Review Article

CircRNA:甲状腺癌诊断和治疗的新策略

卷 23, 期 8, 2023

发表于: 27 August, 2022

页: [737 - 747] 页: 11

弟呕挨: 10.2174/1566524022666220701141914

价格: $65

conference banner
摘要

甲状腺癌是全球最常见的癌症之一,其发病率最近有所上升。甲状腺癌的临床行为包括从良性肿瘤到侵袭性恶性肿瘤的广泛范围。因此,在治疗工作之前需要进行宝贵的诊断活动。环状RNA(circRNA)以及microRNA(miRNA)和长非编码RNA(lncRNA)被称为非编码RNA(ncRNA)。大量研究表明,circRNA可以参与多种细胞过程,特别是在肿瘤发生中。此外,circRNA在血液或血浆中是稳定的,并且在不同的组织中具有特异性。因此,它们可以作为癌细胞的潜在诊断生物标志物。有限的研究调查了circRNA在甲状腺癌所涉及的某些过程中的作用。在本综述中,我们总结了目前关于circRNA在甲状腺癌中潜在临床参与的证据。

关键词: CircRNA,细胞凋亡,microRNA,信号通路,甲状腺癌,神经内分泌细胞。

[1]
Durante C, Costante G, Lucisano G, et al. The natural history of benign thyroid nodules. JAMA 2015; 313(9): 926-35.
[http://dx.doi.org/10.1001/jama.2015.0956] [PMID: 25734734]
[2]
Dralle H, Machens A, Basa J, et al. Follicular cell-derived thyroid cancer. Nat Rev Dis Primers 2015; 1: 15077.
[http://dx.doi.org/10.1038/nrdp.2015.77] [PMID: 27188261]
[3]
Caron NR, Clark OH. Papillary thyroid cancer. Curr Treat Options Oncol 2006; 7(4): 309-19.
[http://dx.doi.org/10.1007/s11864-006-0040-7] [PMID: 16916491]
[4]
Grimm D. Current knowledge in thyroid cancer-from bench to bedside. Int J Mol Sci 2017; 18(7): E1529.
[http://dx.doi.org/10.3390/ijms18071529] [PMID: 28714875]
[5]
Shah JP. Thyroid carcinoma: Epidemiology, histology, and diagnosis. Clin Adv Hematol Oncol 2015; 13(4 Suppl): 3-6.
[6]
Cote GJ, Grubbs EG, Hofmann MC. Thyroid C-cell biology and oncogenic transformation. Recent Results Cancer Res 2015; 204: 1-39.
[http://dx.doi.org/10.1007/978-3-319-22542-5_1] [PMID: 26494382]
[7]
Wells SA Jr, Asa SL, Dralle H, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015; 25(6): 567-610.
[http://dx.doi.org/10.1089/thy.2014.0335]
[8]
Moley JF. Medullary thyroid carcinoma: Management of lymph node metastases. J Natl Compr Canc Netw 2010; 8(5): 549-56.
[http://dx.doi.org/10.6004/jnccn.2010.0042] [PMID: 20495084]
[9]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[10]
Raman P, Koenig RJ. Pax-8-PPAR-γ fusion protein in thyroid carcinoma. Nat Rev Endocrinol 2014; 10(10): 616-23.
[http://dx.doi.org/10.1038/nrendo.2014.115] [PMID: 25069464]
[11]
Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 2011; 7(10): 569-80.
[http://dx.doi.org/10.1038/nrendo.2011.142] [PMID: 21878896]
[12]
Molinaro E, Romei C, Biagini A, et al. Anaplastic thyroid carcinoma: From clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol 2017; 13(11): 644-60.
[http://dx.doi.org/10.1038/nrendo.2017.76] [PMID: 28707679]
[13]
Smolle E, Haybaeck J. Non-coding RNAs and lipid metabolism. Int J Mol Sci 2014; 15(8): 13494-513.
[http://dx.doi.org/10.3390/ijms150813494] [PMID: 25093715]
[14]
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495(7441): 333-8.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[15]
Lambertini M, Santoro L, Del Mastro L, et al. Reproductive behaviors and risk of developing breast cancer according to tumor subtype: A systematic review and meta-analysis of epidemiological studies. Cancer Treat Rev 2016; 49: 65-76.
[http://dx.doi.org/10.1016/j.ctrv.2016.07.006] [PMID: 27529149]
[16]
Bach DH, Lee SK, Sood AK. Circular RNAs in Cancer. Mol Ther Nucleic Acids 2019; 16: 118-29.
[http://dx.doi.org/10.1016/j.omtn.2019.02.005] [PMID: 30861414]
[17]
Song L, Xiao Y. Downregulation of hsa_circ_0007534 suppresses breast cancer cell proliferation and invasion by targeting miR-593/MUC19 signal pathway. Biochem Biophys Res Commun 2018; 503(4): 2603-10.
[http://dx.doi.org/10.1016/j.bbrc.2018.08.007] [PMID: 30139516]
[18]
Chen G, Wang Q, Yang Q, et al. Circular RNAs hsa_circ_0032462, hsa_circ_0028173, hsa_circ_0005909 are predicted to promote CADM1 expression by functioning as miRNAs sponge in human osteosarcoma. PLoS One 2018; 13(8): e0202896.
[19]
Wang L, Wei Y, Yan Y, et al. CircDOCK1 suppresses cell apoptosis via inhibition of miR-196a-5p by targeting BIRC3 in OSCC. Oncol Rep 2018; 39(3): 951-66.
[PMID: 29286141]
[20]
Yin Y, Long J, He Q, et al. Emerging roles of circRNA in formation and progression of cancer. J Cancer 2019; 10(21): 5015-21.
[http://dx.doi.org/10.7150/jca.30828] [PMID: 31602252]
[21]
Pan H, Li T, Jiang Y, et al. Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway. J Cell Biochem 2018; 119(1): 440-6.
[http://dx.doi.org/10.1002/jcb.26201] [PMID: 28608528]
[22]
Memczak S, Papavasileiou P, Peters O, Rajewsky N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One 2015; 10(10): e0141214.
[http://dx.doi.org/10.1371/journal.pone.0141214] [PMID: 26485708]
[23]
Cocquerelle C, Mascrez B, Hétuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J 1993; 7(1): 155-60.
[http://dx.doi.org/10.1096/fasebj.7.1.7678559] [PMID: 7678559]
[24]
Chen I, Chen CY, Chuang TJ. Biogenesis, identification, and function of exonic circular RNAs. Wiley Interdiscip Rev RNA 2015; 6(5): 563-79.
[http://dx.doi.org/10.1002/wrna.1294] [PMID: 26230526]
[25]
Westholm JO, Miura P, Olson S, et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 2014; 9(5): 1966-80.
[http://dx.doi.org/10.1016/j.celrep.2014.10.062] [PMID: 25544350]
[26]
Zhang XO, Dong R, Zhang Y, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 2016; 26(9): 1277-87.
[http://dx.doi.org/10.1101/gr.202895.115] [PMID: 27365365]
[27]
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19(2): 141-57.
[http://dx.doi.org/10.1261/rna.035667.112] [PMID: 23249747]
[28]
Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs. Mol Cell 2013; 51(6): 792-806.
[http://dx.doi.org/10.1016/j.molcel.2013.08.017] [PMID: 24035497]
[29]
Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2015; 22(3): 256-64.
[http://dx.doi.org/10.1038/nsmb.2959] [PMID: 25664725]
[30]
Lu Z, Filonov GS, Noto JJ, et al. Metazoan tRNA introns generate stable circular RNAs in vivo. RNA 2015; 21(9): 1554-65.
[http://dx.doi.org/10.1261/rna.052944.115] [PMID: 26194134]
[31]
Kohlhapp FJ, Mitra AK, Lengyel E, Peter ME. MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment. Oncogene 2015; 34(48): 5857-68.
[http://dx.doi.org/10.1038/onc.2015.89] [PMID: 25867073]
[32]
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495(7441): 384-8.
[http://dx.doi.org/10.1038/nature11993] [PMID: 23446346]
[33]
Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol 2014; 15(7): 409.
[http://dx.doi.org/10.1186/s13059-014-0409-z] [PMID: 25070500]
[34]
Thomas LF, Sætrom P. Circular RNAs are depleted of polymorphisms at microRNA binding sites. Bioinformatics 2014; 30(16): 2243-6.
[http://dx.doi.org/10.1093/bioinformatics/btu257] [PMID: 24764460]
[35]
Hsiao KY, Lin YC, Gupta SK, et al. Noncoding Effects of Circular RNA CCDC66 Promote Colon Cancer Growth and Metastasis. Cancer Res 2017; 77(9): 2339-50.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1883] [PMID: 28249903]
[36]
Boeckel JN, Jaé N, Heumüller AW, et al. Identification and Characterization of Hypoxia-Regulated Endothelial Circular RNA. Circ Res 2015; 117(10): 884-90.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306319] [PMID: 26377962]
[37]
Panda AC, Grammatikakis I, Kim KM, et al. Identification of Senescence-Associated Circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Res 2017; 45(7): 4021-35.
[http://dx.doi.org/10.1093/nar/gkw1201] [PMID: 27928058]
[38]
Li F, Zhang L, Li W, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget 2015; 6(8): 6001-13.
[http://dx.doi.org/10.18632/oncotarget.3469] [PMID: 25749389]
[39]
Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 2014; 56(1): 55-66.
[http://dx.doi.org/10.1016/j.molcel.2014.08.019] [PMID: 25242144]
[40]
Abdelmohsen K, Panda AC, Munk R, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 2017; 14(3): 361-9.
[http://dx.doi.org/10.1080/15476286.2017.1279788] [PMID: 28080204]
[41]
Lebedeva S, Jens M, Theil K, et al. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 2011; 43(3): 340-52.
[http://dx.doi.org/10.1016/j.molcel.2011.06.008] [PMID: 21723171]
[42]
Guarnerio J, Bezzi M, Jeong JC, et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 2016; 166(4): 1055-6.
[http://dx.doi.org/10.1016/j.cell.2016.07.035] [PMID: 27518567]
[43]
Du WW, Yang W, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 2017; 38(18): 1402-12.
[PMID: 26873092]
[44]
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 2016; 44(6): 2846-58.
[http://dx.doi.org/10.1093/nar/gkw027] [PMID: 26861625]
[45]
Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 1995; 268(5209): 415-7.
[http://dx.doi.org/10.1126/science.7536344] [PMID: 7536344]
[46]
Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis. Mol Cell 2017; 66(1): 22-37.e9.
[http://dx.doi.org/10.1016/j.molcel.2017.02.017] [PMID: 28344082]
[47]
Draz MS, Fang BA, Zhang P, et al. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics 2014; 4(9): 872-92.
[http://dx.doi.org/10.7150/thno.9404] [PMID: 25057313]
[48]
Williford JM, Wu J, Ren Y, Archang MM, Leong KW, Mao HQ. Recent advances in nanoparticle-mediated siRNA delivery. Annu Rev Biomed Eng 2014; 16: 347-70.
[http://dx.doi.org/10.1146/annurev-bioeng-071813-105119] [PMID: 24905873]
[49]
Awan FM, Yang BB, Naz A, et al. The emerging role and significance of circular RNAs in viral infections and antiviral immune responses: Possible implication as theranostic agents. RNA Biol 2021; 18(1): 1-15.
[http://dx.doi.org/10.1080/15476286.2020.1790198] [PMID: 32615049]
[50]
Yang W, Du WW, Li X, Yee AJ, Yang BB. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene 2016; 35(30): 3919-31.
[http://dx.doi.org/10.1038/onc.2015.460] [PMID: 26657152]
[51]
Meganck RM, Borchardt EK, Castellanos Rivera RM, et al. Tissue-dependent expression and translation of circular RNAs with recombinant AAV vectors in vivo. Mol Ther Nucleic Acids 2018; 13: 89-98.
[http://dx.doi.org/10.1016/j.omtn.2018.08.008] [PMID: 30245471]
[52]
Müller S, Appel B. In vitro circularization of RNA. RNA Biol 2017; 14(8): 1018-27.
[http://dx.doi.org/10.1080/15476286.2016.1239009] [PMID: 27668458]
[53]
Chen YG, Chen R, Ahmad S, et al. N6-methyladenosine modification controls circular RNA immunity. Mol Cell 2019; 76(1): 96-109.
[http://dx.doi.org/10.1016/j.molcel.2019.07.016]
[54]
Holdt LM, Kohlmaier A, Teupser D. Circular RNAs as therapeutic agents and targets. Front Physiol 2018; 9: 1262.
[http://dx.doi.org/10.3389/fphys.2018.01262] [PMID: 30356745]
[55]
Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med 2012; 63: 185-98.
[http://dx.doi.org/10.1146/annurev-med-040210-162544] [PMID: 21888516]
[56]
Ma X, Zhao Y, Liang XJ. Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc Chem Res 2011; 44(10): 1114-22.
[http://dx.doi.org/10.1021/ar2000056] [PMID: 21732606]
[57]
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013; 12(11): 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[58]
Chen L, Watson C, Morsch M, et al. Improving the delivery of SOD1 antisense oligonucleotides to motor neurons using calcium phosphate-lipid nanoparticles. Front Neurosci 2017; 11: 476.
[http://dx.doi.org/10.3389/fnins.2017.00476] [PMID: 28912673]
[59]
Oliveira ACN, Fernandes J, Gonçalves A, Gomes AC, Oliveira MECDR. Lipid-based nanocarriers for siRNA delivery: Challenges, strategies and the lessons learned from the DODAX: MO liposomal system. Curr Drug Targets 2019; 20(1): 29-50.
[http://dx.doi.org/10.2174/1389450119666180703145410] [PMID: 29968536]
[60]
Kulkarni JA, Witzigmann D, Chen S, Cullis PR, van der Meel R. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc Chem Res 2019; 52(9): 2435-44.
[http://dx.doi.org/10.1021/acs.accounts.9b00368] [PMID: 31397996]
[61]
Shi X, Wang B, Feng X, Xu Y, Lu K, Sun M. circRNAs and exosomes: A mysterious frontier for human cancer. Mol Ther Nucleic Acids 2020; 19: 384-92.
[http://dx.doi.org/10.1016/j.omtn.2019.11.023] [PMID: 31887549]
[62]
Xiong S, Peng H, Ding X, et al. Circular RNA Expression Profiling and the Potential Role of hsa_circ_0089172 in Hashimoto’s Thyroiditis via Sponging miR125a-3p. Mol Ther Nucleic Acids 2019; 17: 38-48.
[http://dx.doi.org/10.1016/j.omtn.2019.05.004] [PMID: 31207490]
[63]
Liang G, Yang Y, Niu G, Tang Z, Li K. Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages. DNA Res 2017; 24(5): 523-35.
[http://dx.doi.org/10.1093/dnares/dsx022] [PMID: 28575165]
[64]
Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol 2014; 32(5): 453-61.
[http://dx.doi.org/10.1038/nbt.2890] [PMID: 24811520]
[65]
Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression. PLoS Genet 2013; 9(9): e1003777.
[http://dx.doi.org/10.1371/journal.pgen.1003777] [PMID: 24039610]
[66]
Zhao W, Cheng Y, Zhang C, et al. Genome-wide identification and characterization of circular RNAs by high throughput sequencing in soybean. Sci Rep 2017; 7(1): 5636.
[http://dx.doi.org/10.1038/s41598-017-05922-9] [PMID: 28717203]
[67]
Xing M. Recent advances in molecular biology of thyroid cancer and their clinical implications. Otolaryngol Clin North Am 2008; 41(6): 1135-46. ix.
[http://dx.doi.org/10.1016/j.otc.2008.07.001] [PMID: 19040974]
[68]
Murugan AK, Xing M. Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Res 2011; 71(13): 4403-11.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4041] [PMID: 21596819]
[69]
Hou P, Liu D, Xing M. Genome-wide alterations in gene methylation by the BRAF V600E mutation in papillary thyroid cancer cells. Endocr Relat Cancer 2011; 18(6): 687-97.
[http://dx.doi.org/10.1530/ERC-11-0212] [PMID: 21937738]
[70]
Jo YS, Li S, Song JH, et al. Influence of the BRAF V600E mutation on expression of vascular endothelial growth factor in papillary thyroid cancer. J Clin Endocrinol Metab 2006; 91(9): 3667-70.
[http://dx.doi.org/10.1210/jc.2005-2836] [PMID: 16772349]
[71]
Kumagai A, Namba H, Mitsutake N, et al. Childhood thyroid carcinoma with BRAFT1799A mutation shows unique pathological features of poor differentiation. Oncol Rep 2006; 16(1): 123-6.
[http://dx.doi.org/10.3892/or.16.1.123] [PMID: 16786134]
[72]
Palona I, Namba H, Mitsutake N, et al. BRAFV600E promotes invasiveness of thyroid cancer cells through nuclear factor kappaB activation. Endocrinology 2006; 147(12): 5699-707.
[http://dx.doi.org/10.1210/en.2006-0400] [PMID: 16959844]
[73]
Mesa C Jr, Mirza M, Mitsutake N, et al. Conditional activation of RET/PTC3 and BRAFV600E in thyroid cells is associated with gene expression profiles that predict a preferential role of BRAF in extracellular matrix remodeling. Cancer Res 2006; 66(13): 6521-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0739] [PMID: 16818623]
[74]
Franzoni A, Dima M, D'Agostino M, et al. Prohibitin is overexpressed in papillary thyroid carcinomas bearing the BRAF(V600E) mutation. Thyroid 2009; 19(3): 247-55.
[75]
Watanabe R, Hayashi Y, Sassa M, et al. Possible involvement of BRAFV600E in altered gene expression in papillary thyroid cancer. Endocr J 2009; 56(3): 407-14.
[http://dx.doi.org/10.1507/endocrj.K08E-329] [PMID: 19194051]
[76]
Zerilli M, Zito G, Martorana A, et al. BRAF(V600E) mutation influences hypoxia-inducible factor-1alpha expression levels in papillary thyroid cancer. Mod Pathol 2010; 23(8): 1052-60.
[77]
Pasquali D, Santoro A, Bufo P, et al. Upregulation of endocrine gland-derived vascular endothelial growth factor in papillary thyroid cancers displaying infiltrative patterns, lymph node metastases, and BRAF mutation. Thyroid 2011; 21(4): 391-9.
[http://dx.doi.org/10.1089/thy.2010.0168]
[78]
Nowicki TS, Zhao H, Darzynkiewicz Z, et al. Downregulation of uPAR inhibits migration, invasion, proliferation, FAK/PI3K/Akt signaling and induces senescence in papillary thyroid carcinoma cells. Cell Cycle 2011; 10(1): 100-7.
[http://dx.doi.org/10.4161/cc.10.1.14362] [PMID: 21191179]
[79]
Nucera C, Porrello A, Antonello ZA, et al. B-Raf(V600E) and thrombospondin-1 promote thyroid cancer progression. Proc Natl Acad Sci USA 2010; 107(23): 10649-54.
[http://dx.doi.org/10.1073/pnas.1004934107] [PMID: 20498063]
[80]
Ringel MD, Hayre N, Saito J, et al. Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res 2001; 61(16): 6105-11.
[PMID: 11507060]
[81]
Vasko V, Saji M, Hardy E, et al. Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J Med Genet 2004; 41(3): 161-70.
[http://dx.doi.org/10.1136/jmg.2003.015339] [PMID: 14985374]
[82]
Abbosh PH, Nephew KP. Multiple signaling pathways converge on beta-catenin in thyroid cancer. Thyroid 2005; 15(6): 551-61.
[83]
Pacifico F, Mauro C, Barone C, et al. Oncogenic and anti-apoptotic activity of NF-kappa B in human thyroid carcinomas. J Biol Chem 2004; 279(52): 54610-9.
[http://dx.doi.org/10.1074/jbc.M403492200] [PMID: 15475567]
[84]
Oh HJ, Lee KK, Song SJ, et al. Role of the tumor suppressor RASSF1A in Mst1-mediated apoptosis. Cancer Res 2006; 66(5): 2562-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2951] [PMID: 16510573]
[85]
Xing M, Cohen Y, Mambo E, et al. Early occurrence of RASSF1A hypermethylation and its mutual exclusion with BRAF mutation in thyroid tumorigenesis. Cancer Res 2004; 64(5): 1664-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3242] [PMID: 14996725]
[86]
Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell 2012; 149(6): 1192-205.
[http://dx.doi.org/10.1016/j.cell.2012.05.012] [PMID: 22682243]
[87]
Garcia-Rostan G, Camp RL, Herrero A, Carcangiu ML, Rimm DL, Tallini G. Beta-catenin dysregulation in thyroid neoplasms: Down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol 2001; 158(3): 987-96.
[http://dx.doi.org/10.1016/S0002-9440(10)64045-X] [PMID: 11238046]
[88]
Castellone MD, De Falco V, Rao DM, et al. The beta-catenin axis integrates multiple signals downstream from RET/papillary thyroid carcinoma leading to cell proliferation. Cancer Res 2009; 69(5): 1867-76.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1982] [PMID: 19223551]
[89]
Burrows N, Resch J, Cowen RL, et al. Expression of hypoxia-inducible factor 1 alpha in thyroid carcinomas. Endocr Relat Cancer 2010; 17(1): 61-72.
[http://dx.doi.org/10.1677/ERC-08-0251] [PMID: 19808899]
[90]
Bi W, Huang J, Nie C, et al. CircRNA circRNA_102171 promotes papillary thyroid cancer progression through modulating CTNNBIP1-dependent activation of β-catenin pathway. J Exp Clin Cancer Res 2018; 37(1): 275.
[http://dx.doi.org/10.1186/s13046-018-0936-7] [PMID: 30424816]
[91]
Chen F, Feng Z, Zhu J, et al. Emerging roles of circRNA_NEK6 targeting miR-370-3p in the proliferation and invasion of thyroid cancer via Wnt signaling pathway. Cancer Biol Ther 2018; 19(12): 1139-52.
[http://dx.doi.org/10.1080/15384047.2018.1480888] [PMID: 30207869]
[92]
Ye M, Hou H, Shen M, Dong S, Zhang T. Circular RNA circFOXM1 Plays a Role in Papillary Thyroid Carcinoma by Sponging miR-1179 and Regulating HMGB1 Expression. Mol Ther Nucleic Acids 2020; 19: 741-50.
[http://dx.doi.org/10.1016/j.omtn.2019.12.014] [PMID: 31951855]
[93]
Zhang H, Ma XP, Li X, Deng FS. Circular RNA circ_0067934 exhaustion expedites cell apoptosis and represses cell proliferation, migration and invasion in thyroid cancer via sponging miR-1304 and regulating CXCR1 expression. Eur Rev Med Pharmacol Sci 2019; 23(24): 10851-66.
[PMID: 31858554]
[94]
Yao Y, Chen X, Yang H, et al. Hsa_circ_0058124 promotes papillary thyroid cancer tumorigenesis and invasivenessthrough the NOTCH3/GATAD2A axis. 2019; 38(1): 318.
[95]
Yang Y, Ding L, Li Y, Xuan C. Hsa_circ_0039411 promotes tumorigenesis and progression of papillary thyroid cancer by miR-1179/ABCA9 and miR-1205/MTA1 signaling pathways. 2020; 235(2): 1321-9.
[96]
Liu W, Zhao J, Jin M, Zhou M. circRAPGEF5 contributes to papillary thyroid proliferation and metastatis by regulation miR-198/FGFR1. Mol Ther Nucleic Acids 2019; 14: 609-16.
[http://dx.doi.org/10.1016/j.omtn.2019.01.003] [PMID: 30785065]
[97]
Wang H, Yan X, Zhang H, Zhan X. CircRNA circ_0067934 overexpression correlates with poor prognosis and promotes thyroid carcinoma progression. Med Sci Monit 2019; 25: 1342-9.
[http://dx.doi.org/10.12659/MSM.913463] [PMID: 30779728]
[98]
Pan Y, Xu T, Liu Y, Li W, Zhang W. Upregulated circular RNA circ_0025033 promotes papillary thyroid cancer cell proliferation and invasion via sponging miR-1231 and miR-1304. Biochem Biophys Res Commun 2019; 510(2): 334-8.
[http://dx.doi.org/10.1016/j.bbrc.2019.01.108] [PMID: 30709584]
[99]
Liu F, Zhang J, Qin L, et al. Circular RNA EIF6 (Hsa_circ_0060060) sponges miR-144-3p to promote the cisplatin-resistance of human thyroid carcinoma cells by autophagy regulation. Aging (Albany NY) 2018; 10(12): 3806-20.
[http://dx.doi.org/10.18632/aging.101674] [PMID: 30540564]
[100]
Li X, Tian Y, Hu Y, Yang Z, Zhang L, Luo J. CircNUP214 sponges miR-145 to promote the expression of ZEB2 in thyroid cancer cells. Biochem Biophys Res Commun 2018; 507(1-4): 168-72.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.200] [PMID: 30415780]
[101]
Jin X, Wang Z, Pang W, et al. Upregulated hsa_circ_0004458 contributes to progression of papillary thyroid carcinoma by inhibition of miR-885-5p and activation of RAC1. Med Sci Monit 2018; 24: 5488-500.
[http://dx.doi.org/10.12659/MSM.911095] [PMID: 30086127]
[102]
Wei H, Pan L, Tao D, Li R. Circular RNA circZFR contributes to papillary thyroid cancer cell proliferation and invasion by sponging miR-1261 and facilitating C8orf4 expression. Biochem Biophys Res Commun 2018; 503(1): 56-61.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.174] [PMID: 29842886]
[103]
Wang M, Chen B, Ru Z, Cong L. CircRNA circ-ITCH suppresses papillary thyroid cancer progression through miR-22-3p/CBL/β-catenin pathway. Biochem Biophys Res Commun 2018; 504(1): 283-8.
[http://dx.doi.org/10.1016/j.bbrc.2018.08.175] [PMID: 30190130]
[104]
Lan X, Cao J, Xu J, et al. Decreased expression of hsa_circ_0137287 predicts aggressive clinicopathologic characteristics in papillary thyroid carcinoma. J Clin Lab Anal 2018; 32(8): e22573.
[http://dx.doi.org/10.1002/jcla.22573] [PMID: 29790216]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy