Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

表没食子儿茶素-3-没食子酸酯通过ROS介导的AKT / JNK和p53信号通路诱导HepG2细胞凋亡

卷 23, 期 6, 2023

发表于: 22 February, 2023

页: [447 - 460] 页: 14

弟呕挨: 10.2174/1568009622666220705101642

价格: $65

Open Access Journals Promotions 2
摘要

背景:肝癌是全世界癌症相关死亡的第三大原因。最近,一些研究报道表没食子儿茶素-3-没食子酸酯(EGCG)可能具有抗癌潜力。然而,EGCG 在 HepG2 细胞中诱导的细胞毒性的影响和推定机制仍然未知。基于此,本研究评估了EGCG对HepG2细胞的细胞毒性和抗癌机制的影响。 方法:通过细胞计数试剂盒8、JC-1线粒体膜电位检测、Annexin V-FITC细胞凋亡检测、细胞周期、细胞凋亡分析等方法研究EGCG对Hep-G2细胞凋亡的影响及其机制。步骤 TUNEL 细胞凋亡测定、半胱天冬酶 3 活性测定、半胱天冬酶 9 活性测定、活性氧物种测定和蛋白质印迹。 结果:EGCG 诱导的 HepG2 细胞凋亡通过亚 G1 细胞群的积累、磷脂酰丝氨酸的易位、线粒体膜电位的耗竭、DNA 片段化、caspase-3 激活、caspase-9 激活和聚 (ADP-核糖) 得到证实聚合酶裂解。此外,EGCG 增强了对 HepG2 细胞的细胞毒性作用并触发了细胞内活性氧; AKT、JNK、p53信号通路被激活,促进细胞凋亡。 结论:结果表明,EGCG 可能提供有关 EGCG 诱导的 HepG2 细胞凋亡的有用信息,是癌症化疗的合适候选物。

关键词: 表没食子儿茶素-3-没食子酸酯,HepG2,P53,ROS,细胞凋亡,癌症化疗。

图形摘要
[1]
Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M.; Coggeshall, M.; Dandona, L.; Dicker, D.J.; Erskine, H.E.; Ferrari, A.J.; Fitzmaurice, C.; Foreman, K.; Forouzanfar, M.H.; Fraser, M.S.; Fullman, N.; Gething, P.W.; Goldberg, E.M.; Graetz, N.; Haagsma, J.A.; Hay, S.I.; Huynh, C.; Johnson, C.O.; Kassebaum, N.J.; Kinfu, Y.; Kulikoff, X.R.; Kutz, M.; Kyu, H.H.; Larson, H.J.; Leung, J.; Liang, X.; Lim, S.S.; Lind, M.; Lozano, R.; Marquez, N.; Mensah, G.A.; Mikesell, J.; Mokdad, A.H.; Mooney, M.D.; Nguyen, G.; Nsoesie, E.; Pigott, D.M.; Pinho, C.; Roth, G.A.; Salomon, J.A.; Sandar, L.; Silpakit, N.; Sligar, A.; Sorensen, R.J.D.; Stanaway, J.; Steiner, C.; Teeple, S.; Thomas, B.A.; Troeger, C.; VanderZanden, A.; Vollset, S.E.; Wanga, V.; Whiteford, H.A.; Wolock, T.; Zoeckler, L.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abera, S.F.; Abreu, D.M.X.; Abu-Raddad, L.J.; Abyu, G.Y.; Achoki, T.; Adelekan, A.L.; Ademi, Z.; Adou, A.K.; Adsuar, J.C.; Afanvi, K.A.; Afshin, A.; Agardh, E.E.; Agarwal, A.; Agrawal, A.; Kiadaliri, A.A.; Ajala, O.N.; Akanda, A.S.; Akinyemi, R.O.; Akinyemiju, T.F.; Akseer, N.; Lami, F.H.A.; Alabed, S.; Al-Aly, Z.; Alam, K.; Alam, N.K.M.; Alasfoor, D.; Aldhahri, S.F.; Aldridge, R.W.; Alegretti, M.A.; Aleman, A.V.; Alemu, Z.A.; Alexander, L.T.; Alhabib, S.; Ali, R.; Alkerwi, A.; Alla, F.; Allebeck, P.; Al-Raddadi, R.; Alsharif, U.; Altirkawi, K.A.; Martin, E.A.; Alvis-Guzman, N.; Amare, A.T.; Amegah, A.K.; Ameh, E.A.; Amini, H.; Ammar, W.; Amrock, S.M.; Andersen, H.H.; Anderson, B.O.; Anderson, G.M.; Antonio, C.A.T.; Aregay, A.F.; Ärnlöv, J.; Arsenijevic, V.S.A.; Artaman, A.; Asayesh, H.; Asghar, R.J.; Atique, S.; Avokpaho, E.F.G.A.; Awasthi, A.; Azzopardi, P.; Bacha, U.; Badawi, A.; Bahit, M.C.; Balakrishnan, K.; Banerjee, A.; Barac, A.; Barker-Collo, S.L.; Bärnighausen, T.; Barregard, L.; Barrero, L.H.; Basu, A.; Basu, S.; Bayou, Y.T.; Bazargan-Hejazi, S.; Beardsley, J.; Bedi, N.; Beghi, E.; Belay, H.A.; Bell, B.; Bell, M.L.; Bello, A.K.; Bennett, D.A.; Bensenor, I.M.; Berhane, A.; Bernabé, E.; Betsu, B.D.; Beyene, A.S.; Bhala, N.; Bhalla, A.; Biadgilign, S.; Bikbov, B.; Abdulhak, A.A.B.; Biroscak, B.J.; Biryukov, S.; Bjertness, E.; Blore, J.D.; Blosser, C.D.; Bohensky, M.A.; Borschmann, R.; Bose, D.; Bourne, R.R.A.; Brainin, M.; Brayne, C.E.G.; Brazinova, A.; Breitborde, N.J.K.; Brenner, H.; Brewer, J.D.; Brown, A.; Brown, J.; Brugha, T.S.; Buckle, G.C.; Butt, Z.A.; Calabria, B.; Campos-Nonato, I.R.; Campuzano, J.C.; Carapetis, J.R.; Cárdenas, R.; Carpenter, D.O.; Carrero, J.J.; Castañeda-Orjuela, C.A.; Rivas, J.C.; Catalá-López, F.; Cavalleri, F.; Cercy, K.; Cerda, J.; Chen, W.; Chew, A.; Chiang, P.P-C.; Chibalabala, M.; Chibueze, C.E.; Chimed-Ochir, O.; Chisumpa, V.H.; Choi, J-Y.J.; Chowdhury, R.; Christensen, H.; Christopher, D.J.; Ciobanu, L.G.; Cirillo, M.; Cohen, A.J.; Colistro, V.; Colomar, M.; Colquhoun, S.M.; Cooper, C.; Cooper, L.T.; Cortinovis, M.; Cowie, B.C.; Crump, J.A.; Damsere-Derry, J.; Danawi, H.; Dandona, R.; Daoud, F.; Darby, S.C.; Dargan, P.I.; das Neves, J.; Davey, G.; Davis, A.C.; Davitoiu, D.V.; de Castro, E.F.; de Jager, P.; Leo, D.D.; Degenhardt, L.; Dellavalle, R.P.; Deribe, K.; Deribew, A.; Dharmaratne, S.D.; Dhillon, P.K.; Diaz-Torné, C.; Ding, E.L.; dos Santos, K.P.B.; Dossou, E.; Driscoll, T.R.; Duan, L.; Dubey, M.; Duncan, B.B.; Ellenbogen, R.G.; Ellingsen, C.L.; Elyazar, I.; Endries, A.Y.; Ermakov, S.P.; Eshrati, B.; Esteghamati, A.; Estep, K.; Faghmous, I.D.A.; Fahimi, S.; Faraon, E.J.A.; Farid, T.A.; Farinha, C.S.S.; Faro, A.; Farvid, M.S.; Farzadfar, F.; Feigin, V.L.; Fereshtehnejad, S-M.; Fernandes, J.G.; Fernandes, J.C.; Fischer, F.; Fitchett, J.R.A.; Flaxman, A.; Foigt, N.; Fowkes, F.G.R.; Franca, E.B.; Franklin, R.C.; Friedman, J.; Frostad, J.; Fürst, T.; Futran, N.D.; Gall, S.L.; Gambashidze, K.; Gamkrelidze, A.; Ganguly, P.; Gankpé, F.G.; Gebre, T.; Gebrehiwot, T.T.; Gebremedhin, A.T.; Gebru, A.A.; Geleijnse, J.M.; Gessner, B.D.; Ghoshal, A.G.; Gibney, K.B.; Gillum, R.F.; Gilmour, S.; Giref, A.Z.; Giroud, M.; Gishu, M.D.; Giussani, G.; Glaser, E.; Godwin, W.W.; Gomez-Dantes, H.; Gona, P.; Goodridge, A.; Gopalani, S.V.; Gosselin, R.A.; Gotay, C.C.; Goto, A.; Gouda, H.N.; Greaves, F.; Gugnani, H.C.; Gupta, R.; Gupta, R.; Gupta, V.; Gutiérrez, R.A.; Hafezi-Nejad, N.; Haile, D.; Hailu, A.D.; Hailu, G.B.; Halasa, Y.A.; Hamadeh, R.R.; Hamidi, S.; Hancock, J.; Handal, A.J.; Hankey, G.J.; Hao, Y.; Harb, H.L.; Harikrishnan, S.; Haro, J.M.; Havmoeller, R.; Heckbert, S.R.; Heredia-Pi, I.B.; Heydarpour, P.; Hilderink, H.B.M.; Hoek, H.W.; Hogg, R.S.; Horino, M.; Horita, N.; Hosgood, H.D.; Hotez, P.J.; Hoy, D.G.; Hsairi, M.; Htet, A.S.; Htike, M.M.T.; Hu, G.; Huang, C.; Huang, H.; Huiart, L.; Husseini, A.; Huybrechts, I.; Huynh, G.; Iburg, K.M.; Innos, K.; Inoue, M.; Iyer, V.J.; Jacobs, T.A.; Jacobsen, K.H.; Jahanmehr, N.; Jakovljevic, M.B.; James, P.; Javanbakht, M.; Jayaraman, S.P.; Jayatilleke, A.U.; Jeemon, P.; Jensen, P.N.; Jha, V.; Jiang, G.; Jiang, Y.; Jibat, T.; Jimenez-Corona, A.; Jonas, J.B.; Joshi, T.K.; Kabir, Z.; Kamal, R.; Kan, H.; Kant, S.; Karch, A.; Karema, C.K.; Karimkhani, C.; Karletsos, D.; Karthikeyan, G.; Kasaeian, A.; Katibeh, M.; Kaul, A.; Kawakami, N.; Kayibanda, J.F.; Keiyoro, P.N.; Kemmer, L.; Kemp, A.H.; Kengne, A.P.; Keren, A.; Kereselidze, M.; Kesavachandran, C.N.; Khader, Y.S.; Khalil, I.A.; Khan, A.R.; Khan, E.A.; Khang, Y-H.; Khera, S.; Khoja, T.A.M.; Kieling, C.; Kim, D.; Kim, Y.J.; Kissela, B.M.; Kissoon, N.; Knibbs, L.D.; Knudsen, A.K.; Kokubo, Y.; Kolte, D.; Kopec, J.A.; Kosen, S.; Koul, P.A.; Koyanagi, A.; Krog, N.H.; Defo, B.K.; Bicer, B.K.; Kudom, A.A.; Kuipers, E.J.; Kulkarni, V.S.; Kumar, G.A.; Kwan, G.F.; Lal, A.; Lal, D.K.; Lalloo, R.; Lallukka, T.; Lam, H.; Lam, J.O.; Langan, S.M.; Lansingh, V.C.; Larsson, A.; Laryea, D.O.; Latif, A.A.; Lawrynowicz, A.E.B.; Leigh, J.; Levi, M.; Li, Y.; Lindsay, M.P.; Lipshultz, S.E.; Liu, P.Y.; Liu, S.; Liu, Y.; Lo, L-T.; Logroscino, G.; Lotufo, P.A.; Lucas, R.M.; Lunevicius, R.; Lyons, R.A.; Ma, S.; Machado, V.M.P.; Mackay, M.T.; MacLachlan, J.H.; Razek, H.M.A.E.; Magdy, M.; Razek, A.E.; Majdan, M.; Majeed, A.; Malekzadeh, R.; Manamo, W.A.A.; Mandisarisa, J.; Mangalam, S.; Mapoma, C.C.; Marcenes, W.; Margolis, D.J.; Martin, G.R.; Martinez-Raga, J.; Marzan, M.B.; Masiye, F.; Mason-Jones, A.J.; Massano, J.; Matzopoulos, R.; Mayosi, B.M.; McGarvey, S.T.; McGrath, J.J.; McKee, M.; McMahon, B.J.; Meaney, P.A.; Mehari, A.; Mehndiratta, M.M.; Mejia-Rodriguez, F.; Mekonnen, A.B.; Melaku, Y.A.; Memiah, P.; Memish, Z.A.; Mendoza, W.; Meretoja, A.; Meretoja, T.J.; Mhimbira, F.A.; Micha, R.; Millear, A.; Miller, T.R.; Mirarefin, M.; Misganaw, A.; Mock, C.N.; Mohammad, K.A.; Mohammadi, A.; Mohammed, S.; Mohan, V.; Mola, G.L.D.; Monasta, L.; Hernandez, J.C.M.; Montero, P.; Montico, M.; Montine, T.J.; Moradi-Lakeh, M.; Morawska, L.; Morgan, K.; Mori, R.; Mozaffarian, D.; Mueller, U.O.; Murthy, G.V.S.; Murthy, S.; Musa, K.I.; Nachega, J.B.; Nagel, G.; Naidoo, K.S.; Naik, N.; Naldi, L.; Nangia, V.; Nash, D.; Nejjari, C.; Neupane, S.; Newton, C.R.; Newton, J.N.; Ng, M.; Ngalesoni, F.N.; de Dieu Ngirabega, J.; Nguyen, Q.L.; Nisar, M.I.; Pete, P.M.N.; Nomura, M.; Norheim, O.F.; Norman, P.E.; Norrving, B.; Nyakarahuka, L.; Ogbo, F.A.; Ohkubo, T.; Ojelabi, F.A.; Olivares, P.R.; Olusanya, B.O.; Olusanya, J.O.; Opio, J.N.; Oren, E.; Ortiz, A.; Osman, M.; Ota, E.; Ozdemir, R.; Pa, M.; Pain, A.; Pandian, J.D.; Pant, P.R.; Papachristou, C.; Park, E-K.; Park, J-H.; Parry, C.D.; Parsaeian, M.; Caicedo, A.J.P.; Patten, S.B.; Patton, G.C.; Paul, V.K.; Pearce, N.; Pedro, J.M.; Stokic, L.P.; Pereira, D.M.; Perico, N.; Pesudovs, K.; Petzold, M.; Phillips, M.R.; Piel, F.B.; Pillay, J.D.; Plass, D.; Platts-Mills, J.A.; Polinder, S.; Pope, C.A.; Popova, S.; Poulton, R.G.; Pourmalek, F.; Prabhakaran, D.; Qorbani, M.; Quame-Amaglo, J.; Quistberg, D.A.; Rafay, A.; Rahimi, K.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.U.; Rahman, S.U.; Rai, R.K.; Rajavi, Z.; Rajsic, S.; Raju, M.; Rakovac, I.; Rana, S.M.; Ranabhat, C.L.; Rangaswamy, T.; Rao, P.; Rao, S.R.; Refaat, A.H.; Rehm, J.; Reitsma, M.B.; Remuzzi, G.; Resnikoff, S.; Ribeiro, A.L.; Ricci, S.; Blancas, M.J.R.; Roberts, B.; Roca, A.; Rojas-Rueda, D.; Ronfani, L.; Roshandel, G.; Rothenbacher, D.; Roy, A.; Roy, N.K.; Ruhago, G.M.; Sagar, R.; Saha, S.; Sahathevan, R.; Saleh, M.M.; Sanabria, J.R.; Sanchez-Niño, M.D.; Sanchez-Riera, L.; Santos, I.S.; Sarmiento-Suarez, R.; Sartorius, B.; Satpathy, M.; Savic, M.; Sawhney, M.; Schaub, M.P.; Schmidt, M.I.; Schneider, I.J.C.; Schöttker, B.; Schutte, A.E.; Schwebel, D.C.; Seedat, S.; Sepanlou, S.G.; Servan-Mori, E.E.; Shackelford, K.A.; Shaddick, G.; Shaheen, A.; Shahraz, S.; Shaikh, M.A.; Shakh-Nazarova, M.; Sharma, R.; She, J.; Sheikhbahaei, S.; Shen, J.; Shen, Z.; Shepard, D.S.; Sheth, K.N.; Shetty, B.P.; Shi, P.; Shibuya, K.; Shin, M-J.; Shiri, R.; Shiue, I.; Shrime, M.G.; Sigfusdottir, I.D.; Silberberg, D.H.; Silva, D.A.S.; Silveira, D.G.A.; Silverberg, J.I.; Simard, E.P.; Singh, A.; Singh, G.M.; Singh, J.A.; Singh, O.P.; Singh, P.K.; Singh, V.; Soneji, S.; Søreide, K.; Soriano, J.B.; Sposato, L.A.; Sreeramareddy, C.T.; Stathopoulou, V.; Stein, D.J.; Stein, M.B.; Stranges, S.; Stroumpoulis, K.; Sunguya, B.F.; Sur, P.; Swaminathan, S.; Sykes, B.L.; Szoeke, C.E.I.; Tabarés-Seisdedos, R.; Tabb, K.M.; Takahashi, K.; Takala, J.S.; Talongwa, R.T.; Tandon, N.; Tavakkoli, M.; Taye, B.; Taylor, H.R.; Ao, B.J.T.; Tedla, B.A.; Tefera, W.M.; Have, M.T.; Terkawi, A.S.; Tesfay, F.H.; Tessema, G.A.; Thomson, A.J.; Thorne-Lyman, A.L.; Thrift, A.G.; Thurston, G.D.; Tillmann, T.; Tirschwell, D.L.; Tonelli, M.; Topor-Madry, R.; Topouzis, F.; Towbin, J.A.; Traebert, J.; Tran, B.X.; Truelsen, T.; Trujillo, U.; Tura, A.K.; Tuzcu, E.M.; Uchendu, U.S.; Ukwaja, K.N.; Undurraga, E.A.; Uthman, O.A.; Dingenen, R.V.; van Donkelaar, A.; Vasankari, T.; Vasconcelos, A.M.N.; Venketasubramanian, N.; Vidavalur, R.; Vijayakumar, L.; Villalpando, S.; Violante, F.S.; Vlassov, V.V.; Wagner, J.A.; Wagner, G.R.; Wallin, M.T.; Wang, L.; Watkins, D.A.; Weichenthal, S.; Weiderpass, E.; Weintraub, R.G.; Werdecker, A.; Westerman, R.; White, R.A.; Wijeratne, T.; Wilkinson, J.D.; Williams, H.C.; Wiysonge, C.S.; Woldeyohannes, S.M.; Wolfe, C.D.A.; Won, S.; Wong, J.Q.; Woolf, A.D.; Xavier, D.; Xiao, Q.; Xu, G.; Yakob, B.; Yalew, A.Z.; Yan, L.L.; Yano, Y.; Yaseri, M.; Ye, P.; Yebyo, H.G.; Yip, P.; Yirsaw, B.D.; Yonemoto, N.; Yonga, G.; Younis, M.Z.; Yu, S.; Zaidi, Z.; Zaki, M.E.S.; Zannad, F.; Zavala, D.E.; Zeeb, H.; Zeleke, B.M.; Zhang, H.; Zodpey, S.; Zonies, D.; Zuhlke, L.J.; Vos, T.; Lopez, A.D.; Murray, C.J.L Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388(10053), 1459-1544.
[http://dx.doi.org/10.1016/S0140-6736(16)31012-1] [PMID: 27733281]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015, 385(9963), 117-171.
[http://dx.doi.org/10.1016/S0140-6736(14)61682-2] [PMID: 25530442]
[4]
Mu, C.; Sheng, Y.; Wang, Q.; Amin, A.; Li, X.; Xie, Y. Potential compound from herbal food of Rhizoma Polygonati for treatment of COVID-19 analyzed by network pharmacology: Viral and cancer signaling mechanisms. J. Funct. Foods, 2021, 77, 104149.
[http://dx.doi.org/10.1016/j.jff.2020.104149] [PMID: 32837538]
[5]
Amin, A.; Mahmoud-Ghoneim, D. Texture analysis of liver fibrosis microscopic images: A study on the effect of biomarkers. Acta Biochim. Biophys. Sin., 2011, 43(3), 193-203.
[http://dx.doi.org/10.1093/abbs/gmq129] [PMID: 21258076]
[6]
Efferth, T.; Oesch, F. Repurposing of plant alkaloids for cancer therapy: Pharmacology and toxicology. Semin. Cancer Biol., 2021, 68, 143-163.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.010] [PMID: 31883912]
[7]
Hamza, A.A.; Heeba, G.H.; Hamza, S.; Abdalla, A.; Amin, A. Standardized extract of ginger ameliorates liver cancer by reducing proliferation and inducing apoptosis through inhibition oxidative stress/inflammation pathway. Biomed. Pharmacother., 2021, 134, 111102.
[http://dx.doi.org/10.1016/j.biopha.2020.111102] [PMID: 33338743]
[8]
Chen, R.; Huang, L.; Hu, K. Natural products remodel cancer-associated fibroblasts in desmoplastic tumors. Acta Pharm. Sin. B, 2020, 10(11), 2140-2155.
[http://dx.doi.org/10.1016/j.apsb.2020.04.005] [PMID: 33304782]
[9]
Murali, C.; Mudgil, P.; Gan, C.Y.; Tarazi, H.; El-Awady, R.; Abdalla, Y.; Amin, A.; Maqsood, S. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma. Sci. Rep., 2021, 11(1), 7062.
[http://dx.doi.org/10.1038/s41598-021-86391-z] [PMID: 33782460]
[10]
Crew, K.D.; Ho, K.A.; Brown, P.; Greenlee, H.; Bevers, T.B.; Arun, B.; Sneige, N.; Hudis, C.; McArthur, H.L.; Chang, J.; Rimawi, M.; Cornelison, T.L.; Cardelli, J.; Santella, R.M.; Wang, A.; Lippman, S.M.; Hershman, D.L. Effects of a green tea extract, Polyphenon E, on systemic biomarkers of growth factor signalling in women with hormone receptor-negative breast cancer. J. Hum. Nutr. Diet., 2015, 28(3), 272-282.
[http://dx.doi.org/10.1111/jhn.12229] [PMID: 24646362]
[11]
Amin, A.; Farrukh, A.; Murali, C.; Soleimani, A.; Praz, F.; Graziani, G.; Brim, H.; Ashktorab, H. Saffron and its major ingredients’ effect on colon cancer cells with mismatch repair deficiency and microsatellite instability. Molecules, 2021, 26(13), 3855.
[http://dx.doi.org/10.3390/molecules26133855] [PMID: 34202689]
[12]
Chen, X.; Man, G.C.W.; Hung, S.W.; Zhang, T.; Fung, L.W.Y.; Cheung, C.W.; Chung, J.P.W.; Li, T.C.; Wang, C.C. Therapeutic effects of green tea on endometriosis. Crit. Rev. Food Sci. Nutr., 2021, 2021, 1986465.
[http://dx.doi.org/10.1080/10408398.2021.1986465] [PMID: 34620005]
[13]
Zhao, J.; Blayney, A.; Liu, X.; Gandy, L.; Jin, W.; Yan, L.; Ha, J.H.; Canning, A.J.; Connelly, M.; Yang, C.; Liu, X.; Xiao, Y.; Cosgrove, M.S.; Solmaz, S.R.; Zhang, Y.; Ban, D.; Chen, J.; Loh, S.N.; Wang, C. EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction. Nat. Commun., 2021, 12(1), 986.
[http://dx.doi.org/10.1038/s41467-021-21258-5] [PMID: 33579943]
[14]
Pi, M.; Kapoor, K.; Ye, R.; Smith, J.C.; Baudry, J.; Quarles, L.D. GPCR6A is a molecular target for the natural products gallate and EGCG in green tea. Mol. Nutr. Food Res., 2018, 62(8), 1700770.
[http://dx.doi.org/10.1002/mnfr.201700770] [PMID: 29468843]
[15]
Kandil, R.; Merkel, O.M. Recent progress of polymeric nanogels for gene delivery. Curr. Opin. Colloid Interface Sci., 2019, 39, 11-23.
[http://dx.doi.org/10.1016/j.cocis.2019.01.005] [PMID: 30853837]
[16]
Xie, Y.; Mu, C.; Kazybay, B.; Sun, Q.; Kutzhanova, A.; Nazarbek, G.; Xu, N.; Nurtay, L.; Wang, Q.; Amin, A.; Li, X. Network pharmacology and experimental investigation of Rhizoma polygonati extract targeted kinase with herbzyme activity for potent drug delivery. Drug Deliv., 2021, 28(1), 2187-2197.
[http://dx.doi.org/10.1080/10717544.2021.1977422] [PMID: 34662244]
[17]
Editorial: Refresh cell culture. Nat. Biomed. Eng., 2021, 5(8), 783-784.
[http://dx.doi.org/10.1038/s41551-021-00790-1] [PMID: 34426674]
[18]
Marcondes, N.A.; Terra, S.R.; Lasta, C.S.; Hlavac, N.R.C.; Dalmolin, M.L.; Lacerda, L.A.; Faulhaber, G.A.M.; González, F.H.D. Comparison of JC‐1 and MitoTracker probes for mitochondrial viability assessment in stored canine platelet concentrates: A flow cytometry study. Cytometry A, 2019, 95(2), 214-218.
[http://dx.doi.org/10.1002/cyto.a.23567] [PMID: 30107098]
[19]
Kaminaga, K.; Hamada, R.; Usami, N.; Suzuki, K.; Yokoya, A. Targeted nuclear irradiation with an X-Ray microbeam enhances total JC-1 fluorescence from mitochondria. Radiat. Res., 2020, 194(5), 511-518.
[http://dx.doi.org/10.1667/RR15110.1] [PMID: 33045074]
[20]
Koç, E.; Çelik-Uzuner, S.; Uzuner, U.; Çakmak, R. The detailed comparison of cell death detected by annexin V-PI counterstain using fluorescence microscope, flow cytometry and automated cell counter in mammalian and microalgae cells. J. Fluoresc., 2018, 28(6), 1393-1404.
[http://dx.doi.org/10.1007/s10895-018-2306-4] [PMID: 30343360]
[21]
Li, Y.; Guo, M.; Lin, Z.; Zhao, M.; Xia, Y.; Wang, C.; Xu, T.; Zhu, B. Multifunctional selenium nanoparticles with Galangin-induced HepG2 cell apoptosis through p38 and AKT signalling pathway. R. Soc. Open Sci., 2018, 5(11), 180509.
[http://dx.doi.org/10.1098/rsos.180509] [PMID: 30564384]
[22]
D’yakonov, V.A.; Makarov, A.A.; Dzhemileva, L.U.; Ramazanov, I.R.; Makarova, E.K.; Dzhemilev, U.M. Natural trienoic acids as anticancer agents: First stereoselective synthesis, cell cycle analysis, induction of apoptosis, cell signaling and mitochondrial targeting studies. Cancers , 2021, 13(8), 1808.
[http://dx.doi.org/10.3390/cancers13081808] [PMID: 33920067]
[23]
Li, Y.; Xu, T.; Lin, Z.; Wang, C.; Xia, Y.; Guo, M.; Zhao, M.; Chen, Y.; Zhu, B. Inhibition of enterovirus A71 by selenium nanoparticles interferes with JNK signaling pathways. ACS Omega, 2019, 4(4), 6720-6725.
[http://dx.doi.org/10.1021/acsomega.8b03502]
[24]
Moore, C.L.; Savenka, A.V.; Basnakian, A.G. Tunel assay: A powerful tool for kidney injury evaluation. Int. J. Mol. Sci., 2021, 22(1), 412.
[http://dx.doi.org/10.3390/ijms22010412] [PMID: 33401733]
[25]
Yu, J.; Yang, A.; Wang, N.; Ling, H.; Song, J.; Chen, X.; Lian, Y.; Zhang, Z.; Yan, F.; Gu, M. Highly sensitive detection of caspase-3 activity based on peptide-modified organic electrochemical transistor biosensors. Nanoscale, 2021, 13(5), 2868-2874.
[http://dx.doi.org/10.1039/D0NR08453K] [PMID: 33464252]
[26]
Chen, H.; Zhang, J.; Gao, Y.; Liu, S.; Koh, K.; Zhu, X.; Yin, Y. Sensitive cell apoptosis assay based on caspase-3 activity detection with graphene oxide-assisted electrochemical signal amplification. Biosens. Bioelectron., 2015, 68, 777-782.
[http://dx.doi.org/10.1016/j.bios.2015.02.007] [PMID: 25682507]
[27]
Feng, X.; Tjia, J.Y.Y.; Zhou, Y.; Liu, Q.; Fu, C.; Yang, H. Effects of tocopherol nanoemulsion addition on fish sausage properties and fatty acid oxidation. L.W.T, 2020, 118, 108737.
[http://dx.doi.org/10.1016/j.lwt.2019.108737]
[28]
Fu, L.H.; Wan, Y.; Qi, C.; He, J.; Li, C.; Yang, C.; Xu, H.; Lin, J.; Huang, P. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Adv. Mater., 2021, 33(7), 2006892.
[http://dx.doi.org/10.1002/adma.202006892] [PMID: 33394515]
[29]
Guo, J.; Yu, Z.; Sun, D.; Zou, Y.; Liu, Y.; Huang, L. Two nanoformulations induce reactive oxygen species and immunogenetic cell death for synergistic chemo-immunotherapy eradicating colorectal cancer and hepatocellular carcinoma. Mol. Cancer, 2021, 20(1), 10.
[http://dx.doi.org/10.1186/s12943-020-01297-0] [PMID: 33407548]
[30]
Zhang, C.; Wang, X.; Du, J.; Gu, Z.; Zhao, Y. Reactive oxygen species‐regulating strategies based on nanomaterials for disease treatment. Adv. Sci., 2021, 8(3), 2002797.
[http://dx.doi.org/10.1002/advs.202002797] [PMID: 33552863]
[31]
Bresolí-Obach, R.; Busto-Moner, L.; Muller, C.; Reina, M.; Nonell, S. NanoDCFH-DA: A silica-based nanostructured fluorogenic probe for the detection of reactive oxygen species. Photochem. Photobiol., 2018, 94(6), 1143-1150.
[http://dx.doi.org/10.1111/php.13020] [PMID: 30240026]
[32]
Li, Y.; Lin, Z.; Zhao, M.; Xu, T.; Wang, C.; Hua, L.; Wang, H.; Xia, H.; Zhu, B. Silver nanoparticle based codelivery of oseltamivir to inhibit the activity of the H1N1 influenza virus through ROS-mediated signaling pathways. ACS Appl. Mater. Interfaces, 2016, 8(37), 24385-24393.
[http://dx.doi.org/10.1021/acsami.6b06613] [PMID: 27588566]
[33]
Wang, Y.; Li, Z.; Yu, H. Aptamer-based western blot for selective protein recognition. Front Chem., 2020, 8, 570528.
[http://dx.doi.org/10.3389/fchem.2020.570528] [PMID: 33195056]
[34]
Wang, C.; Chen, H.; Chen, D.; Zhao, M.; Lin, Z.; Guo, M.; Xu, T.; Chen, Y.; Hua, L.; Lin, T.; Tang, Y.; Zhu, B.; Li, Y. The inhibition of h1n1 influenza virus-induced apoptosis by surface decoration of selenium nanoparticles with β-Thujaplicin through reactive oxygen species-mediated AKT and p53 signaling pathways. ACS Omega, 2020, 5(47), 30633-30642.
[http://dx.doi.org/10.1021/acsomega.0c04624] [PMID: 33283112]
[35]
Abdalla, A.; Murali, C.; Amin, A. Safranal inhibits angiogenesis via targeting HIF-1α/VEGF machinery: In vitro and ex vivo insights. Front. Oncol., 2022, 11, 789172.
[http://dx.doi.org/10.3389/fonc.2021.789172] [PMID: 35211395]
[36]
Abdalla, Y.; Abdalla, A.; Hamza, A.A.; Amin, A. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation. Front. Pharmacol., 2022, 12, 777500.
[http://dx.doi.org/10.3389/fphar.2021.777500] [PMID: 35177980]
[37]
Lin, Y.C.; Chipot, C.; Scheuring, S. Annexin-V stabilizes membrane defects by inducing lipid phase transition. Nat. Commun., 2020, 11(1), 230.
[http://dx.doi.org/10.1038/s41467-019-14045-w] [PMID: 31932647]
[38]
Desvoyes, B.; Arana-Echarri, A.; Barea, M.D.; Gutierrez, C. A comprehensive fluorescent sensor for spatiotemporal cell cycle analysis in Arabidopsis. Nat. Plants, 2020, 6(11), 1330-1334.
[http://dx.doi.org/10.1038/s41477-020-00770-4] [PMID: 32989288]
[39]
Xie, P.; Keating, D.; Parrella, A.; Cheung, S.; Rosenwaks, Z.; Goldstein, M.; Palermo, G.D. Sperm genomic integrity by TUNEL varies throughout the male genital tract. J. Urol., 2020, 203(4), 802-808.
[http://dx.doi.org/10.1097/JU.0000000000000659] [PMID: 31738116]
[40]
Benassi, E.; Fan, H.; Sun, Q.; Dukenbayev, K.; Wang, Q.; Shaimoldina, A.; Tassanbiyeva, A.; Nurtay, L.; Nurkesh, A.; Kutzhanova, A. Generation of particle assemblies mimicking enzymatic activity by processing of herbal food: the case of rhizoma polygonati and other natural ingredients in traditional Chinese medicine. Nanoscale Advances., 2021, 3(8), 2222-2235.
[http://dx.doi.org/10.1039/D0NA00958J]
[41]
Han, J.; Goldstein, L.A.; Hou, W.; Watkins, S.C.; Rabinowich, H. Involvement of CASP9 (caspase 9) in IGF2R/CI-MPR endosomal transport. Autophagy, 2021, 17(6), 1393-1409.
[http://dx.doi.org/10.1080/15548627.2020.1761742] [PMID: 32397873]
[42]
Xu, T.; Zheng, R.; Chen, D.; Chen, H.; Zhao, M.; Guo, M.; Chen, Y.; Wang, C.; Kuang, L.; Li, Y. Inhibitory of EV-A71 virus-induced apoptosis by ZVAD through ROS mediated signaling pathways. Biocell, 2022, 46(4), 1033-1039.
[http://dx.doi.org/10.32604/biocell.2022.017757]
[43]
Hu, K.; Relton, E.; Locker, N.; Phan, N.T.N.; Ewing, A.G. Electrochemical measurements reveal reactive oxygen species in stress granules. Angew. Chem. Int. Ed., 2021, 60(28), 15302-15306.
[http://dx.doi.org/10.1002/anie.202104308] [PMID: 33876544]
[44]
Juaid, N.; Amin, A.; Abdalla, A.; Reese, K.; Alamri, Z.; Moulay, M.; Abdu, S.; Miled, N. Anti-hepatocellular carcinoma biomolecules: Molecular targets insights. Int. J. Mol. Sci., 2021, 22(19), 10774.
[http://dx.doi.org/10.3390/ijms221910774] [PMID: 34639131]
[45]
Zhang, J.; Duan, D.; Song, Z.L.; Liu, T.; Hou, Y.; Fang, J. Small molecules regulating reactive oxygen species homeostasis for cancer therapy. Med. Res. Rev., 2021, 41(1), 342-394.
[http://dx.doi.org/10.1002/med.21734] [PMID: 32981100]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy