avanoğlu Güler, A.; Matucci-Cerinic, M. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turk. J. Med. Sci., 2020, 50(SI-1), 620-632.
[http://dx.doi.org/10.3906/sag-2004-168] [PMID: 32299202]
[67]
Qin, C. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis., 2020, 71(15), 762-8.
[68]
Feldmann, M.; Brennan, F.M.; Maini, R.N. Role of cytokines in rheumatoid arthritis. Annu. Rev. Immunol., 1996, 14, 397-440.
[http://dx.doi.org/10.1146/annurev.immunol.14.1.397] [PMID: 8717520]
[69]
Tursi, A.; Vetrone, L.M.; Papa, A. Anti-TNF-α agents in inflammatory bowel disease and course of COVID-19. Inflamm. Bowel Dis., 2020, 26(7), e73.
[http://dx.doi.org/10.1093/ibd/izaa114] [PMID: 32382744]
[70]
Tursi, A.; Angarano, G.; Monno, L.; Saracino, A.; Signorile, F.; Ricciardi, A.; Papa, A. COVID-19 infection in Crohn’s disease under treatment with adalimumab. Gut, 2020, 69(7), 1364-1365.
[http://dx.doi.org/10.1136/gutjnl-2020-321240] [PMID: 32312788]
[71]
Williams, D.M. Clinical pharmacology of corticosteroids. Respir. Care, 2018, 63(6), 655-670.
[http://dx.doi.org/10.4187/respcare.06314] [PMID: 29794202]
[72]
Yang, J-W.; Yang, L.; Luo, R.G.; Xu, J.F. Corticosteroid administration for viral pneumonia: COVID-19 and beyond. Clin. Microbiol. Infect., 2020, 26(9), 1171-1177.
[http://dx.doi.org/10.1016/j.cmi.2020.06.020] [PMID: 32603802]
[73]
Yang, Z.; Liu, J.; Zhou, Y.; Zhao, X.; Zhao, Q.; Liu, J. The effect of corticosteroid treatment on patients with coronavirus infection: A systematic review and meta-analysis. J. Infect., 2020, 81(1), e13-e20.
[http://dx.doi.org/10.1016/j.jinf.2020.03.062] [PMID: 32283144]
[74]
Li, H.; Chen, C.; Hu, F.; Wang, J.; Zhao, Q.; Gale, R.P.; Liang, Y. Impact of corticosteroid therapy on outcomes of persons with SARS-CoV-2, SARS-CoV, or MERS-CoV infection: A systematic review and meta-analysis. Leukemia, 2020, 34(6), 1503-1511.
[http://dx.doi.org/10.1038/s41375-020-0848-3] [PMID: 32372026]
[75]
Nasim, S.; Kumar, S.; Azim, D.; Ashraf, Z.; Azeem, Q. Corticosteroid use for 2019-nCoV infection: A double-edged sword. Infect. Control Hosp. Epidemiol., 2020, 41(10), 1244-1245.
[http://dx.doi.org/10.1017/ice.2020.165] [PMID: 32321620]
[76]
Liu, J.; Zheng, X.; Huang, Y.; Shan, H.; Huang, J. Successful use of methylprednisolone for treating severe COVID-19. J. Allergy Clin. Immunol., 2020, 146(2), 325-327.
[http://dx.doi.org/10.1016/j.jaci.2020.05.021] [PMID: 32479759]
[77]
Wang, Y.; Jiang, W.; He, Q.; Wang, C.; Wang, B.; Zhou, P.; Dong, N.; Tong, Q. A retrospective cohort study of methylprednisolone therapy in severe patients with COVID-19 pneumonia. Signal Transduct. Target. Ther., 2020, 5(1), 57.
[http://dx.doi.org/10.1038/s41392-020-0158-2] [PMID: 32341331]
[78]
Horby, P. Effect of dexamethasone in hospitalized patients with COVID-19: preliminary report. medRxiv, 2020, 2020.06.22.20137273.
[http://dx.doi.org/10.1101/2020.06.22.20137273]
[79]
Mahase, E. Covid-19: Low dose steroid cuts death in ventilated patients by one third, trial finds. BMJ, 2020, 369, m2422.
[http://dx.doi.org/10.1136/bmj.m2422] [PMID: 32546467]
[80]
Sterne, J.A. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: A meta-analysis. JAMA, 2020, 324(13), 1330-1341.
[81]
Organization, W.H. Corticosteroids for COVID-19: Living guidance, 2 September 2020; World Health Organization, 2020.
[82]
Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; Tian, D.S. Dysregulation of immune response in patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis., 2020, 71(15), 762-768.
[http://dx.doi.org/10.1093/cid/ciaa248] [PMID: 32161940]
[83]
Marinaccio, L.; Stefanucci, A.; Scioli, G.; Della Valle, A.; Zengin, G.; Cichelli, A.; Mollica, A. Peptide human neutrophil elastase inhibitors from natural sources: An overview. Int. J. Mol. Sci., 2022, 23(6), 2924.
[http://dx.doi.org/10.3390/ijms23062924] [PMID: 35328340]
[84]
Mohamed, M.M.A.; El-Shimy, I.A.; Hadi, M.A. Neutrophil Elastase Inhibitors: A potential prophylactic treatment option for SARS-CoV-2-induced respiratory complications? Crit. Care, 2020, 24(1), 311.
[http://dx.doi.org/10.1186/s13054-020-03023-0] [PMID: 32513225]
[85]
Belouzard, S.; Madu, I.; Whittaker, G.R. Elastase-mediated activation of the severe acute respiratory syndrome coronavirus spike protein at discrete sites within the S2 domain. J. Biol. Chem., 2010, 285(30), 22758-22763.
[http://dx.doi.org/10.1074/jbc.M110.103275] [PMID: 20507992]
[86]
Guéant, J.L.; Guéant-Rodriguez, R.M.; Fromonot, J.; Oussalah, A.; Louis, H.; Chery, C.; Gette, M.; Gleye, S.; Callet, J.; Raso, J.; Blanchecotte, F.; Lacolley, P.; Guieu, R.; Regnault, V. Elastase and exacerbation of neutrophil innate immunity are involved in multi-visceral manifestations of COVID-19. Allergy, 2021, 76(6), 1846-1858.
[http://dx.doi.org/10.1111/all.14746] [PMID: 33484168]
[87]
Sahebnasagh, A.; Saghafi, F.; Safdari, M.; Khataminia, M.; Sadremomtaz, A.; Talaei, Z.; Rezai Ghaleno, H.; Bagheri, M.; Habtemariam, S.; Avan, R. Neutrophil elastase inhibitor (sivelestat) may be a promising therapeutic option for management of acute lung injury/acute respiratory distress syndrome or disseminated intravascular coagulation in COVID-19. J. Clin. Pharm. Ther., 2020, 45(6), 1515-1519.
[http://dx.doi.org/10.1111/jcpt.13251] [PMID: 32860252]
[88]
Zeiher, B.G.; Artigas, A.; Vincent, J.L.; Dmitrienko, A.; Jackson, K.; Thompson, B.T.; Bernard, G. Neutrophil elastase inhibition in acute lung injury: Results of the STRIVE study. Crit. Care Med., 2004, 32(8), 1695-1702.
[http://dx.doi.org/10.1097/01.CCM.0000133332.48386.85] [PMID: 15286546]
[89]
Rosen, D.A.; Seki, S.M.; Fernández-Castañeda, A.; Beiter, R.M.; Eccles, J.D.; Woodfolk, J.A.; Gaultier, A. Modulation of the sigma-1 receptor-IRE1 pathway is beneficial in preclinical models of inflammation and sepsis. Sci. Transl. Med., 2019, 11(478), eaau5266.
[http://dx.doi.org/10.1126/scitranslmed.aau5266] [PMID: 30728287]
[90]
Lenze, E.J.; Mattar, C.; Zorumski, C.F.; Stevens, A.; Schweiger, J.; Nicol, G.E.; Miller, J.P.; Yang, L.; Yingling, M.; Avidan, M.S.; Reiersen, A.M. Fluvoxamine vs. placebo and clinical deterioration in outpatients with symptomatic COVID-19: A randomized clinical trial. JAMA, 2020, 324(22), 2292-2300.
[http://dx.doi.org/10.1001/jama.2020.22760] [PMID: 33180097]
[91]
Lother, A.; Benk, C.; Staudacher, D.L.; Supady, A.; Bode, C.; Wengenmayer, T.; Duerschmied, D. Cytokine adsorption in critically Ill patients requiring ECMO Support. Front. Cardiovasc. Med., 2019, 6, 71.
[http://dx.doi.org/10.3389/fcvm.2019.00071] [PMID: 31275944]
[92]
Datzmann, T.; Träger, K. Extracorporeal membrane oxygenation and cytokine adsorption. J. Thorac. Dis., 2018, 10(Suppl. 5), S653-S660.
[http://dx.doi.org/10.21037/jtd.2017.10.128] [PMID: 29732183]
[93]
Supady, A.; Weber, E.; Rieder, M.; Lother, A.; Niklaus, T.; Zahn, T.; Frech, F.; Müller, S.; Kuhl, M.; Benk, C.; Maier, S.; Trummer, G.; Flügler, A.; Krüger, K.; Sekandarzad, A.; Stachon, P.; Zotzmann, V.; Bode, C.; Biever, P.M.; Staudacher, D.; Wengenmayer, T.; Graf, E.; Duerschmied, D. Cytokine adsorption in patients with severe COVID-19 pneumonia requiring extracorporeal membrane oxygenation (CYCOV): A single centre, open-label, randomised, controlled trial. Lancet Respir. Med., 2021, 9(7), 755-762.
[http://dx.doi.org/10.1016/S2213-2600(21)00177-6] [PMID: 34000236]
[94]
Im, J.H. Nutritional status of patients with coronavirus disease 2019 (COVID-19). Int. J. Infect. Dis., 2020, 100, 390-393.
[95]
Jayawardena, R.; Misra, A. Balanced diet is a major casualty in COVID-19. Diabetes Metab. Syndr., 2020, 14(5), 1085-1086.
[http://dx.doi.org/10.1016/j.dsx.2020.07.001] [PMID: 32652495]
[96]
Zanardi, M. Nutritional approach to coronavirus patients: Our experience in 914 COVID bed hospital. Nutrition, 2020, 86, 110965.
[PMID: 32917467]
[97]
Pan, F.; Ye, T.; Sun, P.; Gui, S.; Liang, B.; Li, L.; Zheng, D.; Wang, J.; Hesketh, R.L.; Yang, L.; Zheng, C. Time Course of Lung Changes at Chest CT during Recovery from Coronavirus Disease 2019 (COVID-19). Radiology, 2020, 295(3), 715-721.
[http://dx.doi.org/10.1148/radiol.2020200370] [PMID: 32053470]
[98]
Mishra, P.; Sinha, J.K.; Rajput, S.K. Efficacy of Cicuta virosa medicinal preparations against pentylenetetrazole-induced seizures. Epilepsy Behav., 2021, 115, 107653.
[http://dx.doi.org/10.1016/j.yebeh.2020.107653] [PMID: 33358679]
[99]
Mishra, P.; Mittal, A.K.; Rajput, S.K.; Sinha, J.K. Cognition and memory impairment attenuation via reduction of oxidative stress in acute and chronic mice models of epilepsy using antiepileptogenic Nux vomica. J. Ethnopharmacol., 2021, 267, 113509.
[http://dx.doi.org/10.1016/j.jep.2020.113509] [PMID: 33141053]
[100]
Ghosh, S.; Sinha, J.K.; Khan, T.; Devaraju, K.S.; Singh, P.; Vaibhav, K.; Gaur, P. Pharmacological and therapeutic approaches in the treatment of epilepsy. Biomedicines, 2021, 9(5), 470.
[http://dx.doi.org/10.3390/biomedicines9050470] [PMID: 33923061]
[101]
Ghosh, S.; Manchala, S.; Raghunath, M.; Sharma, G.; Singh, A.K.; Sinha, J.K. Role of phytomolecules in the treatment of obesity: Targets, mechanisms and limitations. Curr. Top. Med. Chem., 2021, 21(10), 863-877.
[http://dx.doi.org/10.2174/1568026621666210305101804] [PMID: 33676390]
[102]
Ghosh, S.; Durgvanshi, S.; Agarwal, S.; Raghunath, M.; Sinha, J.K. Current status of drug targets and emerging therapeutic strategies in the management of Alzheimer’s Disease. Curr. Neuropharmacol., 2020, 18(9), 883-903.
[http://dx.doi.org/10.2174/1570159X18666200429011823] [PMID: 32348223]
[103]
Ghosh, S.; Sinha, J.K.; Raghunath, M. Epigenomic maintenance through dietary intervention can facilitate DNA repair process to slow down the progress of premature aging. IUBMB Life, 2016, 68(9), 717-721.
[http://dx.doi.org/10.1002/iub.1532] [PMID: 27364681]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy