Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

A Review of Organic Dye Based Nanoparticles: Preparation, Properties, and Engineering/Technical Applications

Author(s): Kapil Dev Mahato* and Uday Kumar

Volume 20, Issue 7, 2023

Published on: 06 September, 2022

Page: [655 - 674] Pages: 20

DOI: 10.2174/1570193X19666220629103920

Price: $65

Abstract

Organic dye-based nanoparticles (ODNPs) are fabricated with desired morphologies using laser ablation, reprecipitation, ion association, and self-assembly methods. Primitively, this review introduces the theory of the molecular origins of dye aggregation, manifestations of the formations of monomer to J-dimer, H-dimer, and oblique dimer (mixed J and H dimer) in ODNPs. Although, organic dye nanoparticles have better basic properties than their monomer counterparts. These nanoparticles are suitable candidates for many engineering and technical applications. Furthermore, we have discussed OLEDs, optoelectronics, sensing, environmental, light-harvesting antennas, cryptography, and biomedical imaging applications. The conclusion made from the critical review analysis opens up a new horizon for the future development of ODNPs applications.

Keywords: Dye nanoparticle, dye aggregates, sensing, light-harvesting, cryptography, optoelectronics, OLEDs, biomedical imaging.

Graphical Abstract
[1]
Klymchenko, A. Emerging field of self-assembled fluorescent organic dye nanoparticles. J. Nanosci. Lett., 2013, 3, 21-28.
[2]
Cai, Y.; Si, W.; Huang, W.; Chen, P.; Shao, J.; Dong, X. Organic dye based nanoparticles for cancer phototheranostics. Small, 2018, 14(25), 1704247.
[http://dx.doi.org/10.1002/smll.201704247] [PMID: 29611290]
[3]
Yao, H. Prospects for organic dye nanoparticles, 2010, 285-304.
[http://dx.doi.org/10.1007/978-3-642-04701-5_9]
[4]
Reisch, A.; Klymchenko, A.S. Fluorescent polymer nanoparticles based on dyes: Seeking brighter tools for bioimaging. Small, 2016, 12(15), 1968-1992.
[http://dx.doi.org/10.1002/smll.201503396] [PMID: 26901678]
[5]
Liu, J.Q.; Luo, Z.D.; Pan, Y.; Kumar Singh, A.; Trivedi, M.; Kumar, A. Recent developments in luminescent coordination polymers: Designing strategies, sensing application and theoretical evidences. Coord. Chem. Rev., 2020, 406, 213145.
[http://dx.doi.org/10.1016/j.ccr.2019.213145]
[6]
Liu, S.Y.; Liu, W.Q.; Yuan, C.X.; Zhong, A.G.; Han, D.; Wang, B.; Shah, M.N.; Shi, M.M.; Chen, H. Diketopyrrolopyrrole-based oligomers accessed via sequential C H activated coupling for fullerene-free organic photovoltaics. Dyes Pigments, 2016, 134, 139-147.
[http://dx.doi.org/10.1016/j.dyepig.2016.07.007]
[7]
Dutta, A.; Pan, Y.; Liu, J.Q.; Kumar, A. Multicomponent isoreticular metal-organic frameworks: Principles, current status and challenges. Coord. Chem. Rev., 2021, 445, 214074.
[http://dx.doi.org/10.1016/j.ccr.2021.214074]
[8]
Shulov, I.; Oncul, S.; Reisch, A.; Arntz, Y.; Collot, M.; Mely, Y.; Klymchenko, A.S. Fluorinated counterion-enhanced emission of rhodamine aggregates: Ultrabright nanoparticles for bioimaging and light-harvesting. Nanoscale, 2015, 7(43), 18198-18210.
[http://dx.doi.org/10.1039/C5NR04955E] [PMID: 26482443]
[9]
Chen, M.; Yin, M. Design and development of fluorescent nanostructures for bioimaging. Prog. Polym. Sci., 2014, 39(2), 365-395.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.11.001]
[10]
Lavis, L.D.; Raines, R.T. Bright ideas for chemical biology. ACS Chem. Biol., 2008, 3(3), 142-155.
[http://dx.doi.org/10.1021/cb700248m] [PMID: 18355003]
[11]
Larson, D.R.; Zipfel, W.R.; Williams, R.M.; Clark, S.W.; Bruchez, M.P.; Wise, F.W.; Webb, W.W. Water-Soluble quantum dots for multiphoton fluorescence imaging in Vivo. Science, 2003, 300(5624), 1434-1436.
[http://dx.doi.org/10.1126/science.1083780]
[12]
Yu, W.W.; Qu, L.; Guo, W.; Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater., 2003, 15(14), 2854-2860.
[http://dx.doi.org/10.1021/cm034081k]
[13]
Fu, H.B.; Yao, J.N. Size effects on the optical properties of organic nanoparticles. J. Am. Chem. Soc., 2001, 123(7), 1434-1439.
[http://dx.doi.org/10.1021/ja0026298]
[14]
Davydov, A.S. Theory of Molecular Excitons; Springer US: Boston, MA, 1971.
[http://dx.doi.org/10.1007/978-1-4899-5169-4]
[15]
Kasha, M.; Rawls, H.R.; Ashraf El-Bayoumi, M. The exciton model in molecular spectroscopy. Pure Appl. Chem., 1965, 11(3-4), 371-392.
[http://dx.doi.org/10.1351/pac196511030371]
[16]
Würthner, F.; Kaiser, T.E.; Saha-Möller, C.R. J-aggregates: From serendipitous discovery to supramolecular engineering of functional dye materials. Angew. Chem. Int. Ed., 2011, 50(15), 3376-3410.
[http://dx.doi.org/10.1002/anie.201002307] [PMID: 21442690]
[17]
Cannon, B.L.; Patten, L.K.; Kellis, D.L.; Davis, P.H.; Lee, J.; Graugnard, E.; Yurke, B.; Knowlton, W.B. Large davydov splitting and strong fluorescence suppression: An investigation of exciton delocalization in DNA-Templated holliday junction dye aggregates. J. Phys. Chem. A, 2018, 122(8), 2086-2095.
[http://dx.doi.org/10.1021/acs.jpca.7b12668] [PMID: 29420037]
[18]
Bujdák, J. The effects of layered nanoparticles and their properties on the molecular aggregation of organic dyes. J. Photochem. Photobiol. Photochem. Rev., 2018, 35, 108-133.
[http://dx.doi.org/10.1016/j.jphotochemrev.2018.03.001]
[19]
Suk, J.; Bard, A.J. Electrochemistry and electrogenerated chemiluminescence of organic nanoparticles. J. Solid State Electrochem., 2011, 15(11-12), 2279-2291.
[http://dx.doi.org/10.1007/s10008-011-1449-x] [PMID: 21806050]
[20]
Asahi, T.; Sugiyama, T.; Masuhara, H. Laser fabrication and spectroscopy of organic nanoparticles. Acc. Chem. Res., 2008, 41(12), 1790-1798.
[http://dx.doi.org/10.1021/ar800125s] [PMID: 18937507]
[21]
Wen, S.B.; Mao, X.; Greif, R.; Russo, R.F. Radiative cooling of laser ablated vapor plumes: Experimental and theoretical analyses. J. Appl. Phys., 2006, 100(5), 053104.
[http://dx.doi.org/10.1063/1.2220646]
[22]
Pratsinis, S.E.; Kim, K.S. Particle coagulation, diffusion and thermophoresis in laminar tube flows. J. Aerosol Sci., 1989, 20(1), 101-111.
[http://dx.doi.org/10.1016/0021-8502(89)90034-7]
[23]
Wen, S.B.; Mao, X.; Greif, R.; Russo, R.E. Experimental and theoretical studies of particle generation after laser ablation of copper with a background gas at atmospheric pressure. J. Appl. Phys., 2007, 101(12), 123105.
[http://dx.doi.org/10.1063/1.2748635]
[24]
Kuroda, S.; Kaihara, S.; Fujii, Y.; Kinoshita, T.; Adachi, M. Modeling of particle generation in laser ablation plasma. J. Aerosol Sci., 2012, 50, 38-56.
[http://dx.doi.org/10.1016/j.jaerosci.2012.03.004]
[25]
Kim, M.; Osone, S.; Kim, T.; Higashi, H.; Seto, T. Synthesis of nanoparticles by laser ablation: A review. Kona, 2017, 34(0), 80-90.
[http://dx.doi.org/10.14356/kona.2017009]
[26]
Kasai, H.; Kamatani, H.; Okada, S.; Oikawa, H.; Matsuda, H.; Nakanishi, H. Size-Dependent colors and luminescences of organic microcrystals. Jpn. J. Appl. Phys., 1996, 35(Part 2, No. 2B), L221-L223.
[http://dx.doi.org/10.1143/JJAP.35.L221]
[27]
Kasai, H.; Kamatani, H.; Yoshikawa, Y.; Okada, S.; Oikawa, H.; Watanabe, A.; Itoh, O.; Nakanishi, H. Crystal size dependence of emission from perylene microcrystals. Chem. Lett., 1997, 26(11), 1181-1182.
[http://dx.doi.org/10.1246/cl.1997.1181]
[28]
Nakanishi, H.; Katagi, H. Microcrystals of polydiacetylene derivatives and their linear and nonlinear optical properties. Supramolecular Science, 1998, 5(3-4), 289-295.
[http://dx.doi.org/10.1016/S0968-5677(98)00021-2]
[29]
Kang, P.; Chen, C.; Hao, L.; Zhu, C.; Hu, Y.; Chen, Z. A novel sonication route to prepare anthracene nanoparticles. Mater. Res. Bull., 2004, 39(4-5), 545-551.
[http://dx.doi.org/10.1016/j.materresbull.2003.12.013]
[30]
Xiao, D.; Xi, L.; Yang, W.; Fu, H.; Shuai, Z.; Fang, Y.; Yao, J. Size-tunable emission from 1,3-diphenyl-5-(2-anthryl)-2-pyrazoline nanoparticles. J. Am. Chem. Soc., 2003, 125(22), 6740-6745.
[http://dx.doi.org/10.1021/ja028674s] [PMID: 12769584]
[31]
Onodera, T.; Oshikiri, T.; Katagi, H.; Kasai, H.; Okada, S.; Oikawa, H.; Terauchi, M.; Tanaka, M.; Nakanishi, H. Nano-wire crystals of π-conjugated organic materials. J. Cryst. Growth, 2001, 229(1-4), 586-590.
[http://dx.doi.org/10.1016/S0022-0248(01)01233-7]
[32]
Yao, H.; Ou, Z.; Kimura, K. Ion-based organic nanoparticles: Synthesis, characterization, and optical properties of pseudoisocyanine dye nanoparticles. Chem. Lett., 2005, 34(8), 1108-1109.
[http://dx.doi.org/10.1246/cl.2005.1108]
[33]
Funada, T.; Hirose, T.; Tamai, N.; Yao, H. Organic nanoparticles of malachite green with enhanced far-red emission: Size-dependence of particle rigidity. Phys. Chem. Chem. Phys., 2015, 17(16), 11006-11013.
[http://dx.doi.org/10.1039/C5CP00031A] [PMID: 25823740]
[34]
Ozin, G.A.; Hou, K.; Lotsch, B.V.; Cademartiri, L.; Puzzo, D.P.; Scotognella, F.; Ghadimi, A.; Thomson, J. Nanofabrication by self-assembly. Mater. Today, 2009, 12(5), 12-23.
[http://dx.doi.org/10.1016/S1369-7021(09)70156-7]
[35]
Petkau, K.; Kaeser, A.; Fischer, I.; Brunsveld, L.; Schenning, A.P.H.J. Pre- and postfunctionalized self-assembled π-conjugated fluorescent organic nanoparticles for dual targeting. J. Am. Chem. Soc., 2011, 133(42), 17063-17071.
[http://dx.doi.org/10.1021/ja2075345] [PMID: 21913650]
[36]
Olivier, J.H.; Widmaier, J.; Ziessel, R. Near-infrared fluorescent nanoparticles formed by self-assembly of lipidic (Bodipy) dyes. Chemistry, 2011, 17(42), 11709-11714.
[http://dx.doi.org/10.1002/chem.201101407] [PMID: 21898617]
[37]
Zhang, X.; Chen, Z.; Würthner, F. Morphology control of fluorescent nanoaggregates by co-self-assembly of wedge- and dumbbell-shaped amphiphilic perylene bisimides. J. Am. Chem. Soc., 2007, 129(16), 4886-4887.
[http://dx.doi.org/10.1021/ja070994u] [PMID: 17402739]
[38]
Gesquiere, A.J.; Uwada, T.; Asahi, T.; Masuhara, H.; Barbara, P.F. Single molecule spectroscopy of organic dye nanoparticles. Nano Lett., 2005, 5(7), 1321-1325.
[http://dx.doi.org/10.1021/nl050567j] [PMID: 16178231]
[39]
Lee, J.H.; Chen, C.H.; Lee, P.H.; Lin, H.Y.; Leung, M.; Chiu, T.L.; Lin, C.F. Blue organic light-emitting diodes: Current status, challenges, and future outlook. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(20), 5874-5888.
[http://dx.doi.org/10.1039/C9TC00204A]
[40]
Lee, H.; Karthik, D.; Lampande, R.; Ryu, J.H.; Kwon, J.H. Recent advancement in boron-based efficient and pure blue thermally activated delayed fluorescence materials for organic light-emitting diodes. Front Chem., 2020, 8(May), 373.
[http://dx.doi.org/10.3389/fchem.2020.00373] [PMID: 32509723]
[41]
Ren, W.; Son, K.R.; Park, T.H.; Murugadoss, V.; Kim, T.G. Manipulation of blue TADF top-emission OLEDs by the first-order optical cavity design: Toward a highly pure blue emission and balanced charge transport. Photon. Res., 2021, 9(8), 1502.
[http://dx.doi.org/10.1364/PRJ.432042]
[42]
Cekaviciute, M.; Petrauskaite, A.; Nasiri, S.; Simokaitiene, J.; Volyniuk, D.; Sych, G.; Budreckiene, R.; Grazulevicius, J.V. Towards blue AIE/AIEE: Synthesis and applications in OLEDs of Tetra-/Triphenylethenyl substituted 9,9-dimethylacridine derivatives. Molecules, 2020, 25(3), 445.
[http://dx.doi.org/10.3390/molecules25030445] [PMID: 31973202]
[43]
Ledwon, P.; Motyka, R.; Ivaniuk, K.; Pidluzhna, A.; Martyniuk, N.; Stakhira, P.; Baryshnikov, G.; Minaev, B.F.; Ågren, H. The effect of molecular structure on the properties of quinoxaline-based molecules for OLED applications. Dyes Pigments, 2019, 2020(173), 108008.
[http://dx.doi.org/10.1016/j.dyepig.2019.108008]
[44]
Steinegger, A.; Klimant, I.; Borisov, S.M. Purely organic dyes with thermally activated delayed fluorescence-a versatile class of indicators for optical temperature sensing. Adv. Opt. Mater., 2017, 5(18), 1700372.
[http://dx.doi.org/10.1002/adom.201700372]
[45]
Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. (Camb.), 2009, (29), 4332-4353.
[http://dx.doi.org/10.1039/b904665h] [PMID: 19597589]
[46]
Chen, H.Y.; Lam, W.Y.; Luo, J.D.; Ho, Y.L.; Tang, B.Z.; Zhu, D.B.; Wong, M.; Kwok, H.S. Highly efficient organic light-emitting diodes with a silole-based compound. Appl. Phys. Lett., 2002, 81(4), 574-576.
[http://dx.doi.org/10.1063/1.1495542]
[47]
Dong, Y.; Lam, J.W.Y.; Qin, A.; Liu, J.; Li, Z.; Tang, B.Z.; Sun, J.; Kwok, H.S. Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light-emitting diodes. Appl. Phys. Lett., 2007, 91(1), 011111.
[http://dx.doi.org/10.1063/1.2753723]
[48]
Yao, H.; Yamashita, M.; Kimura, K. Organic styryl dye nanoparticles: Synthesis and unique spectroscopic properties. Langmuir, 2009, 25(2), 1131-1137.
[http://dx.doi.org/10.1021/la802879e] [PMID: 19086783]
[49]
Yao, H.; Ashiba, K. Highly fluorescent organic nanoparticles of thiacyanine dye: A synergetic effect of intermolecular H-aggregation and restricted intramolecular rotation. RSC Advances, 2011, 1(5), 834.
[http://dx.doi.org/10.1039/c1ra00497b]
[50]
Enseki, T.; Yao, H. Controlled formation of fluorescent organic nanoparticles of carbocyanine dye viaion-association approach. Chem. Lett., 2012, 41(10), 1119-1121.
[http://dx.doi.org/10.1246/cl.2012.1119]
[51]
Zhao, Z.; Zhang, H.; Lam, J.W.Y.; Tang, B.Z. Aggregation‐Induced emission: New vistas at the aggregate level. Angew. Chem. Int. Ed., 2020, 59(25), 9888-9907.
[http://dx.doi.org/10.1002/anie.201916729] [PMID: 32048428]
[52]
Zhao, Z.; Lam, J.W.Y.; Tang, B.Z. Tetraphenylethene: A versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. J. Mater. Chem., 2012, 22(45), 23726-23740.
[http://dx.doi.org/10.1039/c2jm31949g]
[53]
Pigot, C.; Noirbent, G.; Bui, T.T.; Péralta, S.; Duval, S.; Nechab, M.; Gigmes, D.; Dumur, F. Synthesis, optical and electrochemical properties of a series of push-pull dyes based on the 4,4-bis(4-methoxy phenyl)butadienyl donor. Dyes Pigments, 2021, 194, 109552.
[http://dx.doi.org/10.1016/j.dyepig.2021.109552]
[54]
Chen, G.; Qiu, Z.; Tan, J.H.; Chen, W.C.; Zhou, P.; Xing, L.; Ji, S.; Qin, Y.; Zhao, Z.; Huo, Y. Deep-blue organic light-emitting diodes based on push-pull π-extended imidazole-fluorene hybrids. Dyes Pigments, 2021, 184, 108754.
[http://dx.doi.org/10.1016/j.dyepig.2020.108754]
[55]
Hu, Y.; Liang, X.; Wu, D.; Yu, B.; Wang, Y.; Mi, Y.; Cao, Z.; Zhao, Z. Towards white-light emission of fluorescent polymeric nanoparticles with a single luminogen possessing AIE and TICT properties. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(2), 734-741.
[http://dx.doi.org/10.1039/C9TC05690D]
[56]
Zhou, J.; He, B.; Chen, B.; Lu, P.; Sung, H.H.Y.; Williams, I.D.; Qin, A.; Qiu, H.; Zhao, Z.; Tang, B.Z. Deep blue fluorescent 2,5-bis(phenylsilyl)-substituted 3,4-diphenylsiloles: Synthesis, structure and aggregation-induced emission. Dyes Pigments, 2013, 99(2), 520-525.
[http://dx.doi.org/10.1016/j.dyepig.2013.05.016]
[57]
Wang, C.; Qiao, Q.; Chi, W.; Chen, J.; Liu, W.; Tan, D.; McKechnie, S.; Lyu, D.; Jiang, X.F.; Zhou, W.; Xu, N.; Zhang, Q.; Xu, Z.; Liu, X. Quantitative design of bright fluorophores and aiegens by the accurate prediction of twisted intramolecular charge transfer (TICT). Angew. Chem. Int. Ed., 2020, 59(25), 10160-10172.
[http://dx.doi.org/10.1002/anie.201916357] [PMID: 31943591]
[58]
Liu, B.; Zhang, R. Aggregation induced emission: Concluding remarks. Faraday Discuss., 2017, 196, 461-472.
[http://dx.doi.org/10.1039/C6FD00258G] [PMID: 28138680]
[59]
Liu, D.; Wei, J.Y.; Tian, W.W.; Jiang, W.; Sun, Y.M.; Zhao, Z.; Tang, B.Z. Endowing TADF luminophors with AIE properties through adjusting flexible dendrons for highly efficient solution-processed nondoped OLEDs. Chem. Sci. (Camb.), 2020, 11(27), 7194-7203.
[http://dx.doi.org/10.1039/D0SC02194F] [PMID: 33033608]
[60]
Dong, X.; Wang, S.; Gui, C.; Shi, H.; Cheng, F.; Tang, B.Z. Synthesis, aggregation-induced emission and thermally activated delayed fluorescence properties of two new compounds based on phenylethene, carbazole and 9,9′,10,10′-tetraoxidethianthrene. Tetrahedron, 2018, 74(4), 497-505.
[http://dx.doi.org/10.1016/j.tet.2017.12.022]
[61]
Jeon, Y.P.; Park, D.H.; Yoo, K.H.; Kim, T.W. Energy transfer process in white organic light-emitting devices based on carbazole/thioxanthene-S,S-dioxide host material. Opt. Mater. Express, 2018, 8(7), 1833.
[http://dx.doi.org/10.1364/OME.8.001833]
[62]
An, B.K.; Kwon, S.K.; Jung, S.D.; Park, S.Y. Enhanced emission and its switching in fluorescent organic nanoparticles. J. Am. Chem. Soc., 2002, 124(48), 14410-14415.
[http://dx.doi.org/10.1021/ja0269082] [PMID: 12452716]
[63]
Fery-Forgues, S.; El-Ayoubi, R.; Lamère, J.F. Fluorescent microcrystals obtained from coumarin 6 using the reprecipitation method. J. Fluoresc., 2008, 18(3-4), 619-624.
[http://dx.doi.org/10.1007/s10895-008-0341-2] [PMID: 18297376]
[64]
Palayangoda, S.S.; Cai, X.; Adhikari, R.M.; Neckers, D.C. Carbazole-based donor-acceptor compounds: Highly fluorescent organic nanoparticles. Org. Lett., 2008, 10(2), 281-284.
[http://dx.doi.org/10.1021/ol702666g] [PMID: 18092792]
[65]
Cao, D.; Meier, H. Pillararene-based fluorescent sensors for the tracking of organic compounds. Chin. Chem. Lett., 2019, 30(10), 1758-1766.
[http://dx.doi.org/10.1016/j.cclet.2019.06.026]
[66]
Chen, Y.Y.; Jiang, X.M.; Gong, G.F.; Yao, H.; Zhang, Y.M.; Wei, T.B.; Lin, Q. Pillararene-based AIEgens: Research progress and appealing applications. Chem. Commun. (Camb.), 2021, 57(3), 284-301.
[http://dx.doi.org/10.1039/D0CC05776B] [PMID: 33300514]
[67]
Ma, Y.; Zhang, Y.; Liu, X.; Zhang, Q.; Kong, L.; Tian, Y.; Li, G.; Zhang, X.; Yang, J. AIE-Active luminogen for highly sensitive and selective detection of picric acid in water samples: Pyridyl as an effective recognition group. Dyes Pigments, 2019, 2019(163), 1-8.
[http://dx.doi.org/10.1016/j.dyepig.2018.11.034]
[68]
Panigrahi, A.; Sahu, B.P.; Mandani, S.; Nayak, D.; Giri, S.; Sarma, T.K. AIE active fluorescent organic nanoaggregates for selective detection of phenolic-nitroaromatic explosives and cell imaging. J. Photochem. Photobiol. Chem., 2019, 374, 194-205.
[http://dx.doi.org/10.1016/j.jphotochem.2019.01.029]
[69]
Singh, A.; Sinha, S.; Kaur, R.; Kaur, N.; Singh, N. Rhodamine based organic nanoparticles for sensing of Fe3+ with high selectivity in aqueous medium: Application to iron supplement analysis. Sens. Actuators B Chem., 2014, 204, 617-621.
[http://dx.doi.org/10.1016/j.snb.2014.08.028]
[70]
Pannipara, M.; Al-Sehemi, A.G.; Kalam, A.; Asiri, A.M.; Arshad, M.N. AIE active turn-off fluorescent probe for the detection of Cu 2+ ions. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 183, 84-89.
[http://dx.doi.org/10.1016/j.saa.2017.04.045] [PMID: 28437689]
[71]
Wang, J.H.; Feng, H.T.; Zheng, Y.S. Synthesis of tetraphenylethylene pillar[6]arenes and the selective fast quenching of their AIE fluorescence by TNT. Chem. Commun. (Camb.), 2014, 50(77), 11407-11410.
[http://dx.doi.org/10.1039/C4CC05189K] [PMID: 25131632]
[72]
Wang, L.; Cui, M.; Tang, H.; Cao, D. Fluorescent nanoaggregates of quinoxaline derivatives for highly efficient and selective sensing of trace picric acid. Dyes Pigments, 2018, 155, 107-113.
[http://dx.doi.org/10.1016/j.dyepig.2018.03.036]
[73]
Wu, X.X.; Fu, H.R.; Han, M-L.; Zhou, Z.; Ma, L.F. Tetraphenylethylene immobilized metal-organic frameworks: Highly sensitive fluorescent sensor for the detection of Cr 2 O 72- and nitroaromatic explosives. Cryst. Growth Des., 2017, 17(11), 6041-6048.
[http://dx.doi.org/10.1021/acs.cgd.7b01155]
[74]
Zhu, J.; Jia, P.; Li, N.; Tan, S.; Huang, J.; Xu, L. Small-molecule fluorescent probes for the detection of carbon dioxide. Chin. Chem. Lett., 2018, 29(10), 1445-1450.
[http://dx.doi.org/10.1016/j.cclet.2018.09.002]
[75]
Mahajan, P.G.; Bhopate, D.P.; Kolekar, G.B.; Patil, S.R. FRET sensor for erythrosine dye based on organic nanoparticles: Application to analysis of food stuff. J. Fluoresc., 2016, 26(4), 1467-1478.
[http://dx.doi.org/10.1007/s10895-016-1839-7] [PMID: 27246163]
[76]
Mahajan, P.G.; Dige, N.C.; Vanjare, B.D.; Eo, S.H.; Kim, S.J.; Lee, K.H. A nano sensor for sensitive and selective detection of Cu2+ based on fluorescein: Cell imaging and drinking water analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 216, 105-116.
[http://dx.doi.org/10.1016/j.saa.2019.03.021] [PMID: 30884349]
[77]
Zhang, G.; Zhang, X.; Zhang, Y.; Wang, H.; Kong, L.; Tian, Y.; Tao, X.; Bi, H.; Yang, J. Design of turn-on fluorescent probe for effective detection of Hg2+ by combination of AIEE-active fluorophore and binding site. Sens. Actuators B Chem., 2015, 221, 730-739.
[http://dx.doi.org/10.1016/j.snb.2015.06.133]
[78]
Liu, S.; Yang, M.; Liu, Y.; Chen, H.; Li, H. A novel “turn-on” fluorescent probe based on triphenylimidazole-hemicyanine dyad for colorimetric detection of CN− in 100% aqueous solution. J. Hazard. Mater., 2018, 344, 875-882.
[http://dx.doi.org/10.1016/j.jhazmat.2017.11.042] [PMID: 29190585]
[79]
Granchak, V.M.; Sakhno, T.V.; Korotkova, I.V.; Sakhno, Y.E.; Kuchmy, S.Y. Aggregation-Induced emission in organic nanoparticles: Properties and applications: A review. Theor. Exp. Chem., 2018, 54(3), 147-177.
[http://dx.doi.org/10.1007/s11237-018-9558-6]
[80]
Liu, B.; Zhuang, J.; Wei, G. Recent advances in the design of colorimetric sensors for environmental monitoring. Environ. Sci. Nano, 2020, 7(8), 2195-2213.
[http://dx.doi.org/10.1039/D0EN00449A]
[81]
Hedley, G.J.; Ruseckas, A.; Samuel, I.D.W. Light harvesting for organic photovoltaics. Chem. Rev., 2017, 117(2), 796-837.
[http://dx.doi.org/10.1021/acs.chemrev.6b00215] [PMID: 27951633]
[82]
Mirkovic, T.; Ostroumov, E.E.; Anna, J.M.; van Grondelle, R. Govindjee; Scholes, G.D. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev., 2017, 117(2), 249-293.
[http://dx.doi.org/10.1021/acs.chemrev.6b00002] [PMID: 27428615]
[83]
Scholes, G.D. Introduction: Light harvesting. Chem. Rev., 2017, 117(2), 247-248.
[http://dx.doi.org/10.1021/acs.chemrev.6b00826] [PMID: 28118717]
[84]
Kundu, S.; Patra, A. Nanoscale strategies for light harvesting. Chem. Rev., 2017, 117(2), 712-757.
[http://dx.doi.org/10.1021/acs.chemrev.6b00036] [PMID: 27494796]
[85]
Shulov, I.; Arntz, Y.; Mély, Y.; Pivovarenko, V.G.; Klymchenko, A.S. Non-coordinating anions assemble cyanine amphiphiles into ultra-small fluorescent nanoparticles. Chem. Commun. (Camb.), 2016, 52(51), 7962-7965.
[http://dx.doi.org/10.1039/C6CC03716J] [PMID: 27251475]
[86]
Trofymchuk, K.; Reisch, A.; Didier, P.; Fras, F.; Gilliot, P.; Mely, Y.; Klymchenko, A.S. Giant light-harvesting nanoantenna for single-molecule detection in ambient light. Nat. Photonics, 2017, 11(10), 657-663.
[http://dx.doi.org/10.1038/s41566-017-0001-7] [PMID: 28983324]
[87]
Severi, C.; Melnychuk, N.; Klymchenko, A.S. Smartphone-assisted detection of nucleic acids by light-harvesting FRET-based nanoprobe. Biosens. Bioelectron., 2020, 168, 112515.
[http://dx.doi.org/10.1016/j.bios.2020.112515] [PMID: 32862092]
[88]
Melnychuk, N.; Egloff, S.; Runser, A.; Reisch, A.; Klymchenko, A.S. Light‐Harvesting nanoparticle probes for FRET‐Based detection of oligonucleotides with single‐molecule sensitivity. Angew. Chem. Int. Ed., 2020, 59(17), 6811-6818.
[http://dx.doi.org/10.1002/anie.201913804] [PMID: 31943649]
[89]
Wang, P.; Miao, X.; Meng, Y.; Wang, Q.; Wang, J.; Duan, H.; Li, Y.; Li, C.; Liu, J.; Cao, L. Tetraphenylethene-Based supramolecular coordination frameworks with aggregation-induced emission for an artificial light-harvesting system. ACS Appl. Mater. Interfaces, 2020, 12(20), 22630-22639.
[http://dx.doi.org/10.1021/acsami.0c04917] [PMID: 32330383]
[90]
Xiao, T.; Wei, X.; Wu, H.; Diao, K.; Li, Z-Y.; Sun, X-Q. Acetal-Based spirocyclic skeleton bridged tetraphenylethylene dimer for light-harvesting in water with ultrahigh antenna effect. Dyes Pigments, 2021, 2021(188), 109161.
[http://dx.doi.org/10.1016/j.dyepig.2021.109161]
[91]
Hu, J.; Wu, M.; Jiang, L.; Zhong, Z.; Zhou, Z.; Rujiralai, T.; Ma, J. Combining gold nanoparticle antennas with single-molecule fluorescence resonance energy transfer (smFRET) to study DNA hairpin dynamics. Nanoscale, 2018, 10(14), 6611-6619.
[http://dx.doi.org/10.1039/C7NR08397A] [PMID: 29578224]
[92]
Garfield, D.J.; Borys, N.J.; Hamed, S.M.; Torquato, N.A.; Tajon, C.A.; Tian, B.; Shevitski, B.; Barnard, E.S.; Suh, Y.D.; Aloni, S.; Neaton, J.B.; Chan, E.M.; Cohen, B.E.; Schuck, P.J. Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission. Nat. Photonics, 2018, 12(7), 402-407.
[http://dx.doi.org/10.1038/s41566-018-0156-x]
[93]
Guo, S.; Song, Y.; He, Y.; Hu, X.Y.; Wang, L. Highly efficient artificial light-harvesting systems constructed in aqueous solution based on supramolecular self-assembly. Angew. Chem. Int. Ed., 2018, 57(12), 3163-3167.
[http://dx.doi.org/10.1002/anie.201800175] [PMID: 29383817]
[94]
Jia, H.L.; Peng, Z.J.; Li, S.S.; Huang, C.Y.; Guan, M.Y. Self-Assembly by coordination with organic antenna chromophores for dye-sensitized solar cells. ACS Appl. Mater. Interfaces, 2019, 11(17), 15845-15852.
[http://dx.doi.org/10.1021/acsami.9b00870] [PMID: 30957484]
[95]
Zhu, X.; Wang, J.X.; Niu, L.Y.; Yang, Q.Z. Aggregation-Induced emission materials with narrowed emission band by light-harvesting strategy: Fluorescence and chemiluminescence imaging. Chem. Mater., 2019, 31(9), 3573-3581.
[http://dx.doi.org/10.1021/acs.chemmater.9b01338]
[96]
Leone, L.; Pezzella, A.; Crescenzi, O.; Napolitano, A.; Barone, V.; d’Ischia, M. Trichocyanines: A red-hair-inspired modular platform for dye-based one-time-pad molecular cryptography. ChemistryOpen, 2015, 4(3), 370-377.
[http://dx.doi.org/10.1002/open.201402164] [PMID: 26246999]
[97]
Zhu, X.; Liu, R.; Li, Y.; Huang, H.; Wang, Q.; Wang, D.; Zhu, X.; Liu, S.; Zhu, H. An AIE-active boron-difluoride complex: Multi-stimuli-responsive fluorescence and application in data security protection. Chem. Commun. (Camb.), 2014, 50(85), 12951-12954.
[http://dx.doi.org/10.1039/C4CC05913A] [PMID: 25220502]
[98]
Luo, W.; Wu, B.; Xu, X.; Han, X.; Hu, J.; Wang, G. A triple ph-responsive aiegen: Synthesis, optical properties and applications. Chem. Eng. J., 2022, 431(Part 4), 133717.
[http://dx.doi.org/10.1016/j.cej.2021.133717]
[99]
Wang, X.; Wang, L.; Mao, X.; Wang, Q.; Mu, Z.; An, L.; Zhang, W.; Feng, X.; Redshaw, C.; Cao, C.; Qin, A.; Tang, B.Z. Pyrene-based aggregation-induced emission luminogens (AIEgens) with less colour migration for anti-counterfeiting applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2021, 9(37), 12828-12838.
[http://dx.doi.org/10.1039/D1TC03022A]
[100]
Baatout, K.; Saad, F.; Baffoun, A.; Mahltig, B.; Kreher, D.; Jaballah, N.; Majdoub, M. Luminescent cotton fibers coated with fluorescein dye for anti-counterfeiting applications. Mater. Chem. Phys., 2019, 234, 304-310.
[http://dx.doi.org/10.1016/j.matchemphys.2019.06.007]
[101]
Han, X.; Xu, K.; Taratula, O.; Farsad, K. Applications of nanoparticles in biomedical imaging. Nanoscale, 2019, 11(3), 799-819.
[http://dx.doi.org/10.1039/C8NR07769J] [PMID: 30603750]
[102]
Gao, H.; Zhao, X.; Chen, S. AIEgen-Based fluorescent nanomaterials: Fabrication and biological applications. Molecules, 2018, 23(2), 419.
[http://dx.doi.org/10.3390/molecules23020419] [PMID: 29443927]
[103]
Ji, C.; Lai, L.; Li, P.; Wu, Z.; Cheng, W.; Yin, M. Organic dye assemblies with aggregation‐induced photophysical changes and their bio‐applications. Aggregate, 2021, 2(4), e39.
[http://dx.doi.org/10.1002/agt2.39]
[104]
Yu, J.; Zhang, X.; Hao, X.; Zhang, X.; Zhou, M.; Lee, C.S.; Chen, X. Near-infrared fluorescence imaging using organic dye nanoparticles. Biomaterials, 2014, 35(10), 3356-3364.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.004] [PMID: 24461324]
[105]
Zhang, T.; Zhang, W.; Zheng, M.; Xie, Z. Near-infrared BODIPY-paclitaxel conjugates assembling organic nanoparticles for chemotherapy and bioimaging. J. Colloid Interface Sci., 2018, 514, 584-591.
[http://dx.doi.org/10.1016/j.jcis.2017.12.074] [PMID: 29294445]
[106]
Zhang, T.; Ma, C.; Sun, T.; Xie, Z. Unadulterated BODIPY nanoparticles for biomedical applications. Coord. Chem. Rev., 2019, 390, 76-85.
[http://dx.doi.org/10.1016/j.ccr.2019.04.001]
[107]
Cai, Y.; Si, W.; Tang, Q.; Liang, P.; Zhang, C.; Chen, P.; Zhang, Q.; Huang, W.; Dong, X. Small-molecule diketopyrrolopyrrole-based therapeutic nanoparticles for photoacoustic imaging-guided photothermal therapy. Nano Res., 2017, 10(3), 794-801.
[http://dx.doi.org/10.1007/s12274-016-1332-2]
[108]
Cai, Y.; Liang, P.; Tang, Q.; Yang, X.; Si, W.; Huang, W.; Zhang, Q.; Dong, X. Diketopyrrolopyrrole-Triphenylamine organic nanoparticles as multifunctional reagents for photoacoustic imaging-guided photodynamic/photothermal synergistic tumor therapy. ACS Nano, 2017, 11(1), 1054-1063.
[http://dx.doi.org/10.1021/acsnano.6b07927] [PMID: 28033465]
[109]
Cai, Y.; Liang, P.; Tang, Q.; Si, W.; Chen, P.; Zhang, Q.; Dong, X. Diketopyrrolopyrrole-Based photosensitizers conjugated with chemotherapeutic agents for multimodal tumor therapy. ACS Appl. Mater. Interfaces, 2017, 9(36), 30398-30405.
[http://dx.doi.org/10.1021/acsami.7b09025] [PMID: 28837315]
[110]
Yuan, Y.; Zhang, C.J.; Xu, S.; Liu, B. A self-reporting AIE probe with a built-in singlet oxygen sensor for targeted photodynamic ablation of cancer cells. Chem. Sci. (Camb.), 2016, 7(3), 1862-1866.
[http://dx.doi.org/10.1039/C5SC03583J] [PMID: 29899908]
[111]
Yang, Q.; Wen, Y.; Zhong, A.; Xu, J.; Shao, S. An HBT-based fluorescent probe for nitroreductase determination and its application in Escherichia coli cell imaging. New J. Chem., 2020, 44(38), 16265-16268.
[http://dx.doi.org/10.1039/D0NJ03286G]
[112]
Svechkarev, D.; Mohs, A.M. Organic fluorescent dye-based nanomaterials: Advances in the rational design for imaging and sensing applications. Curr. Med. Chem., 2019, 26(21), 4042-4064.
[http://dx.doi.org/10.2174/0929867325666180226111716] [PMID: 29484973]
[113]
Pandey, A.; Shukla, P.; Srivastava, P.K. Remediation of dyes in water using green synthesized nanoparticles (NPs). INTERNATIONAL JOURNAL OF PLANT AND ENVIRONMENT, 2020, 6(1), 68-84.
[http://dx.doi.org/10.18811/ijpen.v6i01.08]
[114]
Valdes-Aguilera, O.; Neckers, D.C. Aggregation phenomena in xanthene dyes. Acc. Chem. Res., 1989, 22(5), 171-177.
[http://dx.doi.org/10.1021/ar00161a002]
[115]
Shabir, G.; Saeed, A.; Ali Channar, P. A review on the recent trends in synthetic strategies and applications of xanthene dyes. Mini Rev. Org. Chem., 2018, 15(3), 166-197.
[http://dx.doi.org/10.2174/1570193X14666170518130008]
[116]
Benkhaya, S.; M’rabet, S.; El Harfi, A. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 2020, 6(1), e03271.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03271] [PMID: 32042981]
[117]
Poddar, M.; Misra, R. Recent advances of BODIPY based derivatives for optoelectronic applications. Coord. Chem. Rev., 2020, 421, 213462.
[http://dx.doi.org/10.1016/j.ccr.2020.213462]
[118]
Mustroph, H. Cyanine dyes. Phys. Sci. Rev., 2020, 5(5), 20190145.
[http://dx.doi.org/10.1515/psr-2019-0145]
[119]
Bao, W.W.; Li, R.; Dai, Z.C.; Tang, J.; Shi, X.; Geng, J.T.; Deng, Z.F.; Hua, J. Diketopyrrolopyrrole (DPP)-Based materials and its applications: A review. Front Chem., 2020, 8(September), 679.
[http://dx.doi.org/10.3389/fchem.2020.00679] [PMID: 33134242]
[120]
Hodgson, A.; Haq, S. Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep., 2009, 64(9), 381-451.
[http://dx.doi.org/10.1016/j.surfrep.2009.07.001]
[121]
Hundt, P.M.; Jiang, B.; van Reijzen, M.E.; Guo, H.; Beck, R.D. Vibrationally promoted dissociation of water on ni(111). Science, 2014, 344(6183), 504-507.
[http://dx.doi.org/10.1126/science.12512777]
[122]
Jiang, B.; Ren, X.; Xie, D.; Guo, H. Enhancing dissociative chemisorption of H 2 O on Cu(111) via vibrational excitation. Proc. Natl. Acad. Sci. USA, 2012, 109(26), 10224-10227.
[http://dx.doi.org/10.1073/pnas.1203895109] [PMID: 22685207]
[123]
Jiang, B.; Xie, D.; Guo, H. Vibrationally mediated bond selective dissociative chemisorption of HOD on Cu(111). Chem. Sci. (Camb.), 2013, 4(1), 503-508.
[http://dx.doi.org/10.1039/C2SC21393A]
[124]
Jiang, B.; Li, J.; Xie, D.; Guo, H. Effects of reactant internal excitation and orientation on dissociative chemisorption of H 2 O on Cu(111): Quasi-seven-dimensional quantum dynamics on a refined potential energy surface. J. Chem. Phys., 2013, 138(4), 044704.
[http://dx.doi.org/10.1063/1.4776770] [PMID: 23387612]
[125]
Farjamnia, A.; Jackson, B. The dissociative chemisorption of water on Ni(111): Mode- and bond-selective chemistry on metal surfaces. J. Chem. Phys., 2015, 142(23), 234705.
[http://dx.doi.org/10.1063/1.4922625] [PMID: 26093571]
[126]
Mondal, A.; Seenivasan, H.; Tiwari, A.K. Water dissociation on Cu (111): Effects of molecular orientation, rotation, and vibration on reactivity. J. Chem. Phys., 2012, 137(9), 094708.
[http://dx.doi.org/10.1063/1.4749246] [PMID: 22957587]
[127]
Seenivasan, H.; Tiwari, A.K. Water dissociation on Ni(100) and Ni(111): Effect of surface temperature on reactivity. J. Chem. Phys., 2013, 139(17), 174707.
[http://dx.doi.org/10.1063/1.4827641] [PMID: 24206322]
[128]
Seenivasan, H.; Tiwari, A.K. Water adsorption and dissociation on Ni(110): How is it different from its close packed counterparts? J. Chem. Phys., 2014, 140(17), 174704.
[http://dx.doi.org/10.1063/1.4873898] [PMID: 24811652]
[129]
Huang, Y.; Ling, C.; Jin, M.; Du, J.; Zhou, T.; Wang, S. Water adsorption and dissociation on Ni surface: Effects of steps, dopants, coverage and self-aggregation. Phys. Chem. Chem. Phys., 2013, 15(41), 17804-17817.
[http://dx.doi.org/10.1039/c3cp53644k] [PMID: 24043156]
[130]
Huang, Y.C.; Zhou, T.; Liu, H.; Ling, C.; Wang, S.; Du, J.Y. Do Ni/Cu and Cu/Ni alloys have different catalytic performances towards water-gas shift? A density functional theory investigation. ChemPhysChem, 2014, 15(12), 2490-2496.
[http://dx.doi.org/10.1002/cphc.201402285] [PMID: 25044560]
[131]
Cheng, F.; Chen, Z.X. Kinetic monte carlo simulation of pdzn alloying and density functional study of PdZn surface reactivity towards water dissociation. ChemCatChem, 2015, 7(13), 1926-1930.
[http://dx.doi.org/10.1002/cctc.201500366]
[132]
Marcus, R.A. On the analytical mechanics of chemical reactions. Quantum mechanics of linear collisions. J. Chem. Phys., 1966, 45(12), 4493-4499.
[http://dx.doi.org/10.1063/1.1727528]
[133]
Bhongale, C.J.; Chang, C.W.; Lee, C.S.; Diau, E.W.G.; Hsu, C.S. Relaxation dynamics and structural characterization of organic nanoparticles with enhanced emission. J. Phys. Chem. B, 2005, 109(28), 13472-13482.
[http://dx.doi.org/10.1021/jp0502297] [PMID: 16852685]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy