Generic placeholder image

Current Alternative Energy

Editor-in-Chief

ISSN (Print): 2405-4631
ISSN (Online): 2405-464X

Perspective

Performance Metrics to Compare Various CO2 Reduction Processes

Author(s): Katherine Lochhead, Guenevere O’Hara and Dongfang Yang*

Volume 5, Issue 1, 2022

Published on: 06 September, 2022

Article ID: e290622206485 Pages: 6

DOI: 10.2174/2405463105666220629115030

Abstract

In response to the increasing concentration of anthropogenic CO2 in the atmosphere, large research efforts have been placed on the development of suitable carbon capture and utilization technology. The transformation of CO2 into value-added chemicals is one of the most promising routes for carbon utilization and can be accomplished by thermocatalytic, photocatalytic, electrochemical, and photoelectrochemical methods. The advancement of this technology towards a commercial solution requires a synergistic approach, wherein members of the research community are continuously evaluating the comparative performance of each method and adapting their research directions in response. As a result, the establishment of a universal metric for reporting the performance of thermocatalytic, photocatalytic, electrochemical, and photoelectrochemical CO2 reduction processes is critical. This work summarizes the advantages and disadvantages associated with each CO2 reduction method and identifies their most frequently used performance metrics. Subsequently, a new performance metric, which applies to all CO2 reduction technologies, is introduced and defined as the moles formed of the desired product per hour per accessible surface area of catalyst. Although limitations with ease of measurement exist, this work aims to demonstrate how the adoption of a universal performance metric could help to unite the research community towards a common goal and improve its efficiency in finding a solution to the global energy crisis.

Keywords: CO2 reduction, photocatalysis, thermocatalysis, electrocatalysis, photoelectrocatalysis, production rate, solar-to-fuel efficiency.

[1]
[2]
Appel, A.M.; Bercaw, J.E.; Bocarsly, A.B.; Dobbek, H.; DuBois, D.L.; Dupuis, M.; Ferry, J.G.; Fujita, E.; Hille, R.; Kenis, P.J.A.; Kerfeld, C.A.; Morris, R.H.; Peden, C.H.; Portis, A.R.; Ragsdale, S.W.; Rauchfuss, T.B.; Reek, J.N.; Seefeldt, L.C.; Thauer, R.K.; Waldrop, G.L. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev., 2013, 113(8), 6621-6658.
[http://dx.doi.org/10.1021/cr300463y] [PMID: 23767781]
[3]
Kattel, S.; Liu, P.; Chen, J.G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc., 2017, 139(29), 9739-9754.
[http://dx.doi.org/10.1021/jacs.7b05362] [PMID: 28650651]
[4]
Porosoff, M.D.; Yan, B.; Chen, J.G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities. Energy Environ. Sci., 2016, 9(1), 62-73.
[http://dx.doi.org/10.1039/C5EE02657A]
[5]
Daza, Y.A.; Kuhn, J.N. CO2 Conversion by reverse water gas shift catalysis: Comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels. RSC Advances, 2016, 6(55), 49675-49691.
[http://dx.doi.org/10.1039/C6RA05414E]
[6]
Chen, C-S.; Cheng, W-H.; Lin, S-S. Study of reverse water gas shift reaction by TPD, TPR and CO2 hydrogenation over potassium-promoted Cu/SiO2 catalyst. Appl. Catal. A Gen., 2003, 238(1), 55-67.
[http://dx.doi.org/10.1016/S0926-860X(02)00221-1]
[7]
Wang, X.; Shi, H.; Kwak, J.H.; Szanyi, J. Mechanism of CO2 hydrogenation on Pd/Al2O3 catalysts: Kinetics and transient DRIFTS-MS studies. ACS Catal., 2015, 5(11), 6337-6349.
[http://dx.doi.org/10.1021/acscatal.5b01464]
[8]
Chen, C.; Cheng, W.; Lin, S. Mechanism of CO formation in reverse water-gas shift reaction over Cu/Al2O3 catalyst. Catal. Lett., 2000, 68(1/2), 45-48.
[http://dx.doi.org/10.1023/A:1019071117449]
[9]
Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. Engl., 2013, 52(29), 7372-7408.
[http://dx.doi.org/10.1002/anie.201207199] [PMID: 23765842]
[10]
Windle, C.D.; Perutz, R.N. Advances in molecular photocatalytic and electrocatalytic CO2 reduction. Coord. Chem. Rev., 2012, 256(21-22), 2562-2570.
[http://dx.doi.org/10.1016/j.ccr.2012.03.010]
[11]
Nitopi, S.; Bertheussen, E.; Scott, S.B.; Liu, X.; Engstfeld, A.K.; Horch, S.; Seger, B.; Stephens, I.E.L.; Chan, K.; Hahn, C.; Nørskov, J.K.; Jaramillo, T.F.; Chorkendorff, I. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev., 2019, 119(12), 7610-7672.
[http://dx.doi.org/10.1021/acs.chemrev.8b00705] [PMID: 31117420]
[12]
Lee, M-Y.; Park, K.T.; Lee, W.; Lim, H.; Kwon, Y.; Kang, S. Current achievements and the future direction of electrochemical CO2 reduction: A short review. Crit. Rev. Environ. Sci. Technol., 2020, 50(8), 769-815.
[http://dx.doi.org/10.1080/10643389.2019.1631991]
[13]
Chang, X.; Wang, T.; Gong, J. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci., 2016, 9(7), 2177-2196.
[http://dx.doi.org/10.1039/C6EE00383D]
[14]
Hori, Y. Modern Aspects of Electrochemistry: Electrochemical CO2 Reduction on Metal Electrodes Springer: Berlin, Heidelberg, 2008; 42, pp. 89-189.
[15]
Gattrell, M.; Gupta, N.; Co, A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. (Lausanne), 2006, 594(1), 1-19.
[http://dx.doi.org/10.1016/j.jelechem.2006.05.013]
[16]
Gamler, J.T.L.; Ashberry, H.M.; Skrabalak, S.E.; Koczkur, K.M. Random alloyed versus intermetallic nanoparticles: A comparison of electrocatalytic performance. Adv. Mater., 2018, 30(40), e1801563.
[http://dx.doi.org/10.1002/adma.201801563] [PMID: 29984851]
[17]
Raciti, D.; Wang, C. Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett., 2018, 3(7), 1545-1556.
[http://dx.doi.org/10.1021/acsenergylett.8b00553]
[18]
Jhong, H.R.M.; Ma, S.; Kenis, P.J.A. Electrochemical conversion of CO2 to useful chemicals: Current status, remaining challenges, and future opportunities. Curr. Opin. Chem. Eng., 2013, 2(2), 191-199.
[http://dx.doi.org/10.1016/j.coche.2013.03.005]
[19]
Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev., 2014, 43(2), 631-675.
[http://dx.doi.org/10.1039/C3CS60323G] [PMID: 24186433]
[20]
Kortlever, R.; Shen, J.; Schouten, K.J.P.; Calle-Vallejo, F.; Koper, M.T.M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett., 2015, 6(20), 4073-4082.
[http://dx.doi.org/10.1021/acs.jpclett.5b01559] [PMID: 26722779]
[21]
Zhao, G.; Zou, J.; Chen, X.; Yu, J.; Jiao, F. Layered double hydroxides materials for Photo(electro-) catalytic applications. Chem. Eng. J., 2020, 397, 125407.
[http://dx.doi.org/10.1016/j.cej.2020.125407]
[22]
Gu, J.; Zhao, X.; Sun, Y.; Zhou, J.; Sun, C.; Wang, X.; Kang, Z.; Su, Z. A photo-activated process cascaded electrocatalysis for the highly efficient CO2 reduction over a core shell ZIF-8@Co/C. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(32), 16616-16623.
[http://dx.doi.org/10.1039/D0TA04595K]
[23]
Shen, H.; Peppel, T.; Strunk, J.; Sun, Z. Photocatalytic reduction of CO2 by Metal free based materials: Recent advances and future perspective. Sol. RRL, 2020, 4(8), 1900546.
[http://dx.doi.org/10.1002/solr.201900546]
[24]
Sultana, S.; Chandra Sahoo, P.; Martha, S.; Parida, K. A review of harvesting clean fuels from enzymatic CO2 reduction. RSC Advances, 2016, 6(50), 44170-44194.
[http://dx.doi.org/10.1039/C6RA05472B]
[25]
de Morais, M.G.; de Morais, E.G.; Duarte, J.H.; Deamici, K.M.; Mitchell, B.G.; Costa, J.A.V. Biological CO2 mitigation by microalgae: Technological trends, future prospects and challenges. World J. Microbiol. Biotechnol., 2019, 35(5), 78.
[http://dx.doi.org/10.1007/s11274-019-2650-9] [PMID: 31087167]
[26]
Zeng, X.H.; Danquah, M.K.; Chen, X.D.; Lu, Y.H. Microalgae bioengineering: from CO2 fixation to biofuel production. Renew. Sustain. Energy Rev., 2011, 15(6), 3252-3260.
[http://dx.doi.org/10.1016/j.rser.2011.04.014]
[27]
Shi, R.; Waterhouse, G.; Zhang, T. Recent progress in photocatalytic CO2 reduction over perovskite oxides. Sol. RRL, 2017, 1(11), 1700126.
[28]
Agrafiotis, C.; Roeb, M.; Sattler, C. A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew. Sustain. Energy Rev., 2015, 42, 254-285.
[http://dx.doi.org/10.1016/j.rser.2014.09.039]
[29]
Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater., 2016, 16(1), 16-22.
[http://dx.doi.org/10.1038/nmat4834] [PMID: 27994253]
[30]
Chang, X.; Wang, T.; Yang, P.; Zhang, G.; Gong, J. The development of cocatalysts for photoelectrochemical CO2 reduction. Adv. Mater., 2019, 31(31), e1804710.
[http://dx.doi.org/10.1002/adma.201804710] [PMID: 30537099]
[31]
Ola, O.; Maroto-Valer, M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. Photochem. Rev., 2015, 24, 16-42.
[http://dx.doi.org/10.1016/j.jphotochemrev.2015.06.001]
[32]
Ross, M.B.; De Luna, P.; Li, Y.; Dinh, C-T.; Kim, D.; Yang, P.; Sargent, E.H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal., 2019, 2(8), 648-658.
[http://dx.doi.org/10.1038/s41929-019-0306-7]
[33]
Long, C.; Li, X.; Guo, J.; Shi, Y.; Liu, S.; Tang, Z. Electrochemical reduction of CO2 over heterogeneous catalysts in aqueous solution: Recent progress and perspectives. Small Methods, 2018, 3(3), 1800369.
[http://dx.doi.org/10.1002/smtd.201800369]
[34]
Kim, B.; Ma, S.; Molly Jhong, H-R.; Kenis, P.J.A. Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer. Electrochim. Acta, 2015, 166, 271-276.
[http://dx.doi.org/10.1016/j.electacta.2015.03.064]
[35]
Pawar, A.U.; Kim, C.W.; Nguyen-Le, M.; Kang, Y.S. General review on the components and parameters of photoelectrochemical system for CO2 reduction with in situ analysis. ACS Sustain. Chem.& Eng., 2019, 7(8), 7431-7455.
[http://dx.doi.org/10.1021/acssuschemeng.8b06303]
[36]
Xie, S.; Zhang, Q.; Liu, G.; Wang, Y. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem. Commun. (Camb.), 2016, 52(1), 35-59.
[http://dx.doi.org/10.1039/C5CC07613G] [PMID: 26540265]
[37]
Centi, G.; Perthoner, S.; Salladini, A.; Iaquaniello, G. Economics of CO2 utilization: A critical review. Front. Energy Res., 2020, 8, 567986.
[http://dx.doi.org/10.3389/fenrg.2020.567986]
[38]
BET Theory. ANTON Paar., Available from: https://wiki.anton-paar.com/en/bet-theory/
[39]
Zhu, P.; Zhao, Y. Cyclic voltammetry measurements of electroactive surface areas of porous nickel: Peak current and peak charge methods and diffusion layer effect. Mater. Chem. Phys., 2019, 233, 60-67.
[http://dx.doi.org/10.1016/j.matchemphys.2019.05.034]
[40]
Mojet, B.L.; Ebbesen, S.D.; Lefferts, L. Light at the interface: The potential of attenuated total reflection infrared spectroscopy for understanding heterogeneous catalysis in water. Chem. Soc. Rev., 2010, 39(12), 4643-4655.
[http://dx.doi.org/10.1039/c0cs00014k] [PMID: 20949193]
[41]
Kabeel, A.E.; Abdelgaied, M.; Sathyamurthy, R.; Kabeel, A. A comprehensive review of technologies used to improve the performance of PV systems in a view of cooling mediums, reflectors design, spectrum splitting, and economic analysis. Environ. Sci. Pollut. Res. Int., 2021, 28(7), 7955-7980.
[http://dx.doi.org/10.1007/s11356-020-11008-3] [PMID: 33047264]

© 2024 Bentham Science Publishers | Privacy Policy