Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

组蛋白去乙酰化酶(HDAC) 1抑制剂的抗癌研究进展

卷 23, 期 1, 2023

发表于: 20 August, 2022

页: [47 - 70] 页: 24

弟呕挨: 10.2174/1568009622666220624090542

价格: $65

conference banner
摘要

组蛋白去乙酰化酶(HDACs)是通过催化组蛋白去乙酰化维持体内平衡所必需的。HDACs的异常表达与多种人类疾病相关。尽管HDAC抑制剂在临床中被作为有效的化疗药物,但由于弱亚型选择性引起的相关副作用,其应用仍受到限制。HDAC1具有独特的结构和细胞定位以及多种底物,比其他亚型具有更广泛的生物学功能。HDAC1显示出一种独特的结构,主要在细胞核中发现,并参与表观遗传和转录调控。HDAC1广泛表达,并与Sin3、NuRD和CoRest转录抑制复合体相关,负责不同的细胞过程,如细胞增殖和存活。HDAC1抑制剂已被有效用于治疗各种癌症,如胃癌、乳腺癌、大肠癌、前列腺癌、结肠癌、肺癌、卵巢癌、胰腺癌和炎症,而不产生明显的毒性作用。本文综述了HDAC1抑制剂的四种主要结构类(羟肟酸衍生物、苯甲酰胺类、肼类和硫醇类)及其结构活性关系。本文综述了HDAC1抑制剂的研究进展,旨在深入了解HDAC1抑制剂的结构信息。这为开发新的选择性HDAC1抑制剂作为抗癌药物提供了最新的方向。

关键词: 组蛋白去乙酰化酶1(HDAC1),抗癌,羟肟酸衍生物,苯酰胺,肼,硫醇。

图形摘要
[1]
Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality rates and trends--an update. Cancer Epidemiol. Biomarkers Prev., 2016, 25(1), 16-27.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0578] [PMID: 26667886]
[2]
Cooper, J.A. Oncogenes and anti-oncogenes. Curr. Opin. Cell Biol., 1990, 2(2), 285-295.
[http://dx.doi.org/10.1016/0955-0674(90)90021-6] [PMID: 2114126]
[3]
Wang, H.; Wang, P.; Xu, M.; Song, X.; Wu, H.; Evert, M.; Calvisi, D.F.; Zeng, Y.; Chen, X. Distinct functions of transforming growth factor-β signaling in c-MYC driven hepatocellular carcinoma initiation and progression. Cell Death Dis., 2021, 12(2), 200.
[http://dx.doi.org/10.1038/s41419-021-03488-z] [PMID: 33608500]
[4]
Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. Current challenges in cancer treatment. Clin. Ther., 2016, 38(7), 1551-1566.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]
[5]
Shafabakhsh, R.; Arianfar, F.; Vosough, M.; Mirzaei, H.R.; Mahjoubin-Tehran, M.; Khanbabaei, H.; Kowsari, H.; Shojaie, L.; Azar, M.E.F.; Hamblin, M.R.; Mirzaei, H. Autophagy and gastrointestinal cancers: The behind the scenes role of long non-coding RNAs in initiation, progression, and treatment resistance. Cancer Gene Ther., 2021, 28(12), 1229-1255.
[http://dx.doi.org/10.1038/s41417-020-00272-7] [PMID: 33432087]
[6]
Kumari, S.; Advani, D.; Sharma, S.; Ambasta, R.K.; Kumar, P. Combinatorial therapy in tumor microenvironment: Where do we stand? Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(2), 188585.
[http://dx.doi.org/10.1016/j.bbcan.2021.188585] [PMID: 34224836]
[7]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[8]
Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol., 2021, 14(10), 101174.
[http://dx.doi.org/10.1016/j.tranon.2021.101174] [PMID: 34243011]
[9]
Zada, S.; Hwang, J.S.; Ahmed, M.; Lai, T.H.; Pham, T.M.; Elashkar, O.; Kim, D.R. Cross talk between autophagy and oncogenic signaling pathways and implications for cancer therapy. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(1), 188565.
[http://dx.doi.org/10.1016/j.bbcan.2021.188565] [PMID: 33992723]
[10]
Bai, J.; Shi, J.; Li, C.; Wang, S.; Zhang, T.; Hua, X.; Zhu, B.; Koka, H.; Wu, H.H.; Song, L.; Wang, D.; Wang, M.; Zhou, W.; Ballew, B.J.; Zhu, B.; Hicks, B.; Mirabello, L.; Parry, D.M.; Zhai, Y.; Li, M.; Du, J.; Wang, J.; Zhang, S.; Liu, Q.; Zhao, P.; Gui, S.; Goldstein, A.M.; Zhang, Y.; Yang, X.R. Whole genome sequencing of skull-base chordoma reveals genomic alterations associated with recurrence and chordoma-specific survival. Nat. Commun., 2021, 12(1), 757.
[http://dx.doi.org/10.1038/s41467-021-21026-5] [PMID: 33536423]
[11]
Devarakonda, S.; Morgensztern, D.; Govindan, R. Genomic alterations in lung adenocarcinoma. Lancet Oncol., 2015, 16(7), e342-e351.
[http://dx.doi.org/10.1016/S1470-2045(15)00077-7] [PMID: 26149886]
[12]
Chen, H.P.; Zhao, Y.T.; Zhao, T.C. Histone deacetylases and mechanisms of regulation of gene expression. Crit. Rev. Oncog., 2015, 20(1-2), 35-47.
[http://dx.doi.org/10.1615/CritRevOncog.2015012997] [PMID: 25746103]
[13]
Hull, E.E.; Montgomery, M.R.; Leyva, K.J. HDAC inhibitors as epigenetic regulators of the immune system: Impacts on cancer therapy and inflammatory diseases. BioMed Res. Int., 2016, 2016, 8797206.
[http://dx.doi.org/10.1155/2016/8797206] [PMID: 27556043]
[14]
Ramaiah, M.J.; Tangutur, A.D.; Manyam, R.R. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci., 2021, 277, 119504.
[http://dx.doi.org/10.1016/j.lfs.2021.119504] [PMID: 33872660]
[15]
de Ruijter, A.J.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J., 2003, 370(Pt 3), 737-749.
[http://dx.doi.org/10.1042/bj20021321] [PMID: 12429021]
[16]
Gray, S.G.; Ekström, T.J. The human histone deacetylase family. Exp. Cell Res., 2001, 262(2), 75-83.
[http://dx.doi.org/10.1006/excr.2000.5080] [PMID: 11139331]
[17]
Wilson, A.J.; Byun, D.S.; Popova, N.; Murray, L.B.; L’Italien, K.; Sowa, Y.; Arango, D.; Velcich, A.; Augenlicht, L.H.; Mariadason, J.M. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J. Biol. Chem., 2006, 281(19), 13548-13558.
[http://dx.doi.org/10.1074/jbc.M510023200] [PMID: 16533812]
[18]
Schneider, G.; Krämer, O.H.; Schmid, R.M.; Saur, D. Acetylation as a transcriptional control mechanism-HDACs and HATs in pancreatic ductal adenocarcinoma. J. Gastrointest. Cancer, 2011, 42(2), 85-92.
[http://dx.doi.org/10.1007/s12029-011-9257-1] [PMID: 21271301]
[19]
Wang, P.; Wang, Z.; Liu, J. Role of HDACs in normal and malignant hematopoiesis. Mol. Cancer, 2020, 19(1), 5.
[http://dx.doi.org/10.1186/s12943-019-1127-7] [PMID: 31910827]
[20]
Khan, O.; La Thangue, N.B. HDAC inhibitors in cancer biology: Emerging mechanisms and clinical applications. Immunol. Cell Biol., 2012, 90(1), 85-94.
[http://dx.doi.org/10.1038/icb.2011.100] [PMID: 22124371]
[21]
Hayakawa, T.; Nakayama, J. Physiological roles of class I HDAC complex and histone demethylase. J. Biomed. Biotechnol., 2011, 2011, 129383.
[http://dx.doi.org/10.1155/2011/129383] [PMID: 21049000]
[22]
Glozak, M.A.; Sengupta, N.; Zhang, X.; Seto, E. Acetylation and deacetylation of non-histone proteins. Gene, 2005, 363, 15-23.
[http://dx.doi.org/10.1016/j.gene.2005.09.010] [PMID: 16289629]
[23]
Das Gupta, K.; Shakespear, M.R.; Iyer, A.; Fairlie, D.P.; Sweet, M.J. Histone deacetylases in monocyte/macrophage development, activation and metabolism: Refining HDAC targets for inflammatory and infectious diseases. Clin. Transl. Immunology, 2016, 5(1), e62.
[http://dx.doi.org/10.1038/cti.2015.46] [PMID: 26900475]
[24]
Schroder, K.; Sweet, M.J.; Hume, D.A. Signal integration between IFNgamma and TLR signalling pathways in macrophages. Immunobiology, 2006, 211(6-8), 511-524.
[http://dx.doi.org/10.1016/j.imbio.2006.05.007] [PMID: 16920490]
[25]
Shakespear, M.R.; Halili, M.A.; Irvine, K.M.; Fairlie, D.P.; Sweet, M.J. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol., 2011, 32(7), 335-343.
[http://dx.doi.org/10.1016/j.it.2011.04.001] [PMID: 21570914]
[26]
Meek, D.W. Regulation of the p53 response and its relationship to cancer. Biochem. J., 2015, 469(3), 325-346.
[http://dx.doi.org/10.1042/BJ20150517] [PMID: 26205489]
[27]
Juan, L.J.; Shia, W.J.; Chen, M.H.; Yang, W.M.; Seto, E.; Lin, Y.S.; Wu, C.W. Histone deacetylases specifically down-regulate p53-dependent gene activation. J. Biol. Chem., 2000, 275(27), 20436-20443.
[http://dx.doi.org/10.1074/jbc.M000202200] [PMID: 10777477]
[28]
Hassa, P.O.; Haenni, S.S.; Buerki, C.; Meier, N.I.; Lane, W.S.; Owen, H.; Gersbach, M.; Imhof, R.; Hottiger, M.O. Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-kappaB-dependent transcription. J. Biol. Chem., 2005, 280(49), 40450-40464.
[http://dx.doi.org/10.1074/jbc.M507553200] [PMID: 16204234]
[29]
Millard, C.J.; Watson, P.J.; Celardo, I.; Gordiyenko, Y.; Cowley, S.M.; Robinson, C.V.; Fairall, L.; Schwabe, J.W.; Class, I.; Class, I. HDACs share a common mechanism of regulation by inositol phosphates. Mol. Cell, 2013, 51(1), 57-67.
[http://dx.doi.org/10.1016/j.molcel.2013.05.020] [PMID: 23791785]
[30]
Patel, P.; Patel, V.K.; Singh, A.; Jawaid, T.; Kamal, M.; Rajak, H. Identification of hydroxamic acid based selective HDAC1 inhibitors: Computer aided drug design studies. Curr. Computeraided Drug Des., 2019, 15(2), 145-166.
[http://dx.doi.org/10.2174/1573409914666180502113135] [PMID: 29732991]
[31]
Sixto-López, Y.; Bello, M.; Correa-Basurto, J. Insights into structural features of HDAC1 and its selectivity inhibition elucidated by molecular dynamic simulation and molecular docking. J. Biomol. Struct. Dyn., 2019, 37(3), 584-610.
[http://dx.doi.org/10.1080/07391102.2018.1441072] [PMID: 29447615]
[32]
Mal, A.; Sturniolo, M.; Schiltz, R.L.; Ghosh, M.K.; Harter, M.L. A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: Inhibition of the myogenic program. EMBO J., 2001, 20(7), 1739-1753.
[http://dx.doi.org/10.1093/emboj/20.7.1739] [PMID: 11285237]
[33]
Grant, C.; Rahman, F.; Piekarz, R.; Peer, C.; Frye, R.; Robey, R.W.; Gardner, E.R.; Figg, W.D.; Bates, S.E. Romidepsin: A new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Rev. Anticancer Ther., 2010, 10(7), 997-1008.
[http://dx.doi.org/10.1586/era.10.88] [PMID: 20645688]
[34]
Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7), 1414.
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[35]
Rajak, H.; Singh, A.; Raghuwanshi, K.; Kumar, R.; Dewangan, P.K.; Veerasamy, R.; Sharma, P.C.; Dixit, A.; Mishra, P. A structural insight into hydroxamic acid based histone deacetylase inhibitors for the presence of anticancer activity. Curr. Med. Chem., 2014, 21(23), 2642-2664.
[http://dx.doi.org/10.2174/09298673113209990191] [PMID: 23895688]
[36]
Bouchain, G.; Leit, S.; Frechette, S.; Khalil, E.A.; Lavoie, R.; Moradei, O.; Woo, S.H.; Fournel, M.; Yan, P.T.; Kalita, A.; Trachy-Bourget, M.C.; Beaulieu, C.; Li, Z.; Robert, M.F.; MacLeod, A.R.; Besterman, J.M.; Delorme, D. Development of potential antitumor agents. Synthesis and biological evaluation of a new set of sulfonamide derivatives as histone deacetylase inhibitors. J. Med. Chem., 2003, 46(5), 820-830.
[http://dx.doi.org/10.1021/jm020377a] [PMID: 12593661]
[37]
Mai, A.; Massa, S.; Rotili, D.; Simeoni, S.; Ragno, R.; Botta, G.; Nebbioso, A.; Miceli, M.; Altucci, L.; Brosch, G. Synthesis and biological properties of novel, uracil-containing histone deacetylase inhibitors. J. Med. Chem., 2006, 49(20), 6046-6056.
[http://dx.doi.org/10.1021/jm0605536] [PMID: 17004718]
[38]
Mahboobi, S.; Sellmer, A.; Höcher, H.; Garhammer, C.; Pongratz, H.; Maier, T.; Ciossek, T.; Beckers, T. 2-aroylindoles and 2-aroylbenzofurans with N-hydroxyacrylamide substructures as a novel series of rationally designed histone deacetylase inhibitors. J. Med. Chem., 2007, 50(18), 4405-4418.
[http://dx.doi.org/10.1021/jm0703136] [PMID: 17691763]
[39]
Cho, Y.S.; Whitehead, L.; Li, J.; Chen, C.H.; Jiang, L.; Vögtle, M.; Francotte, E.; Richert, P.; Wagner, T.; Traebert, M.; Lu, Q.; Cao, X.; Dumotier, B.; Fejzo, J.; Rajan, S.; Wang, P.; Yan-Neale, Y.; Shao, W.; Atadja, P.; Shultz, M. Conformational refinement of hydroxamate-based histone deacetylase inhibitors and exploration of 3-piperidin-3-ylindole analogues of dacinostat (LAQ824). J. Med. Chem., 2010, 53(7), 2952-2963.
[http://dx.doi.org/10.1021/jm100007m] [PMID: 20205394]
[40]
Rajak, H.; Agarawal, A.; Parmar, P.; Thakur, B.S.; Veerasamy, R.; Sharma, P.C.; Kharya, M.D. 2,5-Disubstituted-1,3,4-oxadiazoles/thiadiazole as surface recognition moiety: Design and synthesis of novel hydroxamic acid based histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(19), 5735-5738.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.022] [PMID: 21875796]
[41]
Cheng, J.; Qin, J.; Guo, S.; Qiu, H.; Zhong, Y. Design, synthesis and evaluation of novel HDAC inhibitors as potential antitumor agents. Bioorg. Med. Chem. Lett., 2014, 24(19), 4768-4772.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.080] [PMID: 25182565]
[42]
Witter, D.J.; Belvedere, S.; Chen, L.; Secrist, J.P.; Mosley, R.T.; Miller, T.A. Benzo[b]thiophene-based histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(16), 4562-4567.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.091] [PMID: 17576064]
[43]
Wang, H.; Yu, N.; Chen, D.; Lee, K.C.; Lye, P.L.; Chang, J.W.; Deng, W.; Ng, M.C.; Lu, T.; Khoo, M.L.; Poulsen, A.; Sangthongpitag, K.; Wu, X.; Hu, C.; Goh, K.C.; Wang, X.; Fang, L.; Goh, K.L.; Khng, H.H.; Goh, S.K.; Yeo, P.; Liu, X.; Bonday, Z.; Wood, J.M.; Dymock, B.W.; Kantharaj, E.; Sun, E.T. Discovery of (2E)-3-2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile. J. Med. Chem., 2011, 54(13), 4694-4720.
[http://dx.doi.org/10.1021/jm2003552] [PMID: 21634430]
[44]
Wang, H.; Yu, N.; Song, H.; Chen, D.; Zou, Y.; Deng, W.; Lye, P.L.; Chang, J.; Ng, M.; Sun, E.T.; Sangthongpitag, K.; Wang, X.; Wu, X.; Khng, H.H.; Fang, L.; Goh, S.K.; Ong, W.C.; Bonday, Z.; Stünkel, W.; Poulsen, A.; Entzeroth, M. N-Hydroxy-1,2-disubstituted-1H-benzimidazol-5-yl acrylamides as novel histone deacetylase inhibitors: Design, synthesis, SAR studies, and in vivo antitumor activity. Bioorg. Med. Chem. Lett., 2009, 19(5), 1403-1408.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.041] [PMID: 19181524]
[45]
Shultz, M.; Fan, J.; Chen, C.; Cho, Y.S.; Davis, N.; Bickford, S.; Buteau, K.; Cao, X.; Holmqvist, M.; Hsu, M.; Jiang, L.; Liu, G.; Lu, Q.; Patel, C.; Suresh, J.R.; Selvaraj, M.; Urban, L.; Wang, P.; Yan-Neale, Y.; Whitehead, L.; Zhang, H.; Zhou, L.; Atadja, P. The design, synthesis and structure-activity relationships of novel isoindoline-based histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(16), 4909-4912.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.015] [PMID: 21742496]
[46]
Woo, S.H.; Frechette, S.; Abou Khalil, E.; Bouchain, G.; Vaisburg, A.; Bernstein, N.; Moradei, O.; Leit, S.; Allan, M.; Fournel, M.; Trachy-Bourget, M.C.; Li, Z.; Besterman, J.M.; Delorme, D. Structurally simple trichostatin A-like straight chain hydroxamates as potent histone deacetylase inhibitors. J. Med. Chem., 2002, 45(13), 2877-2885.
[http://dx.doi.org/10.1021/jm020154k] [PMID: 12061890]
[47]
Yang, F.; Peng, S.; Li, Y.; Su, L.; Peng, Y.; Wu, J.; Chen, H.; Liu, M.; Yi, Z.; Chen, Y. A hybrid of thiazolidinone with the hydroxamate scaffold for developing novel histone deacetylase inhibitors with antitumor activities. Org. Biomol. Chem., 2016, 14(5), 1727-1735.
[http://dx.doi.org/10.1039/C5OB02250A] [PMID: 26732459]
[48]
Yang, F.; Shan, P.; Zhao, N.; Ge, D.; Zhu, K.; Jiang, C.S.; Li, P.; Zhang, H. Development of hydroxamate-based histone deacetylase inhibitors containing 1,2,4-oxadiazole moiety core with antitumor activities. Bioorg. Med. Chem. Lett., 2019, 29(1), 15-21.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.027] [PMID: 30455152]
[49]
Yang, F.; Zhao, N.; Song, J.; Zhu, K.; Jiang, C.S.; Shan, P.; Zhang, H. Design, synthesis and biological evaluation of novel coumarin-based hydroxamate derivatives as histone deacetylase (hdac) inhibitors with antitumor activities. Molecules, 2019, 24(14), 2569.
[http://dx.doi.org/10.3390/molecules24142569] [PMID: 31311163]
[50]
Mai, A.; Massa, S.; Ragno, R.; Esposito, M.; Sbardella, G.; Nocca, G.; Scatena, R.; Jesacher, F.; Loidl, P.; Brosch, G. Binding mode analysis of 3-(4-benzoyl-1-methyl-1H-2-pyrrolyl)-N-hydroxy-2-propenamide: A new synthetic histone deacetylase inhibitor inducing histone hyperacetylation, growth inhibition, and terminal cell differentiation. J. Med. Chem., 2002, 45(9), 1778-1784.
[http://dx.doi.org/10.1021/jm011088+] [PMID: 11960489]
[51]
Ragno, R.; Mai, A.; Massa, S.; Cerbara, I.; Valente, S.; Bottoni, P.; Scatena, R.; Jesacher, F.; Loidl, P.; Brosch, G. 3-(4-Aroyl-1-methyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamides as a new class of synthetic histone deacetylase inhibitors. 3. Discovery of novel lead compounds through structure-based drug design and docking studies. J. Med. Chem., 2004, 47(6), 1351-1359.
[http://dx.doi.org/10.1021/jm031036f] [PMID: 14998325]
[52]
Shen, J.; Woodward, R.; Kedenburg, J.P.; Liu, X.; Chen, M.; Fang, L.; Sun, D.; Wang, P.G. Histone deacetylase inhibitors through click chemistry. J. Med. Chem., 2008, 51(23), 7417-7427.
[http://dx.doi.org/10.1021/jm8005355] [PMID: 19007204]
[53]
Sun, Q.; Yao, Y.; Liu, C.; Li, H.; Yao, H.; Xue, X.; Liu, J.; Tu, Z.; Jiang, S. Design, synthesis, and biological evaluation of novel histone deacetylase 1 inhibitors through click chemistry. Bioorg. Med. Chem. Lett., 2013, 23(11), 3295-3299.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.102] [PMID: 23601706]
[54]
Wang, H.; Lim, Z.Y.; Zhou, Y.; Ng, M.; Lu, T.; Lee, K.; Sangthongpitag, K.; Goh, K.C.; Wang, X.; Wu, X.; Khng, H.H.; Goh, S.K.; Ong, W.C.; Bonday, Z.; Sun, E.T. Acylurea connected straight chain hydroxamates as novel histone deacetylase inhibitors: Synthesis, SAR, and in vivo antitumor activity. Bioorg. Med. Chem. Lett., 2010, 20(11), 3314-3321.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.041] [PMID: 20451378]
[55]
Liu, T.; Kapustin, G.; Etzkorn, F.A. Design and synthesis of a potent histone deacetylase inhibitor. J. Med. Chem., 2007, 50(9), 2003-2006.
[http://dx.doi.org/10.1021/jm061082q] [PMID: 17419603]
[56]
Oyelere, A.K.; Chen, P.C.; Guerrant, W.; Mwakwari, S.C.; Hood, R.; Zhang, Y.; Fan, Y. Non-peptide macrocyclic histone deacetylase inhibitors. J. Med. Chem., 2009, 52(2), 456-468.
[http://dx.doi.org/10.1021/jm801128g] [PMID: 19093884]
[57]
Sixto-López, Y.; Gómez-Vidal, J.A.; de Pedro, N.; Bello, M.; Rosales-Hernández, M.C.; Correa-Basurto, J. Hydroxamic acid derivatives as HDAC1, HDAC6 and HDAC8 inhibitors with antiproliferative activity in cancer cell lines. Sci. Rep., 2020, 10(1), 10462.
[http://dx.doi.org/10.1038/s41598-020-67112-4] [PMID: 32591593]
[58]
Jose, B.; Okamura, S.; Kato, T.; Nishino, N.; Sumida, Y.; Yoshida, M. Toward an HDAC6 inhibitor: Synthesis and conformational analysis of cyclic hexapeptide hydroxamic acid designed from alpha-tubulin sequence. Bioorg. Med. Chem., 2004, 12(6), 1351-1356.
[http://dx.doi.org/10.1016/j.bmc.2004.01.014] [PMID: 15018907]
[59]
Zhang, X.; Zhang, J.; Tong, L.; Luo, Y.; Su, M.; Zang, Y.; Li, J.; Lu, W.; Chen, Y. The discovery of colchicine-SAHA hybrids as a new class of antitumor agents. Bioorg. Med. Chem., 2013, 21(11), 3240-3244.
[http://dx.doi.org/10.1016/j.bmc.2013.03.049] [PMID: 23602523]
[60]
He, R.; Chen, Y.; Chen, Y.; Ougolkov, A.V.; Zhang, J.S.; Savoy, D.N.; Billadeau, D.D.; Kozikowski, A.P. Synthesis and biological evaluation of triazol-4-ylphenyl-bearing histone deacetylase inhibitors as anticancer agents. J. Med. Chem., 2010, 53(3), 1347-1356.
[http://dx.doi.org/10.1021/jm901667k] [PMID: 20055418]
[61]
Zhang, X.; Bao, B.; Yu, X.; Tong, L.; Luo, Y.; Huang, Q.; Su, M.; Sheng, L.; Li, J.; Zhu, H.; Yang, B.; Zhang, X.; Chen, Y.; Lu, W. The discovery and optimization of novel dual inhibitors of topoisomerase II and histone deacetylase. Bioorg. Med. Chem., 2013, 21(22), 6981-6995.
[http://dx.doi.org/10.1016/j.bmc.2013.09.023] [PMID: 24095018]
[62]
Spencer, J.; Amin, J.; Wang, M.; Packham, G.; Alwi, S.S.; Tizzard, G.J.; Coles, S.J.; Paranal, R.M.; Bradner, J.E.; Heightman, T.D. Synthesis and biological evaluation of JAHAs: Ferrocene-based histone deacetylase inhibitors. ACS Med. Chem. Lett., 2011, 2(5), 358-362.
[http://dx.doi.org/10.1021/ml100295v] [PMID: 21572592]
[63]
Raudszus, R.; Nowotny, R.; Gertzen, C.G.W.; Schöler, A.; Krizsan, A.; Gockel, I.; Kalwa, H.; Gohlke, H.; Thieme, R.; Hansen, F.K. Fluorescent analogs of peptoid-based HDAC inhibitors: Synthesis, biological activity and cellular uptake kinetics. Bioorg. Med. Chem., 2019, 27(19), 115039.
[http://dx.doi.org/10.1016/j.bmc.2019.07.055] [PMID: 31420257]
[64]
Amin, J.; Puglisi, A.; Clarke, J.; Milton, J.; Wang, M.; Paranal, R.M.; Bradner, J.E.; Spencer, J. A cyclodextrin-capped histone deacetylase inhibitor. Bioorg. Med. Chem. Lett., 2013, 23(11), 3346-3348.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.084] [PMID: 23591111]
[65]
Chen, F.; Chai, H.; Su, M.B.; Zhang, Y.M.; Li, J.; Xie, X.; Nan, F.J. Potent and orally efficacious bisthiazole-based histone deacetylase inhibitors. ACS Med. Chem. Lett., 2014, 5(6), 628-633.
[http://dx.doi.org/10.1021/ml400470s] [PMID: 24944733]
[66]
Yang, W.; Li, L.; Ji, X.; Wu, X.; Su, M.; Sheng, L.; Zang, Y.; Li, J.; Liu, H. Design, synthesis and biological evaluation of 4-anilinothieno[2,3-d]pyrimidine-based hydroxamic acid derivatives as novel histone deacetylase inhibitors. Bioorg. Med. Chem., 2014, 22(21), 6146-6155.
[http://dx.doi.org/10.1016/j.bmc.2014.08.030] [PMID: 25261927]
[67]
Wang, J.; Su, M.; Li, T.; Gao, A.; Yang, W.; Sheng, L.; Zang, Y.; Li, J.; Liu, H. Design, synthesis and biological evaluation of thienopyrimidine hydroxamic acid based derivatives as structurally novel histone deacetylase (HDAC) inhibitors. Eur. J. Med. Chem., 2017, 128, 293-299.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.035] [PMID: 28213282]
[68]
Zang, J.; Shi, B.; Liang, X.; Gao, Q.; Xu, W.; Zhang, Y. Development of N-hydroxycinnamamide-based HDAC inhibitors with improved HDAC inhibitory activity and in vitro antitumor activity. Bioorg. Med. Chem., 2017, 25(9), 2666-2675.
[http://dx.doi.org/10.1016/j.bmc.2016.12.001] [PMID: 28336407]
[69]
Al-Sanea, M.M.; Gotina, L.; Mohamed, M.F.; Grace Thomas Parambi, D.; Gomaa, H.A.M.; Mathew, B.; Youssif, B.G.M.; Alharbi, K.S.; Elsayed, Z.M.; Abdelgawad, M.A.; Eldehna, W.M. Design, synthesis and biological evaluation of new HDAC1 and HDAC2 inhibitors endowed with ligustrazine as a novel cap moiety. Drug Des. Devel. Ther., 2020, 14, 497-508.
[http://dx.doi.org/10.2147/DDDT.S237957] [PMID: 32103894]
[70]
Liu, J.; Zhou, J.; He, F.; Gao, L.; Wen, Y.; Gao, L.; Wang, P.; Kang, D.; Hu, L. Design, synthesis and biological evaluation of novel indazole-based derivatives as potent HDAC inhibitors via fragment-based virtual screening. Eur. J. Med. Chem., 2020, 192, 112189.
[http://dx.doi.org/10.1016/j.ejmech.2020.112189] [PMID: 32151834]
[71]
Mwakwari, S.C.; Guerrant, W.; Patil, V.; Khan, S.I.; Tekwani, B.L.; Gurard-Levin, Z.A.; Mrksich, M.; Oyelere, A.K. Non-peptide macrocyclic histone deacetylase inhibitors derived from tricyclic ketolide skeleton. J. Med. Chem., 2010, 53(16), 6100-6111.
[http://dx.doi.org/10.1021/jm100507q] [PMID: 20669972]
[72]
Guandalini, L.; Balliu, M.; Cellai, C.; Martino, M.V.; Nebbioso, A.; Mercurio, C.; Carafa, V.; Bartolucci, G.; Dei, S.; Manetti, D.; Teodori, E.; Scapecchi, S.; Altucci, L.; Paoletti, F.; Romanelli, M.N. Design, synthesis and preliminary evaluation of a series of histone deacetylase inhibitors carrying a benzodiazepine ring. Eur. J. Med. Chem., 2013, 66, 56-68.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.017] [PMID: 23792316]
[73]
Reßing, N.; Marquardt, V.; Gertzen, C.G.W.; Schöler, A.; Schramm, A.; Kurz, T.; Gohlke, H.; Aigner, A.; Remke, M.; Hansen, F.K. Design, synthesis and biological evaluation of β-peptoid-capped HDAC inhibitors with anti-neuroblastoma and anti-glioblastoma activity. MedChemComm, 2018, 10(7), 1109-1115.
[http://dx.doi.org/10.1039/C8MD00454D] [PMID: 31391882]
[74]
Chen, J.; Sang, Z.; Jiang, Y.; Yang, C.; He, L. Design, synthesis, and biological evaluation of quinazoline derivatives as dual HDAC1 and HDAC6 inhibitors for the treatment of cancer. Chem. Biol. Drug Des., 2019, 93(3), 232-241.
[http://dx.doi.org/10.1111/cbdd.13405] [PMID: 30251407]
[75]
Zhang, Y.; Feng, J.; Jia, Y.; Wang, X.; Zhang, L.; Liu, C.; Fang, H.; Xu, W. Development of tetrahydroisoquinoline-based hydroxamic acid derivatives: Potent histone deacetylase inhibitors with marked in vitro and in vivo antitumor activities. J. Med. Chem., 2011, 54(8), 2823-2838.
[http://dx.doi.org/10.1021/jm101605z] [PMID: 21476600]
[76]
Chen, J.B.; Chern, T.R.; Wei, T.T.; Chen, C.C.; Lin, J.H.; Fang, J.M. Design and synthesis of dual-action inhibitors targeting histone deacetylases and 3-hydroxy-3-methylglutaryl coenzyme A reductase for cancer treatment. J. Med. Chem., 2013, 56(9), 3645-3655.
[http://dx.doi.org/10.1021/jm400179b] [PMID: 23570542]
[77]
Su, H.; Nebbioso, A.; Carafa, V.; Chen, Y.; Yang, B.; Altucci, L.; You, Q. Design, synthesis and biological evaluation of novel compounds with conjugated structure as anti-tumor agents. Bioorg. Med. Chem., 2008, 16(17), 7992-8002.
[http://dx.doi.org/10.1016/j.bmc.2008.07.066] [PMID: 18701301]
[78]
Lee, S.; Shinji, C.; Ogura, K.; Shimizu, M.; Maeda, S.; Sato, M.; Yoshida, M.; Hashimoto, Y.; Miyachi, H. Design, synthesis, and evaluation of isoindolinone-hydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(17), 4895-4900.
[http://dx.doi.org/10.1016/j.bmcl.2007.06.038] [PMID: 17588744]
[79]
Shinji, C.; Maeda, S.; Imai, K.; Yoshida, M.; Hashimoto, Y.; Miyachi, H. Design, synthesis, and evaluation of cyclic amide/imide-bearing hydroxamic acid derivatives as class-selective histone deacetylase (HDAC) inhibitors. Bioorg. Med. Chem., 2006, 14(22), 7625-7651.
[http://dx.doi.org/10.1016/j.bmc.2006.07.008] [PMID: 16877001]
[80]
Islam, M.N.; Islam, M.S.; Hoque, M.A.; Kato, T.; Nishino, N.; Ito, A.; Yoshida, M. Bicyclic tetrapeptides as potent HDAC inhibitors: Effect of aliphatic loop position and hydrophobicity on inhibitory activity. Bioorg. Med. Chem., 2014, 22(15), 3862-3870.
[http://dx.doi.org/10.1016/j.bmc.2014.06.031] [PMID: 25022972]
[81]
Choi, E.; Lee, C.; Park, J.E.; Seo, J.J.; Cho, M.; Kang, J.S.; Kim, H.M.; Park, S.K.; Lee, K.; Han, G. Structure and property based design, synthesis and biological evaluation of γ-lactam based HDAC inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(4), 1218-1221.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.079] [PMID: 21256006]
[82]
Fass, D.M.; Shah, R.; Ghosh, B.; Hennig, K.; Norton, S.; Zhao, W.N.; Reis, S.A.; Klein, P.S.; Mazitschek, R.; Maglathlin, R.L.; Lewis, T.A.; Haggarty, S.J. Effect of inhibiting histone deacetylase with short-chain carboxylic acids and their hydroxamic acid analogs on vertebrate development and neuronal chromatin. ACS Med. Chem. Lett., 2010, 2(1), 39-42.
[http://dx.doi.org/10.1021/ml1001954] [PMID: 21874153]
[83]
Huang, W.J.; Chen, C.C.; Chao, S.W.; Yu, C.C.; Yang, C.Y.; Guh, J.H.; Lin, Y.C.; Kuo, C.I.; Yang, P.; Chang, C.I. Synthesis and evaluation of aliphatic-chain hydroxamates capped with osthole derivatives as histone deacetylase inhibitors. Eur. J. Med. Chem., 2011, 46(9), 4042-4049.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.002] [PMID: 21712146]
[84]
Henkes, L.M.; Haus, P.; Jäger, F.; Ludwig, J.; Meyer-Almes, F.J. Synthesis and biochemical analysis of 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoro-N-hydroxy-octanediamides as inhibitors of human histone deacetylases. Bioorg. Med. Chem., 2012, 20(2), 985-995.
[http://dx.doi.org/10.1016/j.bmc.2011.11.041] [PMID: 22182579]
[85]
Zhang, Y.; Yang, P.; Chou, C.J.; Liu, C.; Wang, X.; Xu, W. Development of N-hydroxycinnamamide-based histone deacetylase inhibitors with indole-containing cap group. ACS Med. Chem. Lett., 2013, 4(2), 235-238.
[http://dx.doi.org/10.1021/ml300366t] [PMID: 23493449]
[86]
Tashima, T.; Murata, H.; Kodama, H. Design and synthesis of novel and highly-active pan-histone deacetylase (pan-HDAC) inhibitors. Bioorg. Med. Chem., 2014, 22(14), 3720-3731.
[http://dx.doi.org/10.1016/j.bmc.2014.05.001] [PMID: 24864038]
[87]
Zhang, Q.; Lv, J.; He, F.; Yu, C.; Qu, Y.; Zhang, X.; Xu, A.; Wu, J. Design, synthesis and activity evaluation of indole-based double - branched HDAC1 inhibitors. Bioorg. Med. Chem., 2019, 27(8), 1595-1604.
[http://dx.doi.org/10.1016/j.bmc.2019.03.008] [PMID: 30879863]
[88]
Krieger, V.; Hamacher, A.; Gertzen, C.G.W.; Senger, J.; Zwinderman, M.R.H.; Marek, M.; Romier, C.; Dekker, F.J.; Kurz, T.; Jung, M.; Gohlke, H.; Kassack, M.U.; Hansen, F.K. Design, multicomponent synthesis, and anticancer activity of a focused histone deacetylase (HDAC) inhibitor library with peptoid-based cap groups. J. Med. Chem., 2017, 60(13), 5493-5506.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00197] [PMID: 28574690]
[89]
Paquin, I.; Raeppel, S.; Leit, S.; Gaudette, F.; Zhou, N.; Moradei, O.; Saavedra, O.; Bernstein, N.; Raeppel, F.; Bouchain, G.; Fréchette, S.; Woo, S.H.; Vaisburg, A.; Fournel, M.; Kalita, A.; Robert, M.F.; Lu, A.; Trachy-Bourget, M.C.; Yan, P.T.; Liu, J.; Rahil, J.; MacLeod, A.R.; Besterman, J.M.; Li, Z.; Delorme, D. Design and synthesis of 4-[(s-triazin-2-ylamino)methyl]-N-(2-aminophenyl)-benzamides and their analogues as a novel class of histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(3), 1067-1071.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.009] [PMID: 18160287]
[90]
Vaisburg, A.; Paquin, I.; Bernstein, N.; Frechette, S.; Gaudette, F.; Leit, S.; Moradei, O.; Raeppel, S.; Zhou, N.; Bouchain, G.; Woo, S.H.; Jin, Z.; Gillespie, J.; Wang, J.; Fournel, M.; Yan, P.T.; Trachy-Bourget, M.C.; Robert, M.F.; Lu, A.; Yuk, J.; Rahil, J.; Macleod, A.R.; Besterman, J.M.; Li, Z.; Delorme, D. N-(2-Amino-phenyl)-4-(heteroarylmethyl)-benzamides as new histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(24), 6729-6733.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.050] [PMID: 17977726]
[91]
Li, Y.; Wang, Y.; Xie, N.; Xu, M.; Qian, P.; Zhao, Y.; Li, S. Design, synthesis and antiproliferative activities of novel benzamides derivatives as HDAC inhibitors. Eur. J. Med. Chem., 2015, 100, 270-276.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.045] [PMID: 26140961]
[92]
Abdizadeh, T.; Kalani, M.R.; Abnous, K.; Tayarani-Najaran, Z.; Khashyarmanesh, B.Z.; Abdizadeh, R.; Ghodsi, R.; Hadizadeh, F. Design, synthesis and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur. J. Med. Chem., 2017, 132, 42-62.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.024] [PMID: 28340413]
[93]
Moradei, O.; Leit, S.; Zhou, N.; Fréchette, S.; Paquin, I.; Raeppel, S.; Gaudette, F.; Bouchain, G.; Woo, S.H.; Vaisburg, A.; Fournel, M.; Kalita, A.; Lu, A.; Trachy-Bourget, M.C.; Yan, P.T.; Liu, J.; Li, Z.; Rahil, J.; MacLeod, A.R.; Besterman, J.M.; Delorme, D. Substituted N-(2-aminophenyl)-benzamides, (E)-N-(2-aminophenyl)-acrylamides and their analogues: Novel classes of histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(15), 4048-4052.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.005] [PMID: 16713259]
[94]
Rajak, H.; Kumar, P.; Parmar, P.; Thakur, B.S.; Veerasamy, R.; Sharma, P.C.; Sharma, A.K.; Gupta, A.K.; Dangi, J.S. Appraisal of GABA and PABA as linker: Design and synthesis of novel benzamide based histone deacetylase inhibitors. Eur. J. Med. Chem., 2012, 53, 390-397.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.058] [PMID: 22541394]
[95]
Lai, M.J.; Ojha, R.; Lin, M.H.; Liu, Y.M.; Lee, H.Y.; Lin, T.E.; Hsu, K.C.; Chang, C.Y.; Chen, M.C.; Nepali, K.; Chang, J.Y.; Liou, J.P. 1-Arylsulfonyl indoline-benzamides as a new antitubulin agents, with inhibition of histone deacetylase. Eur. J. Med. Chem., 2019, 162, 612-630.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.066] [PMID: 30476825]
[96]
Chen, X.; Zhao, S.; Li, H.; Wang, X.; Geng, A.; Cui, H.; Lu, T.; Chen, Y.; Zhu, Y. Design, synthesis and biological evaluation of novel isoindolinone derivatives as potent histone deacetylase inhibitors. Eur. J. Med. Chem., 2019, 168, 110-122.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.032] [PMID: 30802729]
[97]
Jiang, Y.; Xu, J.; Yue, K.; Huang, C.; Qin, M.; Chi, D.; Yu, Q.; Zhu, Y.; Hou, X.; Xu, T.; Li, M.; Chou, C.J.; Li, X. Potent hydrazide-based HDAC inhibitors with a superior pharmacokinetic profile for efficient treatment of acute myeloid leukemia in vivo. J. Med. Chem., 2022, 65(1), 285-302.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01472] [PMID: 34942071]
[98]
Chen, Y.; Zhang, L.; Zhang, L.; Jiang, Q.; Zhang, L. Discovery of indole-3-butyric acid derivatives as potent histone deacetylase inhibitors. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 425-436.
[http://dx.doi.org/10.1080/14756366.2020.1870457] [PMID: 33445997]
[99]
Wang, Y.; Stowe, R.L.; Pinello, C.E.; Tian, G.; Madoux, F.; Li, D.; Zhao, L.Y.; Li, J.L.; Wang, Y.; Wang, Y.; Ma, H.; Hodder, P.; Roush, W.R.; Liao, D. Identification of histone deacetylase inhibitors with benzoylhydrazide scaffold that selectively inhibit class I histone deacetylases. Chem. Biol., 2015, 22(2), 273-284.
[http://dx.doi.org/10.1016/j.chembiol.2014.12.015] [PMID: 25699604]
[100]
McClure, J.J.; Zhang, C.; Inks, E.S.; Peterson, Y.K.; Li, J.; Chou, C.J. Development of allosteric hydrazide-containing class i histone deacetylase inhibitors for use in acute myeloid leukemia. J. Med. Chem., 2016, 59(21), 9942-9959.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01385] [PMID: 27754681]
[101]
Li, X.; Peterson, Y.K.; Inks, E.S.; Himes, R.A.; Li, J.; Zhang, Y.; Kong, X.; Chou, C.J. Class I HDAC inhibitors display different antitumor mechanism in leukemia and prostatic cancer cells depending on their p53 status. J. Med. Chem., 2018, 61(6), 2589-2603.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00136] [PMID: 29499113]
[102]
Bowers, A.; West, N.; Taunton, J.; Schreiber, S.L.; Bradner, J.E.; Williams, R.M. Total synthesis and biological mode of action of largazole: A potent class I histone deacetylase inhibitor. J. Am. Chem. Soc., 2008, 130(33), 11219-11222.
[http://dx.doi.org/10.1021/ja8033763] [PMID: 18642817]
[103]
Giannini, G.; Vesci, L.; Battistuzzi, G.; Vignola, D.; Milazzo, F.M.; Guglielmi, M.B.; Barbarino, M.; Santaniello, M.; Fantò, N.; Mor, M.; Rivara, S.; Pala, D.; Taddei, M.; Pisano, C.; Cabri, W. ST7612AA1, a thioacetate-ω(γ-lactam carboxamide) derivative selected from a novel generation of oral HDAC inhibitors. J. Med. Chem., 2014, 57(20), 8358-8377.
[http://dx.doi.org/10.1021/jm5008209] [PMID: 25233084]
[104]
Kim, B.; Ratnayake, R.; Lee, H.; Shi, G.; Zeller, S.L.; Li, C.; Luesch, H.; Hong, J. Synthesis and biological evaluation of largazole zinc-binding group analogs. Bioorg. Med. Chem., 2017, 25(12), 3077-3086.
[http://dx.doi.org/10.1016/j.bmc.2017.03.071] [PMID: 28416100]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy