Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Mini-Review Article

Mechanistic and Etiological Similarities in Diabetes Mellitus and Alzheimer’s Disease: Antidiabetic Drugs as Optimistic Therapeutics in Alzheimer’s Disease

Author(s): Subham Das, Anu Kunnath Ramachandran, Debojyoti Halder, Saleem Akbar, Bahar Ahmed and Alex Joseph*

Volume 22, Issue 7, 2023

Published on: 03 October, 2022

Page: [973 - 993] Pages: 21

DOI: 10.2174/1871527321666220629162229

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Diabetes mellitus and Alzheimer’s disease are two common diseases that majorly affect the elderly population. Patients in both cases are increasing day by day. They are considered two independent diseases, but recent evidence suggests that they have a lot in common.

Objective: In this review, we focused on the connection between Alzheimer's disease and diabetes and highlighted the importance of antidiabetic drugs against Alzheimer's disease.

Methods: Common pathways such as obesity, vascular diseases, oxidative stress, mitochondrial dysfunction, mutation of the ApoE4 gene, and Sirtuin gene were found to manipulate both diseases. Antidiabetic drugs are found to have promising effects on Alzheimer’s disease, acting by reducing insulin resistance, neuronal protection, and reducing amyloid-beta plaques. Some anti-diabetic drugs have shown promising results in vivo and in vitro studies.

Results: No review present focuses on the structural features of the antidiabetic molecules against Alzheimer’s disease, their crosslinking pathophysiology, the role of natural bioactive molecules, in silico advancements followed by preclinical and clinical studies, and current advancements. Hence, we concentrated on the factors mentioned in the objectives.

Conclusion: Alzheimer's disease can be considered a form of 'type-3 diabetes,' and repurposing the anti-diabetic drug will open up new paths of research in the field of Alzheimer's disease drug discovery.

Keywords: Alzheimer’s disease, diabetes, oxidative stress, ApoE4, pathophysiology, antidiabetic.

« Previous
Graphical Abstract
[1]
Anu KR, Das S, Joseph A, Shenoy GG, Alex AT, Mudgal J. Neurodegenerative pathways in alzheimer’s disease: A review. Curr Neuropharmacol 2020; 18: 679-92.
[http://dx.doi.org/10.2174/1570159X18666200807130637]
[2]
Das S, Akbar S, Ahmed B, et al. Recent advancement of pyrazole scaffold based neuroprotective agents: A review. CNS Neurol Disord Drug Targets 2021. Epub ahead of print
[http://dx.doi.org/10.2174/1871527320666210602152308] [PMID: 34080970]
[3]
Das S, Akbar S, Ahmed B, et al. Structural activity relationship-based medicinal perspectives of pyrimidine derivatives as anti-alzheimer’s agent: A comprehensive review. CNS Neurol Disord Drug Targets 2021. Epub ahead of print
[http://dx.doi.org/10.2174/1871527320666210804161400] [PMID: 34348636]
[4]
Ramachandran AK, Das S, Joseph A. Crosstalk between COVID-19 and associated neurological disorders: A review. Curr Neuropharmacol 2021; 19(10): 1688-700.
[http://dx.doi.org/10.2174/1570159X19666210113154342] [PMID: 33441073]
[5]
Nicolls MR. The clinical and biological relationship between Type II diabetes mellitus and Alzheimer’s disease. Curr Alzheimer Res 2004; 1(1): 47-54.
[http://dx.doi.org/10.2174/1567205043480555] [PMID: 15975085]
[6]
Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med 2010; 362(4): 329-44.
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[7]
Tanaka M, Toldi J, Vécsei L. Exploring the etiological links behind neurodegenerative diseases: Inflammatory cytokines and bioactive kynurenines. Int J Mol Sci 2020; 21(7): E2431.
[http://dx.doi.org/10.3390/ijms21072431] [PMID: 32244523]
[8]
Chornenkyy Y, Wang WX, Wei A, Nelson PT. Alzheimer’s disease and type 2 diabetes mellitus are distinct diseases with potential overlapping metabolic dysfunction upstream of observed cognitive decline. Brain Pathol 2019; 29(1): 3-17.
[http://dx.doi.org/10.1111/bpa.12655] [PMID: 30106209]
[9]
Battaglia S, Harrison BJ, Fullana MA. Does the human ventromedial prefrontal cortex support fear learning, fear extinction or both? a commentary on subregional contributions. Mol Psychiatry 2022; 27(2): 784-6.
[http://dx.doi.org/10.1038/s41380-021-01326-4] [PMID: 34667263]
[10]
Baglietto-Vargas D, Shi J, Yaeger DM, Ager R, LaFerla FM. Diabetes and Alzheimer’s disease crosstalk. Neurosci Biobehav Rev 2016; 64: 272-87.
[http://dx.doi.org/10.1016/j.neubiorev.2016.03.005] [PMID: 26969101]
[11]
Battaglia S, Garofalo S, di Pellegrino G. Context-dependent extinction of threat memories: Influences of healthy aging. Sci Rep 2018; 8(1): 12592.
[http://dx.doi.org/10.1038/s41598-018-31000-9] [PMID: 30135561]
[12]
Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863(5): 1037-45.
[http://dx.doi.org/10.1016/j.bbadis.2016.04.017] [PMID: 27156888]
[13]
Battaglia S, Fabius JH, Moravkova K, Fracasso A, Borgomaneri S. The neurobiological correlates of gaze perception in healthy individuals and neurologic patients. Biomedicines 2022; 10(3): 627.
[http://dx.doi.org/10.3390/biomedicines10030627] [PMID: 35327431]
[14]
Battaglia S. Neurobiological advances of learned fear in humans. Adv Clin Exp Med 2022; 31(3): 217-21.
[http://dx.doi.org/10.17219/acem/146756] [PMID: 35195964]
[15]
Kandimalla R, Thirumala V, Reddy PH. Is Alzheimer’s disease a Type 3 Diabetes? A critical appraisal. Biochim Biophys Acta Mol Basis Dis 2017; 1863(5): 1078-89.
[http://dx.doi.org/10.1016/j.bbadis.2016.08.018] [PMID: 27567931]
[16]
Goedert M. Alzheimer’s and parkinson’s diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein. Science (80- ) 2015; 349(6248): 1255555.
[http://dx.doi.org/10.1126/science.1255555]
[17]
Bature F, Guinn BA, Pang D, Pappas Y. Signs and symptoms preceding the diagnosis of Alzheimer’s disease: A systematic scoping review of literature from 1937 to 2016. BMJ Open 2017; 7(8): e015746.
[http://dx.doi.org/10.1136/bmjopen-2016-015746] [PMID: 28851777]
[18]
Lanctôt KL, Amatniek J, Ancoli-Israel S, et al. Neuropsychiatric signs and symptoms of Alzheimer’s disease: New treatment paradigms. Alzheimers Dement (N Y) 2017; 3(3): 440-9.
[http://dx.doi.org/10.1016/j.trci.2017.07.001] [PMID: 29067350]
[19]
Gaugler J, James B, Johnson T, Scholz K, Weuve J. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 2016; 12(4): 459-509.
[http://dx.doi.org/10.1016/j.jalz.2016.03.001] [PMID: 27570871]
[20]
Mehta M, Adem A, Sabbagh M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int J Alzheimers Dis 2012; 2012: 728983.
[http://dx.doi.org/10.1155/2012/728983] [PMID: 22216416]
[21]
Hang T, Seelaar H, Melhem S, Rozemuller AJM, Van Swieten JC. Neurobiology of Aging Genetic Screening in Early-Onset Alzheimer’s Disease Identi Fi Ed Three Novel Presenilin Mutations. Neurobiol Aging 2019; 1: e1-1.e6.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.01.015]
[22]
Bhushan I, Kour M, Kour G, Gupta S, Sharma S, Yadav A. Annals of Biotechnology Alzheimer ’ s Disease: Causes & Treatment - A Review. Ann Biotechnol 2018; 1(1): 1002.
[http://dx.doi.org/10.33582/2637-4927/1002]
[23]
Casey DA, Antimisiaris D, O’Brien J. Drugs for Alzheimer’s disease: Are they effective? P&T 2010; 35(4): 208-11.
[PMID: 20498822]
[24]
Briggs R, Kennelly SP, O’neill D. Drug treatments in Alzheimer’s disease. Clin Med (Northfield Il) 2016; 16(3): 247-53.
[25]
Maneilly S. Graydon. Geriatric Diabetes - Google Books 2000.
[26]
Chaudhury A, Duvoor C, Reddy Dendi VS, et al. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front Endocrinol (Lausanne) 2017; 8: 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[27]
Ismail-Beigi F. Pathogenesis and glycemic management of type 2 diabetes mellitus: A physiological approach. Arch Iran Med 2012; 15(4): 239-46.
[http://dx.doi.org/10.012154/AIM.0014] [PMID: 22424044]
[28]
Stumvoll M, Goldstein BJ, Van Haeften TW. Pathogenesis of type 2 diabetes. Lancet 2005; 365: 1333-46.
[http://dx.doi.org/10.1016/S0140-6736(05)61032-X] [PMID: 15823385]
[29]
Baynest HW. Classification, Pathophysiology, Diagnosis and Management of Diabetes Mellitus. J Diabetes Metab 2015; 06: 5.
[http://dx.doi.org/10.4172/2155-6156.1000541]
[30]
Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB. Diabetes mellitus and Alzheimer’s disease: Shared pathology and treatment? Br J Clin Pharmacol 2011; 71(3): 365-76.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03830.x] [PMID: 21284695]
[31]
Götz J, Ittner LM, Lim YA. Common features between diabetes mellitus and Alzheimer’s disease. Cell Mol Life Sci 2009; 66(8): 1321-5.
[http://dx.doi.org/10.1007/s00018-009-9070-1] [PMID: 19266159]
[32]
Kodl CT, Seaquist ER. Cognitive dysfunction and diabetes mellitus. Endocr Rev 2008; 29(4): 494-511.
[http://dx.doi.org/10.1210/er.2007-0034] [PMID: 18436709]
[33]
Mittal K, Katare DP. Shared links between type 2 diabetes mellitus and Alzheimer’s disease: A review. Diabetes Metab Syndr 2016; 10(2) (Suppl. 1): S144-9.
[http://dx.doi.org/10.1016/j.dsx.2016.01.021] [PMID: 26907971]
[34]
Mander BA, Winer JR, Jagust WJ, Walker MP. Sleep: A novel mechanistic pathway, biomarker, and treatment target in the pathology of Alzheimer’s disease? Trends Neurosci 2016; 39(8): 552-66.
[http://dx.doi.org/10.1016/j.tins.2016.05.002] [PMID: 27325209]
[35]
Tumminia A, Vinciguerra F, Parisi M, Frittitta L. Type 2 Diabetes Mellitus and Alzheimer’s Disease: Role of insulin signalling and therapeutic implications. Int J Mol Sci 2018; 19(11): E3306.
[http://dx.doi.org/10.3390/ijms19113306] [PMID: 30355995]
[36]
Ribe EM, Lovestone S. Insulin signalling in Alzheimer’s disease and diabetes: From epidemiology to molecular links. J Intern Med 2016; 280(5): 430-42.
[http://dx.doi.org/10.1111/joim.12534] [PMID: 27739227]
[37]
Rad SK, Arya A, Karimian H, et al. Mechanism involved in insulin resistance via accumulation of β-amyloid and neurofibrillary tangles: Link between type 2 diabetes and Alzheimer’s disease. Drug Des Devel Ther 2018; 12: 3999-4021.
[http://dx.doi.org/10.2147/DDDT.S173970] [PMID: 30538427]
[38]
Umeno A, Biju V, Yoshida Y. In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as Alzheimer’s disease, Parkinson’s disease, and diabetes. Free Radic Res 2017; 51(4): 413-27.
[http://dx.doi.org/10.1080/10715762.2017.1315114] [PMID: 28372523]
[39]
Ahmad W, Ijaz B, Shabbiri K, Ahmed F, Rehman S. Oxidative toxicity in diabetes and Alzheimer’s disease: Mechanisms behind ROS/RNS generation. J Biomed Sci 2017; 24(1): 76.
[http://dx.doi.org/10.1186/s12929-017-0379-z] [PMID: 28927401]
[40]
Fiore V, De Rosa A, Falasca P, et al. Focus on the correlations between Alzheimer’s disease and type 2 diabetes. Endocr Metab Immune Disord Drug Targets 2019; 19(5): 571-9.
[http://dx.doi.org/10.2174/1871530319666190311141855] [PMID: 30854980]
[41]
Shinohara M, Sato N. Bidirectional interactions between diabetes and Alzheimer’s disease. Neurochem Int 2017; 108: 296-302.
[http://dx.doi.org/10.1016/j.neuint.2017.04.020] [PMID: 28551028]
[42]
Verdile G, Keane KN, Cruzat VF, et al. Inflammation and oxidative stress: The molecular connectivity between insulin resistance, obesity, and alzheimer’s disease. Mediators Inflamm 2015; 2015: 105828.
[http://dx.doi.org/10.1155/2015/105828] [PMID: 26693205]
[43]
Naderali EK, Ratcliffe SH, Dale MC. Obesity and Alzheimer’s disease: A link between body weight and cognitive function in old age. Am J Alzheimers Dis Other Demen 2009; 24(6): 445-9.
[http://dx.doi.org/10.1177/1533317509348208] [PMID: 19801534]
[44]
Messier C. Diabetes, Alzheimer’s disease and apolipoprotein genotype. Exp Gerontol 2003; 38(9): 941-6.
[http://dx.doi.org/10.1016/S0531-5565(03)00153-0] [PMID: 12954480]
[45]
Martins IJ, Hone E, Foster JK, et al. Cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer’s disease and cardiovascular disease. Mol Psychiatry 2006; 11(8): 721-36.
[http://dx.doi.org/10.1038/sj.mp.4001854] [PMID: 16786033]
[46]
Prasad K. AGE-RAGE stress: A changing landscape in pathology and treatment of Alzheimer’s disease. Mol Cell Biochem 2019; 459(1-2): 95-112.
[http://dx.doi.org/10.1007/s11010-019-03553-4] [PMID: 31079281]
[47]
Ramasamy R, Yan SF, Schmidt AM. Receptor for AGE (RAGE): Signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci 2011; 1243(1): 88-102.
[http://dx.doi.org/10.1111/j.1749-6632.2011.06320.x] [PMID: 22211895]
[48]
Tsalamandris S, Antonopoulos AS, Oikonomou E, et al. The role of inflammation in diabetes: Current concepts and future perspectives. Eur Cardiol 2019; 14(1): 50-9.
[http://dx.doi.org/10.15420/ecr.2018.33.1] [PMID: 31131037]
[49]
Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y) 2018; 4(1): 575-90.
[http://dx.doi.org/10.1016/j.trci.2018.06.014] [PMID: 30406177]
[50]
Salas IH, De Strooper B. Diabetes and Alzheimer’s Disease: A Link not as Simple as it Seems. Neurochem Res 2019; 44(6): 1271-8.
[http://dx.doi.org/10.1007/s11064-018-2690-9] [PMID: 30523576]
[51]
Yao Z, Liu B, Wang Y, Dong X. High cortisol and the risk of Alzheimer disease: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100(39): e27319.
[http://dx.doi.org/10.1097/MD.0000000000027319] [PMID: 34596132]
[52]
Ouanes S, Popp J. High cortisol and the risk of dementia and Alzheimer’s disease: A review of the literature. Front Aging Neurosci 2019; 11: 43.
[http://dx.doi.org/10.3389/fnagi.2019.00043] [PMID: 30881301]
[53]
Janicki SC, Schupf N. Hormonal influences on cognition and risk for Alzheimer’s disease. Curr Neurol Neurosci Rep 2010; 10(5): 359-66.
[http://dx.doi.org/10.1007/s11910-010-0122-6] [PMID: 20535591]
[54]
Cholerton B, Gleason CE, Baker LD, Asthana S. Estrogen and Alzheimer’s disease: The story so far. Drugs Aging 2002; 19(6): 405-27.
[http://dx.doi.org/10.2165/00002512-200219060-00002] [PMID: 12149049]
[55]
Silva MVF, Loures CMG, Alves LCV, de Souza LC, Borges KBG, Carvalho MDG. Alzheimer’s disease: Risk factors and potentially protective measures. J Biomed Sci 2019; 26(1): 33.
[http://dx.doi.org/10.1186/s12929-019-0524-y] [PMID: 31072403]
[56]
Littlejohns TJ, Henley WE, Lang IA, et al. Vitamin D and the risk of dementia and Alzheimer disease. Neurology 2014; 83(10): 920-8.
[http://dx.doi.org/10.1212/WNL.0000000000000755] [PMID: 25098535]
[57]
Zhang Y, Huang NQ, Yan F, et al. Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link. Behav Brain Res 2018; 339: 57-65.
[http://dx.doi.org/10.1016/j.bbr.2017.11.015] [PMID: 29158110]
[58]
Arancio O, Zhang HP, Chen X, et al. RAGE potentiates Abeta-induced perturbation of neuronal function in transgenic mice. EMBO J 2004; 23(20): 4096-105.
[http://dx.doi.org/10.1038/sj.emboj.7600415] [PMID: 15457210]
[59]
Ho L, Qin W, Pompl PN, et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J 2004; 18(7): 902-4.
[http://dx.doi.org/10.1096/fj.03-0978fje] [PMID: 15033922]
[60]
Li ZG, Zhang W, Sima AA. Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes 2007; 56(10): 1817.
[http://dx.doi.org/10.2337/db07-0171]
[61]
Liu LP, Hong H, Liao JM, et al. Upregulation of RAGE at the blood-brain barrier in streptozotocin-induced diabetic mice. Synapse 2009; 63(8): 636-42.
[http://dx.doi.org/10.1002/syn.20644] [PMID: 19347957]
[62]
Jolivalt CG, Lee CA, Beiswenger KK, et al. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: Parallels with Alzheimer’s disease and correction by insulin. J Neurosci Res 2008; 86(15): 3265-74.
[http://dx.doi.org/10.1002/jnr.21787] [PMID: 18627032]
[63]
Julien C, Tremblay C, Phivilay A, et al. High-fat diet aggravates amyloid-beta and tau pathologies in the 3xTg-AD mouse model. Neurobiol Aging 2010; 31(9): 1516-31.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.08.022] [PMID: 18926603]
[64]
Lane RF, Raines SM, Steele JW, et al. Diabetes-associated SorCS1 regulates Alzheimer’s amyloid-β metabolism: Evidence for involvement of SorL1 and the retromer complex. J Neurosci 2010; 30(39): 13110-5.
[http://dx.doi.org/10.1523/JNEUROSCI.3872-10.2010] [PMID: 20881129]
[65]
Devi L, Alldred MJ, Ginsberg SD, Ohno M. Mechanisms underlying insulin deficiency-induced acceleration of β-amyloidosis in a mouse model of Alzheimer’s disease. PLoS One 2012; 7(3): e32792.
[http://dx.doi.org/10.1371/journal.pone.0032792] [PMID: 22403710]
[66]
Leuner K, Schütt T, Kurz C, et al. Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation. Antioxid Redox Signal 2012; 16(12): 1421-33.
[http://dx.doi.org/10.1089/ars.2011.4173] [PMID: 22229260]
[67]
Kim C, Nam DW, Park SY, et al. O-linked β-N-acetylglucos-aminidase inhibitor attenuates β-amyloid plaque and rescues memory impairment. Neurobiol Aging 2013; 34(1): 275-85.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.03.001] [PMID: 22503002]
[68]
Wang X, Yu S, Hu JP, et al. Streptozotocin-induced diabetes increases amyloid plaque deposition in AD transgenic mice through modulating AGEs/RAGE/NF-κB pathway. Int J Neurosci 2014; 124(8): 601-8.
[http://dx.doi.org/10.3109/00207454.2013.866110] [PMID: 24228859]
[69]
Macauley SL, Stanley M, Caesar EE, et al. Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo. J Clin Invest 2015; 125(6): 2463-7.
[http://dx.doi.org/10.1172/JCI79742] [PMID: 25938784]
[70]
Buffie J. Clodfelder-Miller, Anna A. Zmijewska, Gail V.W. Johnson; Jope, R. S. Tau Is hyperphosphorylated at multiple sites in mouse. Diabetes 2006; 55(December): 3320-5.
[http://dx.doi.org/10.2337/db06-0485]
[71]
Planel E, Tatebayashi Y, Miyasaka T, et al. Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J Neurosci 2007; 27(50): 13635-48.
[http://dx.doi.org/10.1523/JNEUROSCI.3949-07.2007] [PMID: 18077675]
[72]
Yazi D. Ke, Delerue Fabien, Gladbach Amadeus, L.M.I. Experimental Diabetes Mellitus exacerbates tau pathology in a transgenic mouse model of Alzheimer’s disease. PLoS One 2009; 4(11): 1-7.
[http://dx.doi.org/10.1371/journal.pone.0007917]
[73]
Kim B, Backus C, Oh S, Hayes JM, Feldman EL. Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology 2009; 150(12): 5294-301.
[http://dx.doi.org/10.1210/en.2009-0695] [PMID: 19819959]
[74]
Qu Z, Jiao Z, Sun X, Zhao Y, Ren J, Xu G. Effects of streptozotocin-induced diabetes on tau phosphorylation in the rat brain. Brain Res 2011; 1383: 300-6.
[http://dx.doi.org/10.1016/j.brainres.2011.01.084] [PMID: 21281610]
[75]
Jung HJ, Kim YJ, Eggert S, Chung KC, Choi KS, Park SA. Age-dependent increases in tau phosphorylation in the brains of type 2 diabetic rats correlate with a reduced expression of p62. Exp Neurol 2013; 248: 441-50.
[http://dx.doi.org/10.1016/j.expneurol.2013.07.013] [PMID: 23906983]
[76]
Leboucher A, Laurent C, Fernandez-Gomez FJ, et al. Detrimental effects of diet-induced obesity on τ pathology are independent of insulin resistance in τ transgenic mice. Diabetes 2013; 62(5): 1681-8.
[http://dx.doi.org/10.2337/db12-0866] [PMID: 23250356]
[77]
Ma YQ, Wu DK, Liu JK. mTOR and tau phosphorylated proteins in the hippocampal tissue of rats with type 2 diabetes and Alzheimer’s disease. Mol Med Rep 2013; 7(2): 623-7.
[http://dx.doi.org/10.3892/mmr.2012.1186] [PMID: 23165862]
[78]
Abbondante S, Baglietto-Vargas D, Rodriguez-Ortiz CJ, Estrada-Hernandez T, Medeiros R, Laferla FM. Genetic ablation of tau mitigates cognitive impairment induced by type 1 diabetes. Am J Pathol 2014; 184(3): 819-26.
[http://dx.doi.org/10.1016/j.ajpath.2013.11.021] [PMID: 24412516]
[79]
Pallàs M, Verdaguer E, Tajes M, Gutierrez-Cuesta J, Camins A. Modulation of sirtuins: New targets for antiageing. Recent Patents CNS Drug Discov 2008; 3(1): 61-9.
[http://dx.doi.org/10.2174/157488908783421492] [PMID: 18221243]
[80]
Jęśko H, Wencel P, Strosznajder RP, Strosznajder JB. Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochem Res 2017; 42(3): 876-90.
[http://dx.doi.org/10.1007/s11064-016-2110-y] [PMID: 27882448]
[81]
J Martins I. Nutrition Therapy Regulates Caffeine Metabolism with Relevance to NAFLD and Induction of Type 3 Diabetes. Diabetes Metab Disord 2017; 4(1): 1-9.
[http://dx.doi.org/10.24966/DMD-201X/100019]
[82]
Martins IJ. de la BA. Diet and nutrition reverse type 3 diabetes and diseases. J Diabetes Res Ther 2016; 2(2): 1-6.
[83]
Martins IJ. Anti-Aging Genes Improve Appetite Regulation and Reverse Cell Senescence and Apoptosis in Global Populations. Adv Aging Res 2016; 05(01): 9-26.
[http://dx.doi.org/10.4236/aar.2016.51002]
[84]
Kitada M, Koya D. SIRT1 in Type 2 Diabetes: Mechanisms and therapeutic potential. Diabetes Metab J 2013; 37(5): 315-25.
[http://dx.doi.org/10.4093/dmj.2013.37.5.315] [PMID: 24199159]
[85]
Rizzi L, Roriz-Cruz M. Sirtuin 1 and Alzheimer’s disease: An up-to-date review. Neuropeptides 2018; 71: 54-60.
[http://dx.doi.org/10.1016/j.npep.2018.07.001] [PMID: 30007474]
[86]
Patrone C, Eriksson O, Lindholm D. Diabetes drugs and neurological disorders: New views and therapeutic possibilities. Lancet Diabetes Endocrinol 2014; 2(3): 256-62.
[http://dx.doi.org/10.1016/S2213-8587(13)70125-6] [PMID: 24622756]
[87]
Rizvi SMD, Shaikh S, Waseem SMA, et al. Role of anti-diabetic drugs as therapeutic agents in Alzheimer’s disease. EXCLI J 2015; 14: 684-96.
[http://dx.doi.org/10.17179/excli2015-252] [PMID: 27152105]
[88]
Femminella GD, Bencivenga L, Petraglia L, et al. Antidiabetic Drugs in Alzheimer’s Disease: Mechanisms of Action and Future Perspectives. J Diabetes Res 2017; 2017: 7420796.
[http://dx.doi.org/10.1155/2017/7420796] [PMID: 28656154]
[89]
Boccardi V, Murasecco I, Mecocci P. Diabetes drugs in the fight against Alzheimer’s disease. Ageing Res Rev 2019; 54: 100936.
[http://dx.doi.org/10.1016/j.arr.2019.100936] [PMID: 31330313]
[90]
Li R, Zhang Y, Rasool S, Geetha T, Babu JR. Effects and underlying mechanisms of bioactive compounds on type 2 diabetes mellitus and Alzheimer’s disease. Oxid Med Cell Longev 2019; 2019: 8165707.
[http://dx.doi.org/10.1155/2019/8165707] [PMID: 30800211]
[91]
Kellar D, Craft S. Brain insulin resistance in Alzheimer’s disease and related disorders: Mechanisms and therapeutic approaches. Lancet Neurol 2020; 19(9): 758-66.
[http://dx.doi.org/10.1016/S1474-4422(20)30231-3] [PMID: 32730766]
[92]
Morris JK, Burns JM. Insulin: An emerging treatment for Alzheimer’s disease dementia? Curr Neurol Neurosci Rep 2012; 12(5): 520-7.
[http://dx.doi.org/10.1007/s11910-012-0297-0] [PMID: 22791280]
[93]
Ferreira LSS, Fernandes CS, Vieira MNN, De Felice FG. Insulin resistance in Alzheimer’s disease. Front Neurosci 2018; 12(NOV): 830.
[http://dx.doi.org/10.3389/fnins.2018.00830] [PMID: 30542257]
[94]
Shingo AS, Kanabayashi T, Kito S, Murase T. Intracerebroventricular administration of an insulin analogue recovers STZ-induced cognitive decline in rats. Behav Brain Res 2013; 241(1): 105-11.
[http://dx.doi.org/10.1016/j.bbr.2012.12.005] [PMID: 23238038]
[95]
Benedict C, Hallschmid M, Schmitz K, et al. Intranasal insulin improves memory in humans: Superiority of insulin aspart. Neuropsychopharmacology 2007; 32(1): 239-43.
[http://dx.doi.org/10.1038/sj.npp.1301193] [PMID: 16936707]
[96]
Schilling TM, Ferreira de Sá DS, Westerhausen R, et al. Intranasal insulin increases regional cerebral blood flow in the insular cortex in men independently of cortisol manipulation. Hum Brain Mapp 2014; 35(5): 1944-56.
[http://dx.doi.org/10.1002/hbm.22304] [PMID: 23907764]
[97]
Campbell JM, Stephenson MD, de Courten B, Chapman I, Bellman SM, Aromataris E. Metformin use associated with reduced risk of dementia in patients with diabetes: A systematic review and meta-analysis. J Alzheimers Dis 2018; 65(4): 1225-36.
[http://dx.doi.org/10.3233/JAD-180263] [PMID: 30149446]
[98]
Koenig AM, Mechanic-Hamilton D, Xie SX, et al. Effects of the insulin sensitizer metformin in Alzheimer disease: Pilot data from a Randomized placebo-controlled crossover study. Alzheimer Dis Assoc Disord 2017; 31(2): 107-13.
[http://dx.doi.org/10.1097/WAD.0000000000000202] [PMID: 28538088]
[99]
Kickstein E, Krauss S, Thornhill P, et al. Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc Natl Acad Sci USA 2010; 107(50): 21830-5.
[http://dx.doi.org/10.1073/pnas.0912793107] [PMID: 21098287]
[100]
Li J, Deng J, Sheng W, Zuo Z. Metformin attenuates Alzheimer’s disease-like neuropathology in obese, leptin-resistant mice. Pharmacol Biochem Behav 2012; 101(4): 564-74.
[http://dx.doi.org/10.1016/j.pbb.2012.03.002] [PMID: 22425595]
[101]
Imfeld P, Bodmer M, Jick SS, Meier CR. Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: A population-based case-control study. J Am Geriatr Soc 2012; 60(5): 916-21.
[http://dx.doi.org/10.1111/j.1532-5415.2012.03916.x] [PMID: 22458300]
[102]
Moore EM, Mander AG, Ames D, et al. Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care 2013; 36(10): 2981-7.
[http://dx.doi.org/10.2337/dc13-0229] [PMID: 24009301]
[103]
Luchsinger JA, Perez T, Chang H, et al. Metformin in Amnestic Mild Cognitive Impairment: Results of a Pilot Randomized Placebo Controlled Clinical Trial. J Alzheimers Dis 2016; 51(2): 501-14.
[http://dx.doi.org/10.3233/JAD-150493] [PMID: 26890736]
[104]
Heneka MT, Reyes-Irisarri E, Hull M, P Kummer M. Impact and therapeutic potential of ppars in alzheimers disease. Curr Neuropharmacol 2011; 9(4): 643-50.
[http://dx.doi.org/10.2174/157015911798376325] [PMID: 22654722]
[105]
Khan MA, Alam Q, Haque A, et al. Current progress on peroxisome proliferator-activated receptor gamma agonist as an emerging therapeutic approach for the treatment of alzheimer’s disease: An update. Curr Neuropharmacol 2019; 17(3): 232-46.
[http://dx.doi.org/10.2174/1570159X16666180828100002] [PMID: 30152284]
[106]
Govindarajulu M, Pinky PD, Bloemer J, Ghanei N, Suppiramaniam V, Amin R. Signaling mechanisms of selective PPARγ modulators in Alzheimer’s disease. PPAR Res 2018; 2018: 2010675.
[http://dx.doi.org/10.1155/2018/2010675] [PMID: 30420872]
[107]
Kitamura Y, Shimohama S, Koike H, et al. Increased expression of cyclooxygenases and peroxisome proliferator-activated receptor-gamma in Alzheimer’s disease brains. Biochem Biophys Res Commun 1999; 254(3): 582-6.
[http://dx.doi.org/10.1006/bbrc.1998.9981] [PMID: 9920782]
[108]
Jiang Q, Heneka M, Landreth GE. The role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in Alzheimer’s disease: Therapeutic implications. CNS Drugs 2008; 22(1): 1-14.
[http://dx.doi.org/10.2165/00023210-200822010-00001] [PMID: 18072811]
[109]
Pancani T, Phelps JT, Searcy JL, et al. Distinct modulation of voltage-gated and ligand-gated Ca2+ currents by PPAR-gamma agonists in cultured hippocampal neurons. J Neurochem 2009; 109(6): 1800-11.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06107.x] [PMID: 19453298]
[110]
Watson GS, Cholerton BA, Reger MA, et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: A preliminary study. Am J Geriatr Psychiatry 2005; 13(11): 950-8.
[http://dx.doi.org/10.1176/appi.ajgp.13.11.950] [PMID: 16286438]
[111]
Orkaby AR, Cho K, Cormack J, Gagnon DR, Driver JA. Metformin vs sulfonylurea use and risk of dementia in US veterans aged ≥65 years with diabetes. Neurology 2017; 89(18): 1877-85.
[http://dx.doi.org/10.1212/WNL.0000000000004586] [PMID: 28954880]
[112]
Sebastião I, Candeias E, Santos MS, de Oliveira CR, Moreira PI, Duarte AI. Insulin as a Bridge between type 2 diabetes and Alzheimer disease - how anti-diabetics could be a solution for dementia. Front Endocrinol (Lausanne) 2014; 5: 110.
[http://dx.doi.org/10.3389/fendo.2014.00110] [PMID: 25071725]
[113]
Weinstein G, Davis-Plourde KL, Conner S, et al. Association of metformin, sulfonylurea and insulin use with brain structure and function and risk of dementia and Alzheimer’s disease: Pooled analysis from 5 cohorts. PLoS One 2019; 14(2): e0212293.
[http://dx.doi.org/10.1371/journal.pone.0212293] [PMID: 30768625]
[114]
Baruah P, Das A, Paul D, Chakrabarty S, Aguan K, Mitra S. Sulfonylurea class of antidiabetic drugs inhibit acetylcholinesterase activity: Unexplored auxiliary pharmacological benefit toward alzheimer’s disease. ACS Pharmacol Transl Sci 2021; 4(1): 193-205.
[http://dx.doi.org/10.1021/acsptsci.0c00168] [PMID: 33615172]
[115]
Grieco M, Giorgi A, Gentile MC, et al. Glucagon-like peptide-1: A focus on neurodegenerative diseases. Front Neurosci 2019; 13: 1112.
[http://dx.doi.org/10.3389/fnins.2019.01112] [PMID: 31680842]
[116]
Gejl M, Gjedde A, Egefjord L, et al. In Alzheimer’s disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: Randomized, placebo-controlled, double-blind clinical trial. Front Aging Neurosci 2016; 8: 108.
[http://dx.doi.org/10.3389/fnagi.2016.00108] [PMID: 27252647]
[117]
Yildirim Simsir I, Soyaltin UE, Cetinkalp S. Glucagon like peptide-1 (GLP-1) likes Alzheimer’s disease. Diabetes Metab Syndr 2018; 12(3): 469-75.
[http://dx.doi.org/10.1016/j.dsx.2018.03.002] [PMID: 29598932]
[118]
Calsolaro V, Edison P. Novel GLP-1 (Glucagon-Like Peptide-1) analogues and insulin in the treatment for Alzheimer’s disease and other neurodegenerative diseases. CNS Drugs 2015; 29(12): 1023-39.
[http://dx.doi.org/10.1007/s40263-015-0301-8] [PMID: 26666230]
[119]
Hölscher C. Central effects of GLP-1: New opportunities for treatments of neurodegenerative diseases. J Endocrinol 2014; 221(1): T31-41.
[http://dx.doi.org/10.1530/JOE-13-0221] [PMID: 23999914]
[120]
McClean PL, Parthsarathy V, Faivre E, Hölscher C. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J Neurosci 2011; 31(17): 6587-94.
[http://dx.doi.org/10.1523/JNEUROSCI.0529-11.2011] [PMID: 21525299]
[121]
Esterline R, Oscarsson J, Burns J. A Role for Sodium Glucose Cotransporter 2 Inhibitors (SGLT2is) in the Treatment of Alzheimer’s Disease? Int Rev Neurobiol 2020; 155: 113-40.
[http://dx.doi.org/10.1016/bs.irn.2020.03.018]
[122]
Das S. K R A, Birangal SR, et al. Role of comorbidities like diabetes on severe acute respiratory syndrome coronavirus-2: A review. Life Sci 2020; 258: 118202.
[http://dx.doi.org/10.1016/j.lfs.2020.118202] [PMID: 32758625]
[123]
Manoj A, Das S, Kunnath Ramachandran A, Alex AT, Joseph A. SGLT2 inhibitors, an accomplished development in field of medicinal chemistry: An extensive review. Future Med Chem 2020; 12(21): 1961-90.
[http://dx.doi.org/10.4155/fmc-2020-0154] [PMID: 33124462]
[124]
Wiciński M, Wódkiewicz E, Górski K, Walczak M, Malinowski B. Perspective of SGLT2 inhibition in treatment of conditions connected to neuronal loss: Focus on Alzheimer’s disease and ischemia-related brain injury. Pharmaceuticals (Basel) 2020; 13(11): E379.
[http://dx.doi.org/10.3390/ph13110379] [PMID: 33187206]
[125]
Elosta A, Ghous T, Ahmed N. Natural products as anti-glycation agents: Possible therapeutic potential for diabetic complications. Curr Diabetes Rev 2012; 8(2): 92-108.
[http://dx.doi.org/10.2174/157339912799424528] [PMID: 22268395]
[126]
Lam KS. New aspects of natural products in drug discovery. Trends Microbiol 2007; 15(6): 279-89.
[http://dx.doi.org/10.1016/j.tim.2007.04.001] [PMID: 17433686]
[127]
Parsons CG. CNS repurposing - Potential new uses for old drugs: Examples of screens for Alzheimer’s disease, Parkinson’s disease and spasticity. Neuropharmacology 2019; 147: 4-10.
[http://dx.doi.org/10.1016/j.neuropharm.2018.08.027] [PMID: 30165077]
[128]
Shoaib M, Kamal MA, Rizvi SMD. Repurposed drugs as potential therapeutic candidates for the management of Alzheimer’s disease. Curr Drug Metab 2017; 18(9): 842-52.
[http://dx.doi.org/10.2174/1389200218666170607101622] [PMID: 28595531]
[129]
Siavelis JC, Bourdakou MM, Athanasiadis EI, Spyrou GM, Nikita KS. Bioinformatics methods in drug repurposing for Alzheimer’s disease. Brief Bioinform 2016; 17(2): 322-35.
[http://dx.doi.org/10.1093/bib/bbv048] [PMID: 26197808]
[130]
Kumar S, Chowdhury S, Kumar S. In silico repurposing of antipsychotic drugs for Alzheimer’s disease. BMC Neurosci 2017; 18(1): 76.
[http://dx.doi.org/10.1186/s12868-017-0394-8] [PMID: 29078760]
[131]
Paranjpe MD, Taubes A, Sirota M. Insights into computational drug repurposing for neurodegenerative disease. Trends Pharmacol Sci 2019; 40(8): 565-76.
[http://dx.doi.org/10.1016/j.tips.2019.06.003] [PMID: 31326236]
[132]
Vickers NJ. Animal Communication: When I’m Calling You, Will You Answer Too? Curr Biol 2017; 27(14): R713-5.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[133]
Karthik L, Kumar G, Keswani T, Bhattacharyya A, Chandar SS, Bhaskara Rao KV. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS One 2014; 9(3): e90972.
[http://dx.doi.org/10.1371/journal.pone.0090972] [PMID: 24618707]
[134]
Fang J, Pieper AA, Nussinov R, et al. Harnessing endophenotypes and network medicine for Alzheimer’s drug repurposing. Med Res Rev 2020; 40(6): 2386-426.
[http://dx.doi.org/10.1002/med.21709] [PMID: 32656864]
[135]
Bendlin B B. Dialogues in clinical neuroscience antidiabetic therapies and Alzheimer disease antidiabetic therapies and Alzheimer disease. Dialogues Clin Neurosci 2022; 2019
[136]
Baraka A, ElGhotny S. Study of the effect of inhibiting galanin in Alzheimer’s disease induced in rats. Eur J Pharmacol 2010; 641(2-3): 123-7.
[http://dx.doi.org/10.1016/j.ejphar.2010.05.030] [PMID: 20639139]
[137]
Umegaki H. Therapeutic potential of antidiabetic medications in the treatment of cognitive dysfunction and dementia. Drugs Aging 2016; 33(6): 399-409.
[http://dx.doi.org/10.1007/s40266-016-0375-0] [PMID: 27138956]
[138]
Meta-analysis N, Cao B, Cao B, et al. Comparative efficacy and acceptability of anti-diabetic agents for alzheimer ’ s disease and mild cognitive impairment: A systematic review comparative efficacy and acceptability of antidiabetic agents for alzheimer ’ s disease and mild cognitive impairm. Diabetes Obes Metab 2018; 2018: 13373.
[http://dx.doi.org/10.1111/dom.13373]
[139]
Ng TP, Feng L, Yap KB, Lee TS, Tan CH, Winblad B. Long-term metformin usage and cognitive function among older adults with diabetes. J Alzheimers Dis 2014; 41(1): 61-8.
[http://dx.doi.org/10.3233/JAD-131901] [PMID: 24577463]
[140]
Becker RHA, Frick AD. Clinical pharmacokinetics and pharmacodynamics of insulin glulisine. Clin Pharmacokinet 2008; 47(1): 7-20.
[http://dx.doi.org/10.2165/00003088-200847010-00002] [PMID: 18076215]
[141]
Mustapic M, Tran J, Craft S, Kapogiannis D. Extracellular vesicle biomarkers track cognitive changes following intranasal insulin in Alzheimer’s disease. J Alzheimers Dis 2019; 69(2): 489-98.
[http://dx.doi.org/10.3233/JAD-180578] [PMID: 30958348]
[142]
Manandhar S, Priya K, Mehta CH, Nayak UY, Kabekkodu SP, Pai KSR. Repositioning of antidiabetic drugs for Alzheimer’s disease: Possibility of Wnt signaling modulation by targeting LRP6 an in silico based study. J Biomol Struct Dyn 2021; 2021: 1930583.
[http://dx.doi.org/10.1080/07391102.2021.1930583] [PMID: 34080526]
[143]
Yuriev E, Kong DCM, Iskander MN. Investigation of structure-activity relationships in a series of glibenclamide analogues. Eur J Med Chem 2004; 39(10): 835-47.
[http://dx.doi.org/10.1016/j.ejmech.2004.06.004] [PMID: 15464617]
[144]
Esmaeili MH, Enayati M, Khabbaz AF, Ebrahimian F, Salari AA. Glibenclamide mitigates cognitive impairment and hippocampal neuroinflammation in rats with type 2 diabetes and sporadic Alzheimer-like disease. Behav Brain Res 2020; 379: 112359.
[http://dx.doi.org/10.1016/j.bbr.2019.112359] [PMID: 31733313]
[145]
Xie H, Zeng S, He Y, et al. Rapid generation of a novel DPP-4 inhibitor with long-acting properties: SAR study and PK/PD evaluation. Eur J Med Chem 2017; 141: 519-29.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.029] [PMID: 29078995]
[146]
Bauzon J, Lee G, Cummings J. Repurposed agents in the Alzheimer’s disease drug development pipeline. Alzheimers Res Ther 2020; 12(1): 98.
[http://dx.doi.org/10.1186/s13195-020-00662-x] [PMID: 32807237]
[147]
Toyota Y, Nomura S, Makishima M, Hashimoto Y, Ishikawa M. Structure-activity relationships of rosiglitazone for peroxisome proliferator-activated receptor gamma transrepression. Bioorg Med Chem Lett 2017; 27(12): 2776-80.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.061] [PMID: 28465099]
[148]
Momose Y, Meguro K, Ikeda H, Hatanaka C, Oi S, Sohda T. Studies on antidiabetic agents. X. Synthesis and biological activities of pioglitazone and related compounds. Chem Pharm Bull (Tokyo) 1991; 39(6): 1440-5.
[http://dx.doi.org/10.1248/cpb.39.1440] [PMID: 1934164]
[149]
Abbas SY, Basyouni WM, El-Bayouki KAM, Abdel-Rahman RF. Synthesis and evaluation of 1-substituted-biguanide derivatives as anti-diabetic agents for type II diabetes insulin resistant. Drug Res (Stuttg) 2016; 66(7): 377-83.
[http://dx.doi.org/10.1055/s-0042-107349] [PMID: 27191826]
[150]
Chadha N, Silakari O. Identification of low micromolar dual inhibitors for aldose reductase (ALR2) and poly (ADP-ribose) polymerase (PARP-1) using structure based design approach. Bioorg Med Chem Lett 2017; 27(11): 2324-30.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.038] [PMID: 28438542]
[151]
Chen ZH, Wang RW, Qing FL. Synthesis and Biological Evaluation of SGLT2 Inhibitors: Gem-Difluoromethylenated Dapagliflozin Analogs. Tetrahedron Lett 2012; 53(17): 2171-6.
[http://dx.doi.org/10.1016/j.tetlet.2012.02.062]
[152]
Haider K, Pathak A, Rohilla A, Haider MR, Ahmad K, Yar MS. Synthetic strategy and SAR studies of C-glucoside heteroaryls as SGLT2 inhibitor. A review 2019; 111773.
[http://dx.doi.org/10.1016/j.ejmech.2019.111773]
[153]
Kim D, Kowalchick JE, Edmondson SD, et al. Triazolopiperazine-amides as dipeptidyl peptidase IV inhibitors: Close analogs of JANUVIA (sitagliptin phosphate). Bioorg Med Chem Lett 2007; 17(12): 3373-7.
[http://dx.doi.org/10.1016/j.bmcl.2007.03.098] [PMID: 17434732]
[154]
Bomfim TR, Forny-Germano L, Sathler LB, et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Aβ oligomers. J Clin Invest 2012; 122(4): 1339-53.
[http://dx.doi.org/10.1172/JCI57256] [PMID: 22476196]
[155]
Long-Smith CM, Manning S, McClean PL, et al. The diabetes drug liraglutide ameliorates aberrant insulin receptor localisation and signalling in parallel with decreasing both amyloid-β plaque and glial pathology in a mouse model of Alzheimer’s disease. Neuromolecular Med 2013; 15(1): 102-14.
[http://dx.doi.org/10.1007/s12017-012-8199-5] [PMID: 23011726]
[156]
Gao C, Liu Y, Jiang Y, Ding J, Li L. Geniposide ameliorates learning memory deficits, reduces tau phosphorylation and decreases apoptosis via GSK3β pathway in streptozotocin-induced alzheimer rat model. Brain Pathol 2014; 24(3): 261-9.
[http://dx.doi.org/10.1111/bpa.12116] [PMID: 24329968]
[157]
Kosaraju J, Murthy V, Khatwal RB, et al. Vildagliptin: An anti-diabetes agent ameliorates cognitive deficits and pathology observed in streptozotocin-induced Alzheimer’s disease. J Pharm Pharmacol 2013; 65(12): 1773-84.
[http://dx.doi.org/10.1111/jphp.12148] [PMID: 24117480]
[158]
McClean P L, Hölscher C. Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of alzheimer’s disease. Neuropharmacology 2014; 76(PART A): 57-67.
[http://dx.doi.org/10.1016/j.neuropharm.2013.08.005]
[159]
Parthsarathy V, Hölscher C. Chronic treatment with the GLP1 analogue liraglutide increases cell proliferation and differentiation into neurons in an AD mouse model. PLoS One 2013; 8(3): e58784.
[http://dx.doi.org/10.1371/journal.pone.0058784] [PMID: 23536825]
[160]
Kosaraju J, Gali CC, Khatwal RB, et al. Saxagliptin: A dipeptidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer’s disease. Neuropharmacology 2013; 72: 291-300.
[http://dx.doi.org/10.1016/j.neuropharm.2013.04.008] [PMID: 23603201]
[161]
Ghanim H, Dandona P. Insulin reverses the high-fat diet-induced increase in brain ab and improves memory in an animal model of Alzheimer disease. Diabetes 2014; 63:4291-4301. Diabetes 2015; 64(7): e17.
[http://dx.doi.org/10.2337/db15-0267] [PMID: 26106201]
[162]
Chen J, Li S, Sun W, Li J. Anti-diabetes drug pioglitazone ameliorates synaptic defects in AD transgenic mice by inhibiting cyclin-dependent kinase5 activity. PLoS One 2015; 10(4): e0123864.
[http://dx.doi.org/10.1371/journal.pone.0123864] [PMID: 25875370]
[163]
Hansen HH, Fabricius K, Barkholt P, et al. The GLP-1 receptor agonist liraglutide improves memory function and increases hippocampal CA1 neuronal numbers in a senescence-accelerated mouse model of Alzheimer’s Disease. J Alzheimers Dis 2015; 46(4): 877-88.
[http://dx.doi.org/10.3233/JAD-143090] [PMID: 25869785]
[164]
McClean PL, Hölscher C. Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer’s disease. Neuropharmacology 2014; 86: 241-58.
[http://dx.doi.org/10.1016/j.neuropharm.2014.07.015] [PMID: 25107586]
[165]
Ott A, Stolk RP, van Harskamp F, Pols HAP, Hofman A, Breteler MMB. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 1999; 53(9): 1937-42.
[http://dx.doi.org/10.1212/WNL.53.9.1937] [PMID: 10599761]
[166]
MacKnight C, Rockwood K, Awalt E, McDowell I. Diabetes mellitus and the risk of dementia, Alzheimer’s disease and vascular cognitive aging. Dement Geriatr Cogn Disord 2002; 1: 77-83.
[http://dx.doi.org/10.1159/000064928] [PMID: 12145454]
[167]
Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol 2004; 61(5): 661-6.
[http://dx.doi.org/10.1001/archneur.61.5.661] [PMID: 15148141]
[168]
Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 2004; 53(2): 474-81.
[http://dx.doi.org/10.2337/diabetes.53.2.474] [PMID: 14747300]
[169]
Risner ME, Saunders AM, Altman JFB, et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J 2006; 6(4): 246-54.
[http://dx.doi.org/10.1038/sj.tpj.6500369] [PMID: 16446752]
[170]
Valente T, Gella A, Fernàndez-Busquets X, Unzeta M, Durany N. Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer’s disease and diabetes mellitus. Neurobiol Dis 2010; 37(1): 67-76.
[http://dx.doi.org/10.1016/j.nbd.2009.09.008] [PMID: 19778613]
[171]
Hsu CC, Wahlqvist ML, Lee MS, Tsai HN. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J Alzheimers Dis 2011; 24(3): 485-93.
[http://dx.doi.org/10.3233/JAD-2011-101524] [PMID: 21297276]
[172]
Craft S, Baker LD, Montine TJ, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: A pilot clinical trial. Arch Neurol 2012; 69(1): 29-38.
[http://dx.doi.org/10.1001/archneurol.2011.233] [PMID: 21911655]
[173]
Talbot K, Wang H-Y, Kazi H, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 2012; 122(4): 1316-38.
[http://dx.doi.org/10.1172/JCI59903] [PMID: 22476197]
[174]
Wahlqvist ML, Lee MS, Chuang SY, et al. Increased risk of affective disorders in type 2 diabetes is minimized by sulfonylurea and metformin combination: A population-based cohort study. BMC Med 2012; 10: 150.
[http://dx.doi.org/10.1186/1741-7015-10-150] [PMID: 23194378]
[175]
Crane PK, Walker R, Hubbard RA, et al. Glucose levels and risk of dementia. N Engl J Med 2013; 369(6): 540-8.
[http://dx.doi.org/10.1056/NEJMoa1215740] [PMID: 23924004]
[176]
Fonteh AN, Cipolla M, Chiang J, Arakaki X, Harrington MG. Human cerebrospinal fluid fatty acid levels differ between supernatant fluid and brain-derived nanoparticle fractions, and are altered in Alzheimer’s disease. PLoS One 2014; 9(6): e100519.
[http://dx.doi.org/10.1371/journal.pone.0100519] [PMID: 24956173]
[177]
Morris JK, Vidoni ED, Honea RA, Burns JM. Impaired glycemia increases disease progression in mild cognitive impairment. Neurobiol Aging 2014; 35(3): 585-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.09.033] [PMID: 24411018]
[178]
Spekker E, Tanaka M, Szabó Á, Vécsei L. Neurogenic inflammation: The participant in migraine and recent advancements in translational research. Biomedicines 2021; 10(1): 76.
[http://dx.doi.org/10.3390/biomedicines10010076] [PMID: 35052756]
[179]
Tanaka M, Vécsei L. Editorial of Special Issue “Crosstalk between Depression, Anxiety, and Dementia: Comorbidity in Behavioral Neurology and Neuropsychiatry”. Biomedicines 2021; 9(5): 10-2.
[http://dx.doi.org/10.3390/biomedicines9050517] [PMID: 34066395]
[180]
Borgomaneri S, Battaglia S, Avenanti A, Pellegrino GD. Don’t Hurt Me No More: State-dependent Transcranial Magnetic Stimulation for the treatment of specific phobia. J Affect Disord 2021; 286: 78-9.
[http://dx.doi.org/10.1016/j.jad.2021.02.076] [PMID: 33714173]
[181]
Borgomaneri S, Battaglia S, Sciamanna G, Tortora F, Laricchiuta D. Memories are not written in stone: Re-writing fear memories by means of non-invasive brain stimulation and optogenetic manipulations. Neurosci Biobehav Rev 2021; 127: 334-52.
[http://dx.doi.org/10.1016/j.neubiorev.2021.04.036] [PMID: 33964307]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy