Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

The Synthesis of Australine and its Stereoisomers as Naturally Pyrrolizidine Alkaloids

Author(s): Ghodsi Mohammadi Ziarani*, Negar Jamasbi and Fatemeh Mohajer

Volume 21, Issue 1, 2024

Published on: 03 October, 2022

Page: [40 - 57] Pages: 18

DOI: 10.2174/1570193X19666220704115936

Price: $65

Open Access Journals Promotions 2
Abstract

Natural products are important from the researchers’ perspectives due to their importance and applicability. Polyhydroxylated pyrrolizidine alkaloids are sugar mimics and received a growing interest in the last few years. Australine is a naturally polyhydroxylated pyrrolizidine, which was isolated from the seeds of Castanospermum austral, and exhibits potent biological activities such as inhibited glycosidases, as well as anti-virus, and anti-HIV activities. Thus, there is a considerable deal of interest in the synthesis of these classes of compounds. Different synthetic strategies and methodologies for the preparation of Australine and its stereoisomers were considered.

Keywords: Polyhydroxylated pyrrolizidine, alkaloids, australine, natural products, castanospermum austral, stereoisomers.

Graphical Abstract
[1]
Smith, L.W.; Culvenor, C.C.J. Plant sources of hepatotoxic pyrrolizidine alkaloids. J. Nat. Prod., 1981, 44(2), 129-152.
[http://dx.doi.org/10.1021/np50014a001] [PMID: 7017073]
[2]
Hartmann, T.; Witte, L. Chemistry, biology and chemoecology of the pyrrolizidine alkaloids. In: Alkaloids: Chemical and biological perspectives; Elsevier, 1995, Vol. 9, pp. 155-233.
[3]
Nash, R.J.; Fellows, L.E.; Dring, J.V.; Fleet, G.W.J.; Girdhar, A.; Ramsden, N.G.; Peach, J.M.; Hegarty, M.P.; Scofield, A.M. Two alexines [3-hydroxymethyl-1,2,7-trihydroxypyrrolizidines] from Castanospermum australe. Phytochemistry, 1990, 29(1), 111-114.
[http://dx.doi.org/10.1016/0031-9422(90)89022-2]
[4]
Nash, R.J.; Fellows, L.E.; Plant, A.C.; Fleet, G.W.J.; Derome, A.E.; Baird, P.D.; Hegarty, M.P.; Scofield, A.M. Isolation from Castanospermum australe and x-ray crystal structure of 3,8-diepialexine, (1R, 2R, 3S, 7S, 8R)-3-hydroxymethyl-1,2,7-trihydroxypyrrolizidine [(2S, 3R, 4R, 5S, 6R)-2-hydroxymethyl-1-azabicyclo[3.3.0]octan-3,4,6-triol Tetrahedron, 1988, 44(18), 5959-5964.
[http://dx.doi.org/10.1016/S0040-4020(01)81454-X]
[5]
Massicot, F.; Messire, G.; Vallée, A.; Vasse, J-L.; Py, S.; Behr, J-B. Regiospecific formation of sugar-derived ketonitrone towards unconventional C-branched pyrrolizidines and indolizidines. Org. Biomol. Chem., 2019, 17(29), 7066-7077.
[http://dx.doi.org/10.1039/C9OB01419E] [PMID: 31298253]
[6]
Chen, L.; Huang, S.; Li, C.Y.; Gao, F.; Zhou, X.L. Pyrrolizidine alkaloids from Liparis nervosa with antitumor activity by modulation of autophagy and apoptosis. Phytochemistry, 2018, 153, 147-155.
[http://dx.doi.org/10.1016/j.phytochem.2018.06.001] [PMID: 29980107]
[7]
Harit, V.K.; Ramesh, N.G. Amino-functionalized iminocyclitols: Synthetic glycomimetics of medicinal interest. RSC Advances, 2016, 6(111), 109528-109607.
[http://dx.doi.org/10.1039/C6RA23513A]
[8]
Molyneux, R.J.; Benson, M.; Wong, R.Y.; Tropea, J.E.; Elbein, A.D. Australine, a novel pyrrolizidine alkaloid glucosidase inhibitor from Castanospermum australe. J. Nat. Prod., 1988, 51(6), 1198-1206.
[http://dx.doi.org/10.1021/np50060a024]
[9]
Nash, R.J.; Fellows, L.E.; Dring, J.V.; Fleet, G.W.J.; Derome, A.E.; Hamor, T.A.; Scofield, A.M.; Watkin, D.J. Isolation from alexa leiopetala and x-ray crystal structure of alexine, (1r,2r,3r,7s,8s)-3-hydroxymethyl-1,2,7-trihydroxypyrrolizidine [(2R, 3R, 4R, 5S, 6S)-2-hydroxymethyl-1-azabicyclo[3.3.0]octan-3,4,6-triol], a unique pyrrolizidine alkaloid. Tetrahedron Lett., 1988, 29(20), 2487-2490.
[http://dx.doi.org/10.1016/S0040-4039(00)87914-9]
[10]
Tropea, J.E.; Molyneux, R.J.; Kaushal, G.P.; Pan, Y.T.; Mitchell, M.; Elbein, A.D. Australine, a pyrrolizidine alkaloid that inhibits amyloglucosidase and glycoprotein processing. Biochemistry, 1989, 28(5), 2027-2034.
[http://dx.doi.org/10.1021/bi00431a010] [PMID: 2497772]
[11]
Kato, A.; Kano, E.; Adachi, I.; Molyneux, R.J.; Watson, A.A.; Nash, R.J.; Fleet, G.W.J.; Wormald, M.R.; Kizu, H.; Ikeda, K.; Asano, N. Australine and related alkaloids: Easy structural confirmation by 13CNMR spectral data and biological activities. Tetrahedron Asymmetry, 2003, 14(3), 325-331.
[http://dx.doi.org/10.1016/S0957-4166(02)00799-1]
[12]
Taylor, D.; Nash, R.; Fellows, L.; Kang, M.; Tyms, A. Naturally occurring pyrrolizidines: Inhibition of α-glucosidase 1 and anti-HIV activity of one stereoisomer. Antivir. Chem. Chemother., 1992, 3(5), 273-277.
[http://dx.doi.org/10.1177/095632029200300504]
[13]
Asano, N.; Ikeda, K.; Kasahara, M.; Arai, Y.; Kizu, H. Glycosidase-inhibiting pyrrolidines and pyrrolizidines with a long side chain in Scilla peruviana. J. Nat. Prod., 2004, 67(5), 846-850.
[http://dx.doi.org/10.1021/np0499721] [PMID: 15165148]
[14]
Pluvinage, B.; Ghinet, M.G.; Brzezinski, R.; Boraston, A.B.; Stubbs, K.A. Inhibition of the exo-β-D-glucosaminidase CsxA by a glucosamine-configured castanospermine and an amino-australine analogue. Org. Biomol. Chem., 2009, 7(20), 4169-4172.
[http://dx.doi.org/10.1039/b913235j] [PMID: 19795054]
[15]
Pyne, S.G.; Tang, M. The structure, biological activities and synthesis of 3-hydroxylpyrrolizidine alkaloids and related compounds. Curr. Org. Chem., 2005, 9(14), 1393-1418.
[http://dx.doi.org/10.2174/1385272054880188]
[16]
Tamariz, J.; Burgueño-Tapia, E.; Vázquez, M.A.; Delgado, F. Pyrrolizidine Alkaloids. In: The Alkaloids: Chemistry and Biology; Elsevier, 2018, Vol. 80, pp. 1-314.
[17]
Jones, L.; Hollinshead, J.; Fleet, G.W.; Thompson, A.L.; Watkin, D.J.; Gal, Z.A.; Jenkinson, S.F.; Kato, A.; Nash, R.J. Isolation of the pyrrolizidine alkaloid 1-epialexine from Castanospermum australe. Phytochem. Lett., 2010, 3(3), 133-135.
[http://dx.doi.org/10.1016/j.phytol.2010.04.003]
[18]
Fleet, G.W.; Haraldsson, M.; Nash, R.J.; Fellows, L.E. Synthesis from D-glucose of alexine [(1R, 2R, 3R, 7S, 8S)-3-hydroxymethyl-1,2,7-trihydroxypyrrolizidine], 3-epialexine and 7-epialexine. Tetrahedron Lett., 1988, 29(42), 5441-5444.
[http://dx.doi.org/10.1016/S0040-4039(00)82890-7]
[19]
Beacham, A.R.; Bruce, I.; Choi, S.; Doherty, O.; Fairbanks, A.J.; Fleet, G.W.; Skead, B.M.; Peach, J.M.; Saunders, J.; Walking, D.J. Acetonides of heptonolactones: Powerful chirons. Tetrahedron Asymmetry, 1991, 2(9), 883-900.
[http://dx.doi.org/10.1016/S0957-4166(00)82201-6]
[20]
Ikota, N.; Hanaki, A. Synthesis of (2S, 3S, 4S)-4-amino-2, 3-dihydroxyhexanedioic acid derivatives from (R)-pyroglutamic acid. Chem. Pharm. Bull. (Tokyo), 1989, 37(4), 1087-1089.
[http://dx.doi.org/10.1248/cpb.37.1087]
[21]
Ikota, N.; Hanaki, A. Synthesis of (-)-swainsonine and optically active 3,4-dihydroxy-2-hydroxymethylpyrrolidines. Chem. Pharm. Bull. (Tokyo), 1987, 35(5), 2140-2143.
[http://dx.doi.org/10.1248/cpb.35.2140] [PMID: 3117390]
[22]
Ikota, N. Synthesis of (2R, 3R, 4R, 5R)-3,4-dihydroxy-2,5-dihydroxymethylpyrrolidine and (-)-anisomycin derivative from (S)-pyroglutamic acid derivative. Heterocycles, 1995, 5(41), 983-994.
[http://dx.doi.org/10.3987/COM-94-7016]
[23]
Harris, C.M.; Harris, T.M.; Molyneux, R.J.; Tropea, J.E.; Elbein, A.D. 1-Epiastraline, a new pyrrolizidine alkaloid from Castanospermum austral. Tetrahedron Lett., 1989, 30(42), 5685-5688.
[http://dx.doi.org/10.1016/S0040-4039(00)76170-3]
[24]
Ikota, N.; Nakagawa, H.; Ohno, S.; Noguchi, K.; Okuyama, K. Stereoselective synthesis of alexine stereoisomers from (S)-pyroglutamic acid. Tetrahedron, 1998, 54(31), 8985-8998.
[http://dx.doi.org/10.1016/S0040-4020(98)00542-0]
[25]
Yoda, H.; Katoh, H.; Takabe, K. Asymmetric total synthesis of natural pyrrolizidine alkaloid,(+)-alexine. Tetrahedron Lett., 2000, 41(40), 7661-7665.
[http://dx.doi.org/10.1016/S0040-4039(00)01314-9]
[26]
Takahashi, M.; Maehara, T.; Sengoku, T.; Fujita, N.; Takabe, K.; Yoda, H. New asymmetric strategy for the total synthesis of naturally occurring (+)-alexine and (−)-7-epi-alexine. Tetrahedron, 2008, 64(22), 5254-5261.
[http://dx.doi.org/10.1016/j.tet.2008.03.029]
[27]
Donohoe, T.J.; Cheeseman, M.D.; O’Riordan, T.J.C.; Kershaw, J.A. Synthesis of (+)-DGDP and (-)-7-epialexine. Org. Biomol. Chem., 2008, 6(21), 3896-3898.
[http://dx.doi.org/10.1039/b815332a] [PMID: 18931792]
[28]
Dressel, M.; Restorp, P.; Somfai, P. Total Synthesis of +-alexine by utilizing a highly stereoselective [3+2] annulation reaction of an N-tosyl-α-amino aldehyde and a 1,3-bis(silyl)propene. Chemistry, 2008, 14(10), 3072-3077.
[http://dx.doi.org/10.1002/chem.200701776] [PMID: 18240119]
[29]
Yu, L.; Somfai, P. Enantioselective synthesis of anti-3-alkenyl-2-amido-3-hydroxy esters: Application to the total synthesis of (+)-alexine. RSC Advances, 2019, 9(5), 2799-2802.
[http://dx.doi.org/10.1039/C9RA00173E] [PMID: 35520501]
[30]
Brock, E.A.; Davies, S.G.; Lee, J.A.; Roberts, P.M.; Thomson, J.E. Polyhydroxylated pyrrolizidine alkaloids from transannular iodoaminations: Application to the asymmetric syntheses of (-)-hyacinthacine A1, (-)-7a-epi-hyacinthacine A1, (-)-hyacinthacine A2, and (-)-1-epi-alexine. Org. Biomol. Chem., 2013, 11(19), 3187-3202.
[http://dx.doi.org/10.1039/c3ob40205c] [PMID: 23568024]
[31]
Brock, E.A.; Davies, S.G.; Lee, J.A.; Roberts, P.M.; Thomson, J.E. Asymmetric synthesis of polyhydroxylated pyrrolizidines via transannular iodoamination with concomitant N-debenzylation. Org. Lett., 2011, 13(7), 1594-1597.
[http://dx.doi.org/10.1021/ol103090z] [PMID: 21370868]
[32]
Myeong, I-S.; Jung, C.; Ham, W-H. Total syntheses of (-)-7-epi-alexine and (+)-alexine using stereoselective allylation. Synthesis, 2019, 51(18), 3471-3476.
[http://dx.doi.org/10.1055/s-0037-1611566]
[33]
Mohammadi Ziarani, G.; Mohajer, F.; Moradi, R.; Mofatehnia, P. The molecular diversity scope of urazole in the synthesis of organic compounds. Curr. Org. Synth., 2019, 16(7), 953-967.
[http://dx.doi.org/10.2174/1570179416666190925162215] [PMID: 31984879]
[34]
Mohammadi Ziarani, G.; Mohajer, F.; Kheilkordi, Z. Recent progress towards synthesis of the Indolizidine alkaloid 195B. Curr. Org. Synth., 2020, 17(2), 82-90.
[http://dx.doi.org/10.2174/1570179417666200124104010] [PMID: 31976841]
[35]
Mohajer, F.; Mohammadi Ziarani, G.; Moradi, R. The study of several synthesis methods of Indolizidine (±)-209I and (±)-209B as natural alkaloids. Curr. Org. Chem., 2020, 24(5), 516-535.
[http://dx.doi.org/10.2174/1385272824666200226113022]
[36]
Mohammadi Ziarani, G.; Mohajer, F.; Jamali, S.M.; Ebrahim, N.A. Quantitative and qualitative bibliometric scope toward the synthesis of rose oxide as a natural product in perfumery. Curr. Org. Synth., 2020, 17(8), 610-624.
[http://dx.doi.org/10.2174/1872208314666200722161044] [PMID: 32703138]
[37]
Mohajer, F.; Mohammadi Ziarani, G.; Taghipour, F. The multi steps synthetic methods of (±)-Indolizidine 209D as an amphibian natural product in the family of alkaloids. Nat. Prod. J., 2021, 11(4), 448-462.
[http://dx.doi.org/10.2174/2210315510999200607180544]
[38]
Mohammadi Ziarani, G.; Chenevert, R.; Badiei, A.R. Chemoenzymatic enantioselective formal synthesis of (-)-gephyrotoxin-223. Iran. J. Chem. Chem. Eng, 2006, 25(1), 31-38.
[39]
Chênevert, R.; Mohammadi Ziarani, G.; Morin, M.P.; Dasser, M. Enzymatic desymmetrization of meso cis-2, 6-and cis, cis-2, 4, 6-substituted piperidines. chemoenzymatic synthesis of (5S, 9S)-(+)-indolizidine 209D. Tetrahedron Asymmetry, 1999, 10(16), 3117-3122.
[http://dx.doi.org/10.1016/S0957-4166(99)00315-8]
[40]
Chênevert, R.; Mohammadi Ziarani, G.; Dasser, M. Chemoenzymatic enantoselective synthesis of (-)-indolizidine 167 B. Heterocycles, 1999, 51(3), 593-598.
[http://dx.doi.org/10.3987/COM-98-8421]
[41]
Chenevert, R.; Mohammadi Ziarani, G.; Caron, D.; Dasser, M. Chemoenzymatic enantioselective synthesis of (-)-enterolactone. Can. J. Chem., 1999, 77(2), 223-226.
[http://dx.doi.org/10.1139/v98-231]
[42]
Denmark, S.E.; Herbert, B. Synthesis of (1R, 2R, 3R, 7R, 7aR)-hexahydro-3-(hydroxymethyl)-1H-pyrrolizine-1,2,7-triol: 7-epiaustraline. J. Am. Chem. Soc., 1998, 120(29), 7357-7358.
[http://dx.doi.org/10.1021/ja980705p]
[43]
Mancuso, A.J.; Huang, S-L.; Swern, D. Oxidation of long-chain and related alcohols to carbonyls by dimethyl sulfoxide” activated” by oxalyl chloride. J. Org. Chem., 1978, 43(12), 2480-2482.
[http://dx.doi.org/10.1021/jo00406a041]
[44]
Denmark, S.E.; Thorarensen, A. The tandem cycloaddition chemistry of nitroalkenes. A novel synthesis of. Hastanecine. J. Org. Chem., 1994, 59(19), 5672-5680.
[http://dx.doi.org/10.1021/jo00098a027]
[45]
Denmark, S.E.; Hurd, A.R. Synthesis of (+)-casuarine. J. Org. Chem., 2000, 65(10), 2875-2886.
[http://dx.doi.org/10.1021/jo991680v] [PMID: 10814173]
[46]
Tamao, K.; Ishida, N.; Kumada, M. (Diisopropoxymethylsilyl) methyl Grignard reagent: A new, practically useful nucleophilic hydroxymethylating agent. J. Org. Chem., 1983, 48(12), 2120-2122.
[http://dx.doi.org/10.1021/jo00160a046]
[47]
Fleming, I.; Henning, R.; Plaut, H. The phenyldimethylsilyl group as a masked form of the hydroxy group. J. Chem. Soc. Chem. Commun., 1984, (1), 29-31.
[http://dx.doi.org/10.1039/c39840000029]
[48]
Denmark, S.E.; Martinborough, E.A. Enantioselective total syntheses of (+)-castanospermine,(+)-6-epicastanospermine,(+)-australine, and (+)-3-epiaustraline. J. Am. Chem. Soc., 1999, 121(13), 3046-3056.
[http://dx.doi.org/10.1021/ja9829970]
[49]
Kolb, H.C.; VanNieuwenhze, M.S.; Sharpless, K.B. Catalytic asymmetric dihydroxylation. Chem. Rev., 1994, 94(8), 2483-2547.
[http://dx.doi.org/10.1021/cr00032a009]
[50]
Denmark, S.E.; Cottell, J.J. Synthesis of (+)-1-epiaustraline. J. Org. Chem., 2001, 66(12), 4276-4284.
[http://dx.doi.org/10.1021/jo0101510] [PMID: 11397164]
[51]
Choi, S.; Bruce, I.; Fairbanks, A.; Fleet, G.; Jones, A.; Nash, R.; Fellows, L. Alexines from heptonolactones. Tetrahedron Lett., 1991, 32(40), 5517-5520.
[http://dx.doi.org/10.1016/0040-4039(91)80072-E]
[52]
Ikota, N. Stereocontrolled synthesis of 1,7a-diepialexine. Tetrahedron Lett., 1992, 33(18), 2553-2556.
[http://dx.doi.org/10.1016/S0040-4039(00)92240-8]
[53]
White, J.D.; Hrnciar, P.; Yokochi, A.F.T. Tandem ring-closing metathesis transannular cyclization as a route to hydroxylated pyrrolizidines. asymmetric synthesis of (+)-australine. J. Am. Chem. Soc., 1998, 120(29), 7359-7360.
[http://dx.doi.org/10.1021/ja9811400]
[54]
White, J.D.; Hrnciar, P. Synthesis of polyhydroxylated pyrrolizidine alkaloids of the alexine family by tandem ring-closing metathesis-transannular cyclization. Australine. J. Org. Chem., 2000, 65(26), 9129-9142.
[http://dx.doi.org/10.1021/jo0012748] [PMID: 11149861]
[55]
Fischer, H.O.; Baer, E. Über aceton-glycerinaldehyd II; Darstellung des aceton-d-glycerinaldehyds. Helv. Chim. Acta, 1934, 17(1), 622-632.
[http://dx.doi.org/10.1002/hlca.19340170171]
[56]
Hill, J.G.; Rossiter, B.E.; Sharpless, K.B. Anhydrous tert-butyl hydroperoxide in toluene: the preferred reagent for applications requiring dry TBHP. J. Org. Chem., 1983, 48(20), 3607-3608.
[http://dx.doi.org/10.1021/jo00168a063]
[57]
Smith, P.A.S. The Curtius Reaction. Org. React., 2004, 15(3), 337-449.
[58]
Wittig, G.; Schöllkopf, U. Über triphenyl-phosphin-methylene als olefinbildende reagenzien (I. Mitteil. Chem. Ber., 1954, 87(9), 1318-1330.
[http://dx.doi.org/10.1002/cber.19540870919]
[59]
Grubbs, R.H.; Miller, S.J.; Fu, G.C. Ring-closing metathesis and related processes in organic synthesis. Acc. Chem. Res., 1995, 28(11), 446-452.
[http://dx.doi.org/10.1021/ar00059a002]
[60]
Pearson, W.H.; Hines, J.V. A synthesis of (+)-7-epiaustraline and (-)-7-epialexine. Tetrahedron Lett., 1991, 32(40), 5513-5516.
[http://dx.doi.org/10.1016/0040-4039(91)80071-D]
[61]
Pearson, W.H.; Hines, J.V. Total syntheses of (+)-australine and (-)-7-epialexine. J. Org. Chem., 2000, 65(18), 5785-5793.
[http://dx.doi.org/10.1021/jo000689q] [PMID: 10970325]
[62]
MacCoss, M.; Chen, A.; Tolman, R.L. Syntheses of all four possible diastereomers of the acyclonucleoside 9-(1,3,4-trihydroxy-2-butoxymethyl) guanine from carbohydrate precursors. Tetrahedron Lett., 1985, 26(36), 4287-4290.
[http://dx.doi.org/10.1016/S0040-4039(00)98714-8]
[63]
Romero, A.; Wong, C-H. Chemo-enzymatic total synthesis of 3-epiaustraline, australine, and 7-epialexine. J. Org. Chem., 2000, 65(24), 8264-8268.
[http://dx.doi.org/10.1021/jo000933d] [PMID: 11101383]
[64]
Tang, M.; Pyne, S.G. Asymmetric synthesis of (-)-7-epiaustraline and (+)-1,7-diepiaustraline. J. Org. Chem., 2003, 68(20), 7818-7824.
[http://dx.doi.org/10.1021/jo034914q] [PMID: 14510561]
[65]
Hayashi, N.; Fujiwara, K.; Murai, A. The biomimetic construction of fused cyclic polyethers. Tetrahedron, 1997, 53(37), 12425-12468.
[http://dx.doi.org/10.1016/S0040-4020(97)00780-1]
[66]
Bernotas, R.C.; Cube, R.V. The use of triphenylphosphine/diethyl azodicarboxylate (dead) for the cyclization of 1,4- and 1,5-amino alcohols. Tetrahedron Lett., 1991, 32(2), 161-164.
[http://dx.doi.org/10.1016/0040-4039(91)80843-U]
[67]
Tang, M.; Pyne, S.G. Asymmetric synthesis of (+)-1-epiaustraline and attempted synthesis of australine. Tetrahedron, 2004, 60(27), 5759-5767.
[http://dx.doi.org/10.1016/j.tet.2004.05.010]
[68]
Ritthiwigrom, T.; Willis, A.C.; Pyne, S.G. Total synthesis of uniflorine A, casuarine, australine, 3-epi-australine, and 3,7-di-epi-australine from a common precursor. J. Org. Chem., 2010, 75(3), 815-824.
[http://dx.doi.org/10.1021/jo902355p] [PMID: 20028000]
[69]
Davis, A.S.; Pyne, S.G.; Skelton, B.W.; White, A.H. Synthesis of putative uniflorine A. J. Org. Chem., 2004, 69(9), 3139-3143.
[http://dx.doi.org/10.1021/jo049806y] [PMID: 15104453]
[70]
Petasis, N.A.; Zavialov, I.A. Highly stereocontrolled one-step synthesis of anti-β-amino alcohols from organoboronic acids, amines, and α-hydroxy aldehydes. J. Am. Chem. Soc., 1998, 120(45), 11798-11799.
[http://dx.doi.org/10.1021/ja981075u]
[71]
Donohoe, T.J.; Sintim, H.O. A concise total synthesis of (+/-)-1-epiaustraline. Org. Lett., 2004, 6(12), 2003-2006.
[http://dx.doi.org/10.1021/ol049397s] [PMID: 15176804]
[72]
Birch, A.J. Reduction by dissolving metals. Part I. J. Chem. Soc., 1944, 430-436.
[73]
Donohoe, T.J.; Headley, C.E.; Cousins, R.P.; Cowley, A. Flexibility in the partial reduction of 2,5-disubstituted pyrroles: Application to the synthesis of DMDP. Org. Lett., 2003, 5(7), 999-1002.
[http://dx.doi.org/10.1021/ol027504h] [PMID: 12659558]
[74]
Donohoe, T.J.; Thomas, R.E.; Cheeseman, M.D.; Rigby, C.L.; Bhalay, G.; Linney, I.D. Flexible strategy for the synthesis of pyrrolizidine alkaloids. Org. Lett., 2008, 10(16), 3615-3618.
[http://dx.doi.org/10.1021/ol801415d] [PMID: 18636741]
[75]
Dess, D.; Martin, J. Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J. Org. Chem., 1983, 48(22), 4155-4156.
[http://dx.doi.org/10.1021/jo00170a070]
[76]
Petrier, C.; Luche, J.L. Allylzinc reagents additions in aqueous media. J. Org. Chem., 1985, 50(6), 910-912.
[http://dx.doi.org/10.1021/jo00206a047]
[77]
Chikkanna, D.; Singh, O.V.; Kong, S.B.; Han, H. A general asymmetric route for the synthesis of the alexine and australine family of pyrrolizidine alkaloids. The first asymmetric synthesis of 1,2-diepi-alexine and 1,2,7-triepi-australine. Tetrahedron Lett., 2005, 46(51), 8865-8868.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.074]
[78]
Chatterjee, A.K.; Choi, T-L.; Sanders, D.P.; Grubbs, R.H. A general model for selectivity in olefin cross metathesis. J. Am. Chem. Soc., 2003, 125(37), 11360-11370.
[http://dx.doi.org/10.1021/ja0214882] [PMID: 16220959]
[79]
Lauritsen, A.; Madsen, R. Synthesis of naturally occurring iminosugars from D-fructose by the use of a zinc-mediated fragmentation reaction. Org. Biomol. Chem., 2006, 4(15), 2898-2905.
[http://dx.doi.org/10.1039/b605818c] [PMID: 16855738]
[80]
Duker, J.M.; Serianni, A.S. (13C)-substituted sucrose: 13C-1H and 13C-13C spin coupling constants to assess furanose ring and glycosidic bond conformations in aqueous solution. Carbohydr. Res., 1993, 249(2), 281-303.
[http://dx.doi.org/10.1016/0008-6215(93)84096-O] [PMID: 8275501]
[81]
Trost, B.M.; Aponick, A.; Stanzl, B.N. A convergent Pd-catalyzed asymmetric allylic alkylation of dl- and meso-divinylethylene carbonate: Enantioselective synthesis of (+)-australine hydrochloride and formal synthesis of isoaltholactone. Chemistry, 2007, 13(34), 9547-9560.
[http://dx.doi.org/10.1002/chem.200700832] [PMID: 17847148]
[82]
Braun, R.A. Preparation of 4,5-dihydroöxepine and 1,2-divinylethylene oxide. J. Org. Chem., 1963, 28(5), 1383-1384.
[http://dx.doi.org/10.1021/jo01040a501]
[83]
Ribes, C.; Falomir, E.; Carda, M.; Marco, J.A. Stereoselective synthesis of the glycosidase inhibitor australine through a one-pot, double-cyclization strategy. Org. Lett., 2007, 9(1), 77-80.
[http://dx.doi.org/10.1021/ol062570v] [PMID: 17192089]
[84]
Carda, M.; Rodriguez, S.; Murga, J.; Falomir, E.; Marco, J.A.; Röper, H. An efficient preparation of silylated derivatives of L-erythrulose 3,4-O-acetals. Synth. Commun., 1999, 29(15), 2601-2610.
[http://dx.doi.org/10.1080/00397919908086420]
[85]
Hayashi, Y.; Yamaguchi, J.; Shoji, M. The diastereoselective asymmetric total synthesis of NG-391, a neuronal cell-protecting molecule. Tetrahedron, 2002, 58(49), 9839-9846.
[http://dx.doi.org/10.1016/S0040-4020(02)01290-5]
[86]
Gilles, P.; Py, S. SmI2-mediated cross-coupling of nitrones with β-silyl acrylates: synthesis of (+)-australine. Org. Lett., 2012, 14(4), 1042-1045.
[http://dx.doi.org/10.1021/ol203396s] [PMID: 22292940]
[87]
Desvergnes, S.; Py, S.; Vallée, Y. Total synthesis of (+)-hyacinthacine A2 based on SmI2-induced nitrone umpolung. J. Org. Chem., 2005, 70(4), 1459-1462.
[http://dx.doi.org/10.1021/jo048237r] [PMID: 15704985]
[88]
Parmeggiani, C.; Cardona, F.; Giusti, L.; Reissig, H.U.; Goti, A. Stereocomplementary routes to hydroxylated nitrogen heterocycles: Total syntheses of casuarine, australine, and 7-epi-australine. Chemistry, 2013, 19(32), 10595-10604.
[http://dx.doi.org/10.1002/chem.201301320] [PMID: 23828462]
[89]
Tejima, S.; Fletcher, H.G. Syntheses with partially benzylated sugars. II.1 the anomeric 1-O-benzoyl-L-arabinopyranoses and 1-O-benzoyl-L-arabinofuranoses and their tendencies to undergo acyl migration. J. Org. Chem., 1963, 28(11), 2999-3004.
[http://dx.doi.org/10.1021/jo01046a015]
[90]
Cardona, F.; Faggi, E.; Liguori, F.; Cacciarini, M.; Goti, A. Total syntheses of hyacinthacine A2 and 7-deoxycasuarine by cycloaddition to a carbohydrate derived nitrone. Tetrahedron Lett., 2003, 44(11), 2315-2318.
[http://dx.doi.org/10.1016/S0040-4039(03)00239-9]
[91]
Li, Y-X.; Shimada, Y.; Sato, K.; Kato, A.; Zhang, W.; Jia, Y-M.; Fleet, G.W.; Xiao, M.; Yu, C-Y. Synthesis and glycosidase inhibition of Australine and its fluorinated derivatives. Org. Lett., 2015, 17(3), 716-719.
[http://dx.doi.org/10.1021/ol503728e] [PMID: 25621897]
[92]
Li, Y-X.; Huang, M-H.; Yamashita, Y.; Kato, A.; Jia, Y-M.; Wang, W-B.; Fleet, G.W.; Nash, R.J.; Yu, C-Y. L-DMDP, L-homoDMDP and their C-3 fluorinated derivatives: Synthesis and glycosidase-inhibition. Org. Biomol. Chem., 2011, 9(9), 3405-3414.
[http://dx.doi.org/10.1039/c0ob01063d] [PMID: 21423946]
[93]
Tsou, E-L.; Yeh, Y-T.; Liang, P-H.; Cheng, W-C. A convenient approach toward the synthesis of enantiopure isomers of DMDP and ADMDP. Tetrahedron, 2009, 65(1), 93-100.
[http://dx.doi.org/10.1016/j.tet.2008.10.096]
[94]
Mattes, H.; Benezra, C. Reformatsky-type reactions in aqueous media. use of bronometryl-acrylic acid for the synthesis of α-methylene-γ-butyrolactones. Tetrahedron Lett., 1985, 26(46), 5697-5698.
[http://dx.doi.org/10.1016/S0040-4039(01)80923-0]
[95]
Das, P.; Ajay, S.; Shaw, A.K. Synthesis of D-fagomine and its seven-and eight-membered higher-ring analogues, and the formal synthesis of (+)-australine from L-xylose-derived chiron. Synthesis, 2016, 48(21), 3753-3762.
[http://dx.doi.org/10.1055/s-0035-1562438]
[96]
Myeong, I.S.; Ham, W.H. Stereoselective syntheses of (+)-broussonetine D and (+)-australine via a functionalized pyrrolidine from an extended chiral 1,3-oxazine. Eur. J. Org. Chem., 2019, 2019(5), 1077-1082.
[http://dx.doi.org/10.1002/ejoc.201801552]
[97]
Kim, G-W.; Jin, T.; Kim, J-S.; Park, S-H.; Lee, K-H.; Kim, S-S.; Myeong, I-S.; Ham, W-H. A concise synthesis of (-)-lentiginosine via an anti,syn-oxazine. Tetrahedron Asymmetry, 2014, 25(1), 87-91.
[http://dx.doi.org/10.1016/j.tetasy.2013.11.009]
[98]
Kim, J-S.; Kang, J-C.; Yoo, G-H.; Jin, X.; Myeong, I-S.; Oh, C-Y.; Ham, W-H. Stereoselective total synthesis of (-)-conduramine F-1 via chiral 1,3-oxazine. Tetrahedron, 2015, 71(18), 2772-2776.
[http://dx.doi.org/10.1016/j.tet.2014.12.071]
[99]
Park, S-H.; Jin, X.; Kang, J-C.; Jung, C.; Kim, S-S.; Kim, S-S.; Lee, K-Y.; Ham, W-H. Chirality extension of an oxazine building block en route to total syntheses of (+)-hyacinthacine A2 and sphingofungin B. Org. Biomol. Chem., 2015, 13(15), 4539-4550.
[http://dx.doi.org/10.1039/C5OB00251F] [PMID: 25778104]
[100]
Cheng, W-C.; Guo, C-W.; Lin, C-K.; Jiang, Y-R. Synthesis and inhibition study of bicyclic iminosugar-based alkaloids, scaffolds, and libraries towards glucosidase. Isr. J. Chem., 2015, 55(3‐4), 403-411.
[http://dx.doi.org/10.1002/ijch.201400140]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy