Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Phenolic Acids - Versatile Natural Moiety with Numerous Biological Applications

Author(s): Renu Sehrawat, Priyanka Rathee, Esra Küpelli Akkol, Sarita Khatkar, Amit Lather, Neelam Redhu and Anurag Khatkar*

Volume 22, Issue 18, 2022

Published on: 22 July, 2022

Page: [1472 - 1484] Pages: 13

DOI: 10.2174/1568026622666220623114450

Price: $65

Abstract

Background: Medicinal uses of natural phenolic acids and their synthetic derivatives have been augmented in recent years. Phenolic acids are chemically defined secondary plant metabolites and being moieties or leads are much versatile in nature with a wide scope of biological activities which seek the attention of researchers across the world to synthesize different derivatives of phenolic acids and screen them for their various biological properties. These compounds are of meticulous interest due to the properties they possess and their occurrence. Based on the convincing evidence reported in the literature, it is suggested that phenolic acids and their derivatives are promising molecules as a drug.

Objectives: The present review article aims to bring together the information on the biosynthesis, metabolism, and sources of phenolic acids and emphasize the therapeutic potential of phenolic acid and its synthetic derivatives to comprehensively portray the current scenery for researchers interested in designing drugs for furthering this study.

Conclusion: Phenolic acids being moieties or lead, are much versatile in nature as they possess a wide range of biological activities like antimicrobial, antioxidant, antiviral, antiulcer, antiinflammatory, antidiabetic, anticancer and many more offers researchers to explore more about these or many untapped benefits in the medicinal field. The information mentioned in this article will be helpful to the forthcoming researchers working in this area. Phenolic acids have massive potential to be investigated for novel medicinal possibilities and for the development of new chemical moieties to treat different diseases of clinical importance.

Keywords: Phenolic acids, Plant metabolites, Therapeutic applications, Antimicrobial, Antidiabetic, Anticancer.

Graphical Abstract
[1]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[http://dx.doi.org/10.3390/nu2121231 ] [PMID: 22254006]
[2]
Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem., 2011, 126(4), 1821-1835.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.026 ] [PMID: 25213963]
[3]
Popa, V.I. Wood bark as valuable raw material for compounds with biological activity. Celul şi Hârtie, 2015, 64, 5-17.
[4]
Naczk, M.; Shahidi, F. Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J. Pharm. Biomed. Anal., 2006, 41(5), 1523-1542.
[http://dx.doi.org/10.1016/j.jpba.2006.04.002 ] [PMID: 16753277]
[5]
Eskin, N.A. Biochem. of Foods; Academic Press: San Diego, CA, 1990, pp. 401-432.
[http://dx.doi.org/10.1016/B978-0-08-091808-2.50014-9]
[6]
Loaiza-Cano, V.; Monsalve-Escudero, L.M.; Filho, C.D.S.M.B.; Martinez-Gutierrez, M.; Sousa, D.P. Antiviral role of phenolic com-pounds against dengue virus: a review. Biomol., 2020, 11(1), 11.
[http://dx.doi.org/10.3390/biom11010011 ] [PMID: 33374457]
[7]
Metcalf, R.L.; Kogan, M. Plant volatiles as insect attractants. Crit. Rev. Plant Sci., 1987, 5(3), 251-301.
[http://dx.doi.org/10.1080/07352688709382242]
[8]
Ralston, L.; Subramanian, S.; Matsuno, M.; Yu, O. Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soy-bean type I and type II chalcone isomerases. Plant Physiol., 2005, 137(4), 1375-1388.
[http://dx.doi.org/10.1104/pp.104.054502 ] [PMID: 15778463]
[9]
Pereira, D.M.; Valentão, P.; Pereira, J.A.; Andrade, P.B. Phenolics: from chemistry to biology. Mol., 2009, 14(6), 2202-2211.
[http://dx.doi.org/10.3390/molecules14062202]
[10]
Bouyahya, A.; El Omari, N.; Elmenyiy, N.; Guaouguaou, F.E.; Balahbib, A.; Belmehdi, O.; Bakri, Y. Moroccan antidiabetic medicinal plants: ethnobotanical studies, phytochemical bioactive compounds, preclinical investigations, toxicological validations and clinical evi-dences; challenges, guidance and perspectives for future management of diabetes worldwide. Trends Food Sci. Technol., 2021, 115, 147-254.
[http://dx.doi.org/10.1016/j.tifs.2021.03.032]
[11]
Heleno, S.A.; Martins, A.; Queiroz, M.J.; Ferreira, I.C. Bioactivity of phenolic acids: metabolites versus parent compounds: a review. Food Chem., 2015, 173(173), 501-513.
[http://dx.doi.org/10.1016/j.foodchem.2014.10.057 ] [PMID: 25466052]
[12]
Merkl, R.; Hrádková, I.; Filip, V.; Šmidrkal, J. Antimicrobial and antioxidant properties of phenolic acids alkyl esters. Czech J. Food Sci., 2010, 28(4), 275-279.
[http://dx.doi.org/10.17221/132/2010-CJFS]
[13]
Andrea, Romanos-Nanclares; Cristina, Sánchez-Quesada; Itziar, Gardeazábal, MD; Miguel, Ángel; Martínez, González; Alfredo, Gea; Estefanía, Toledo Phenolic acid subclasses, individual compounds, and breast cancer risk in a mediterranean cohort: The sun project of the academy of nutrition dietetics J. Acad. Nutr. Diet., 2020.
[http://dx.doi.org/10.1016/j.jand.2019.11.007]
[14]
Gangcheng, Wu.; Chang, C.; Chenchen, H.; Hui, Z. Phenolic compounds as stabilizers of oils and antioxidative mechanisms under frying conditions: A comprehensive review. Trends Food Sci. Technol., 2019, 92(8), 33-45.
[15]
Weng, J.R.; Lin, C.S.; Lai, H.C.; Lin, Y.P.; Wang, C.Y.; Tsai, Y.C.; Wu, K.C.; Huang, S.H.; Lin, C.W. Antiviral activity of Sambucus For-mosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res., 2019, 273, 197767.
[http://dx.doi.org/10.1016/j.virusres.2019.197767 ] [PMID: 31560964]
[16]
Asokkumar, K.; Sen, S.; Umamaheswari, M.; Sivashanmugam, A.T.; Subhadradevi, V. Synergistic effect of the combination of gallic acid and famotidine in protection of rat gastric mucosa. Pharmacol. Rep., 2014, 66(4), 594-599.
[http://dx.doi.org/10.1016/j.pharep.2014.01.006 ] [PMID: 24948059]
[17]
Kassim, M.; Achoui, M.; Mustafa, M.R.; Mohd, M.A.; Yusoff, K.M. Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity. Nutr. Res., 2010, 30(9), 650-659.
[http://dx.doi.org/10.1016/j.nutres.2010.08.008 ] [PMID: 20934607]
[18]
Saibabu, V.; Fatima, Z.; Khan, L.A.; Hameed, S. Therapeutic potential of dietary phenolic acids. Adv. in Pharmacol. Sci., 2015.
[http://dx.doi.org/10.1155/2015/823539]
[19]
Clifford, M.N. Chlorogenic acids and other cinnamates-nature, occurrence and dietary burden. J. Sci. Food Agric., 1999, 79(3), 362-372.
[http://dx.doi.org/10.1002/(SICI)1097-0010(19990301)79:3<362:AID-JSFA256>3.0.CO;2-D]
[20]
Cueva, C.; Moreno-Arribas, M.V.; Martín-Alvarez, P.J.; Bills, G.; Vicente, M.F.; Basilio, A.; Rivas, C.L.; Requena, T.; Rodríguez, J.M.; Bartolomé, B. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res. Microbiol., 2010, 161(5), 372-382.
[http://dx.doi.org/10.1016/j.resmic.2010.04.006 ] [PMID: 20451604]
[21]
Salomone, F.; Ivancovsky-Wajcman, D.; Fliss-Isakov, N.; Webb, M.; Grosso, G.; Godos, J.; Galvano, F.; Shibolet, O.; Kariv, R.; Zelber-Sagi, S. Higher phenolic acid intake independently associates with lower prevalence of insulin resistance and non-alcoholic fatty liver disease. JHEP Reports., 2020, 2(2), 100069.
[http://dx.doi.org/10.1016/j.jhepr.2020.100069 ] [PMID: 32195455]
[22]
Mazumder, M.E.H.; Rahman, S. Pharmacological evaluation of Bangladeshi medicinal plants for antioxidant activity. Pharm. Biol., 2008, 46(10-11), 704-709.
[http://dx.doi.org/10.1080/13880200802215735]
[23]
Lone, R.; Shuab, R.; Kamili, A.N. Plant phenolics in sustainable agriculture; Springer: Singapore, 2020.
[24]
Strack, D. Phenolic metabolism. Plant Biochem.; Dey, P.M; Harborne, J.B., Ed.; Academic: London, 1997, pp. 387-416.
[http://dx.doi.org/10.1016/B978-012214674-9/50011-4]
[25]
Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for analysis of plant phenolic compounds. Mol., 2013, 18(2), 2328-2375.
[http://dx.doi.org/10.3390/molecules18022328 ] [PMID: 23429347]
[26]
Kumar, N.; Goel, N. Phenolic acids: natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. (Amst.), 2019, 24, e00370.
[http://dx.doi.org/10.1016/j.btre.2019.e00370 ] [PMID: 31516850]
[27]
Alam, M.A.; Subhan, N.; Hossain, H.; Hossain, M.; Reza, H.M.; Rahman, M.M.; Ullah, M.O. Hydroxycinnamic acid derivatives: a poten-tial class of natural compounds for the management of lipid metabolism and obesity. Nutr. Metab. (Lond.), 2016, 13(1), 27.
[http://dx.doi.org/10.1186/s12986-016-0080-3 ] [PMID: 27069498]
[28]
Zamuz, S.; Munekata, P.E.; Dzuvor, C.K.; Zhang, W.; Sant’Ana, A.S.; Lorenzo, J.M. The role of phenolic compounds against Listeria monocytogenes in food. A review. Trends Food Sci. Technol., 2021, 110, 385-392.
[http://dx.doi.org/10.1016/j.tifs.2021.01.068]
[29]
Clifford, M.N.; Scalbert, A. Ellagitannins – nature, occurrence and dietary burden. J. Sci. Food Agric., 2000, 80(7), 1118-1125.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1118::AID-JSFA570>3.0.CO;2-9]
[30]
Marmet, C.; Actis-Goretta, L.; Renouf, M.; Giuffrida, F. Quantification of phenolic acids and their methylates, glucuronides, sulfates and lactones metabolites in human plasma by LC-MS/MS after oral ingestion of soluble coffee. J. Pharm. Biomed. Anal., 2014, 88, 617-625.
[http://dx.doi.org/10.1016/j.jpba.2013.10.009 ] [PMID: 24216280]
[31]
Nardini, M.; Forte, M.; Vrhovsek, U.; Mattivi, F.; Viola, R.; Scaccini, C. White wine phenolics are absorbed and extensively metabolized in humans. J. Agric. Food Chem., 2009, 57(7), 2711-2718.
[http://dx.doi.org/10.1021/jf8034463 ] [PMID: 19334754]
[32]
Stalmach, A.; Mullen, W.; Barron, D.; Uchida, K.; Yokota, T.; Cavin, C.; Steiling, H.; Williamson, G.; Crozier, A. Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: Identification of biomarkers of coffee con-sumption. Drug Metab. Dispos., 2009, 37(8), 1749-1758.
[http://dx.doi.org/10.1124/dmd.109.028019 ] [PMID: 19460943]
[33]
Pérez-Jiménez, J.; Hubert, J.; Hooper, L.; Cassidy, A.; Manach, C.; Williamson, G.; Scalbert, A. Urinary metabolites as biomarkers of polyphenol intake in humans: a systematic review. Am. J. Clin. Nutr., 2010, 92(4), 801-809.
[http://dx.doi.org/10.3945/ajcn.2010.29924 ] [PMID: 20810980]
[34]
Omar, M.H.; Mullen, W.; Stalmach, A.; Auger, C.; Rouanet, J.M.; Teissedre, P.L.; Caldwell, S.T.; Hartley, R.C.; Crozier, A. Absorption, disposition, metabolism, and excretion of [3-(14)C]caffeic acid in rats. J. Agric. Food Chem., 2012, 60(20), 5205-5214.
[http://dx.doi.org/10.1021/jf3001185 ] [PMID: 22480330]
[35]
Plumb, G.W.; Barcia-Conesa, M.T.; Paul, A.K.; Rhodes, M.; Ridley, S.; Williamson, G. Metabolism of chlorogenic acid by human plas-ma, liver, intesting and gut microflora. J. Sci. Food Agric., 1999, 79(3), 390-392.
[http://dx.doi.org/10.1002/(SICI)1097-0010(19990301)79:3<390:AID-JSFA258>3.0.CO;2-0]
[36]
Azuma, K.; Ippoushi, K.; Nakayama, M.; Ito, H.; Higashio, H.; Terao, J. Absorption of chlorogenic acid and caffeic acid in rats after oral administration. J. Agric. Food Chem., 2000, 48(11), 5496-5500.
[http://dx.doi.org/10.1021/jf000483q ] [PMID: 11087508]
[37]
Bourne, L.C.; Rice-Evans, C. Bioavailability of ferulic acid. Biochem. Biophys. Res. Commun., 1998, 253(2), 222-227.
[http://dx.doi.org/10.1006/bbrc.1998.9681 ] [PMID: 9878519]
[38]
Chandrasekara, A. Bioaccessibility and antioxidant activities of finger millet food phenolics, Department of Applied Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila, Sri LankaEncyclopedia of Food Chem; , 2019, pp. 535-545.
[39]
Lakenbrink, C.; Lapczynski, S.; Maiwald, B.; Engelhardt, U.H. Flavonoids and other polyphenols in consumer brews of tea and other caffeinated beverages. J. Agric. Food Chem., 2000, 48(7), 2848-2852.
[http://dx.doi.org/10.1021/jf9908042 ] [PMID: 10898634]
[40]
Hollman, P.C.H.; Katan, M.B. Dietary flavonoids: intake, health effects and bioavailability. Food Chem. Toxicol., 1999, 37(9-10), 937-942.
[http://dx.doi.org/10.1016/S0278-6915(99)00079-4 ] [PMID: 10541448]
[41]
Teodoro, G.R.; Ellepola, K.; Seneviratne, C.J.; Koga-Ito, C.Y. Potential use of phenolic acids as anti-candida agents: a review. Front. Microbiol., 2015, 6, 1420.
[http://dx.doi.org/10.3389/fmicb.2015.01420 ] [PMID: 26733965]
[42]
Maqsood, S.; Benjakul, S.; Shahidi, F. Emerging role of phenolic compounds as natural food additives in fish and fish products. Crit. Rev. Food Sci. Nutr., 2013, 53(2), 162-179.
[http://dx.doi.org/10.1080/10408398.2010.518775 ] [PMID: 23072531]
[43]
Canan, C.; Delaroza, F.; Casagrande, R.; Baracat, M.M.; Shimokomaki, M.; Ida, E.I. Antioxidant capacity of phytic acid purified from rice bran. Acta Sci. Technol., 2012, 34(4), 457-463.
[http://dx.doi.org/10.4025/actascitechnol.v34i4.16358]
[44]
Vaher, M.; Matso, K.; Levandi, T.; Helmja, K.; Kaljurand, M. Phenolic compounds and the antioxidant activity of the bran, flour and whole grain of different wheat varieties. Procedia Chem., 2010, 2(1), 76-82.
[http://dx.doi.org/10.1016/j.proche.2009.12.013]
[45]
Bergman, M.; Varshavsky, L.; Gottlieb, H.E.; Grossman, S. The antioxidant activity of aqueous spinach extract: Chemical identification of active fractions. Phytochemistry, 2001, 58(1), 143-152.
[http://dx.doi.org/10.1016/S0031-9422(01)00137-6 ] [PMID: 11524124]
[46]
Kilci, A.; Gocmen, D. Phenolic acid composition, antioxidant activity and phenolic content of tarhana supplemented with oat flour. Food Chem., 2014, 151, 547-553.
[http://dx.doi.org/10.1016/j.foodchem.2013.11.038 ] [PMID: 24423569]
[47]
Taie, H.A.A.; El-Mergawi, R.; Radwan, S. Isoflavonoids, flavonoids, phenolic acids profiles and antioxidant activity of soybean seeds as affected by organic and bioorganic fertilization. Am Eur J Agric. Environ. Sci., 2008, 4(2), 207-213.
[48]
Chung, I.M.; Oh, J.Y.; Kim, S.H. Comparative study of phenolic compounds, vitamin E, and fatty acids compositional profiles in black seed-coated soybeans (Glycine Max (L.) Merrill) depending on pickling period in brewed vinegar. Chem. Cent. J., 2017, 11, 64.
[http://dx.doi.org/10.1186/s13065-017-0298-9]
[49]
Alasalvar, C.; Grigor, J.M.; Zhang, D.; Quantick, P.C.; Shahidi, F. Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. J. Agric. Food Chem., 2001, 49(3), 1410-1416.
[http://dx.doi.org/10.1021/jf000595h ] [PMID: 11312873]
[50]
Potter, A.S.; Foroudi, S.; Stamatikos, A.; Patil, B.S.; Deyhim, F. Drinking carrot juice increases total antioxidant status and decreases lipid peroxidation in adults. Nutr. J., 2011, 10(1), 96.
[http://dx.doi.org/10.1186/1475-2891-10-96 ] [PMID: 21943297]
[51]
Boyer, J.; Liu, R.H. Apple phytochemicals and their health benefits. Nutr. J., 2004, 3(5), 5.
[http://dx.doi.org/10.1186/1475-2891-3-5 ] [PMID: 15140261]
[52]
Chen, C.S.; Zhang, D.; Wang, Y.Q.; Li, P.M.; Ma, F.W. Effects of fruit bagging on the contents of phenolic compounds in the peel and flesh of “Golden Delicious”, “Red Delicious”, and “Royal Gala” apples. Sci. Hortic., 2012, 13, 68-73.
[http://dx.doi.org/10.1016/j.scienta.2012.05.001]
[53]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727 ] [PMID: 15113710]
[54]
Puupponen-Pimiä, R.; Nohynek, L.; Meier, C.; Kähkönen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K-M. Antimicrobial proper-ties of phenolic compounds from berries. J. Appl. Microbiol., 2001, 90(4), 494-507.
[http://dx.doi.org/10.1046/j.1365-2672.2001.01271.x ] [PMID: 11309059]
[55]
Jiang, Y.; Fang, Z.; Leonard, W.; Zhang, P. Phenolic compounds in Lycium berry: Composition, health benefits and industrial applica-tions. J. Funct. Foods, 2021, 77, 104340.
[http://dx.doi.org/10.1016/j.jff.2020.104340]
[56]
Khanam, U.K.S.; Oba, S.; Yanase, E.; Murakami, Y. Phenolic acids, flavonoids and total antioxidant capacity of selected leafy vegeta-bles. J. Funct. Foods, 2012, 4(4), 979-987.
[http://dx.doi.org/10.1016/j.jff.2012.07.006]
[57]
Cetkovic, G.; Savatovic, S.; Čanadanović-Brunet, J.; Djilas, S.; Vulić, J.; Mandić, A.; Četojević-Simin, D. Valorisation of phenolic com-position, antioxidant and cell growth activities of tomato waste. Food Chem., 2012, 133(3), 938-945.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.007]
[58]
Zulkifli, K.S.; Abdullah, N.; Abdullah, A.; Aziman, N.; Kamarudin, W.S.S.W. Bioactive phenolic compounds and antioxidant activity of selected fruit peels. Int. Conf. Environ. Chem. Biol., 2012, 49(14), 66-70.
[59]
Zielinski, A.A.F.; Haminiuk, C.W.I.; Alberti, A.; Nogueira, A.; Demiate, I.M.; Granato, D.A. Comparative study of the phenolic com-pounds and the in vitro antioxidant activity of different Brazilian teas using multivariate statistical techniques. Food Res. Int., 2014, 60, 246-254.
[http://dx.doi.org/10.1016/j.foodres.2013.09.010]
[60]
Tourtoglou, C.; Nenadis, N.; Paraskevopoulou, A. Phenolic composition and radical scavenging activity of commercial Greek white wines from Vitisvinifera L. cv. Malagousia. J. Food Compos. Anal., 2014, 33(2), 166-174.
[http://dx.doi.org/10.1016/j.jfca.2013.12.009]
[61]
Achamlale, S.; Rezzonico, B.; Grignon-Dubois, M. Rosmarinic acid from beach waste: Isolation and HPLC quantification in Zostera detritus from Arcachon lagoon. Food Chem., 2009, 113(4), 878-883.
[http://dx.doi.org/10.1016/j.foodchem.2008.07.040]
[62]
Lopez, A.; Rico, M.; Rivero, A.; Suarez de Tangil, M. The effects of solvents on the phenolic contents and antioxidant activity of Stypo-caulon scoparium algae extracts. Food Chem., 2010, 125(3), 1104-1109.
[http://dx.doi.org/10.1016/j.foodchem.2010.09.101]
[63]
Pokorny, J.; Yanishlieva, N.; Gordon, M., Eds.; Antioxidants in food; CRC Press: BocaRaton; , 2001, pp. 210-249.
[64]
Jikai, L. Biologically active substances from mushrooms in Yunnan, China. Heterocycles, 2002, 57(1), 157-167.
[http://dx.doi.org/10.3987/REV-01-543]
[65]
Shobana, S.; Sreerama, Y.N.; Malleshi, N.G. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: Mode of inhibition of α-glucosidase and pancreatic amylase. Food Chem., 2009, 115(4), 1268-1273.
[http://dx.doi.org/10.1016/j.foodchem.2009.01.042]
[66]
Ani, V.; Akhilender Naidu, K. Antihyperglycemic activity of polyphenolic components of black/bitter cumin Centratherum anthelmin-ticum (L.) Kuntze seeds. Eur. Food Res. Technol., 2008, 226(4), 897-903.
[http://dx.doi.org/10.1007/s00217-007-0612-1]
[67]
Hudson, E.A.; Dinh, P.A.; Kokubun, T.; Simmonds, M.S.J.; Gescher, A. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol. Biomarkers Prev., 2000, 9(11), 1163-1170.
[PMID: 11097223]
[68]
Paul, L.K.; Angell, H.R.; Walker, J.C. The isolation of protocatechuic acid from pigmented onion scales and its significance in relation to disease resistance in onions. J. Biol. Chem., 1929, 81(2), 369-375.
[http://dx.doi.org/10.1016/S0021-9258(18)83819-4]
[69]
Carvalho, I.S.; Cavaco, T.; Brodelius, M. Phenolic composition and antioxidant capacity of six artemisia species. Ind. Crops Prod., 2011, 33(2), 382-388.
[http://dx.doi.org/10.1016/j.indcrop.2010.11.005]
[70]
Justesen, U.; Knuthsen, P.; Leth, T. Determination of plant polyphenols in danish foodstuffs by HPLC-UV and LC-MS detection. Cancer Lett., 1997, 114(1-2), 165-167.
[http://dx.doi.org/10.1016/S0304-3835(97)04651-X ] [PMID: 9103280]
[71]
Fernandez, M.A.; Saenz, M.T.; Garcia, M.D. Anti-inflammatory activity in rats and mice of phenolic acids isolated from Scrophularia frutescens. J. Pharm. Pharmacol., 1998, 50(10), 1183-1.
[72]
Guo, S.; Ge, Y.; Na Jom, K. A review of phytochemistry, metabolite changes, and medicinal uses of the common sunflower seed and sprouts (Helianthus annuus L.). Chem. Cent. J., 2017, 11(1), 95.
[http://dx.doi.org/10.1186/s13065-017-0328-7 ] [PMID: 29086881]
[73]
Kyselova, Z. Toxicological aspects of the use of phenolic compounds in disease prevention. Interdiscip. Toxicol., 2011, 4(4), 173-183.
[http://dx.doi.org/10.2478/v10102-011-0027-5 ] [PMID: 22319251]
[74]
Alanazi, S.; Alenzi, N.; Alenazi, F.; Tabassum, H.; Watson, D. Chemical characterization of Saudi propolis and its antiparasitic and anti-cancer properties. Sci. Rep., 2021, 11(1), 5390.
[http://dx.doi.org/10.1038/s41598-021-84717-5 ] [PMID: 33686109]
[75]
Brito, T.B.N.; R.S., Lima L.; B Santos, M.C.; A Moreira, R.F.; Cameron, L.C.; C Fai, A.E.; S L Ferreira, M. Antimicrobial, antioxidant, volatile and phenolic profiles of cabbage-stalk and pineapple-crown flour revealed by GC-MS and UPLC-MSE. Food Chem., 2021, 339, 127882.
[http://dx.doi.org/10.1016/j.foodchem.2020.127882 ] [PMID: 32889131]
[76]
Liu, R.H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr., 2003, 78(3)(Suppl.), 517S-520S.
[http://dx.doi.org/10.1093/ajcn/78.3.517S ] [PMID: 12936943]
[77]
Shelef, L. Antimicrobial effects of spices. J. Food Saf., 1984, 6(1), 29-44.
[http://dx.doi.org/10.1111/j.1745-4565.1984.tb00477.x]
[78]
Shen, J.; Wang, G.; Zuo, J. Caffeic acid inhibits HCV replication via induction of IFNα antiviral response through p62-mediated Keap1/Nrf2 signaling pathway J. antiviral, 2018, 154, 166-173.
[79]
Szabo, M.; Radu, D.; Gavrilas, S.; Chambre, D.; Iditoiu, C. Gavrilas.; Chambre, D.; Iditoiu, C. Antioxidant and antimicrobial properties of selected spice extracts. Int. J. Food Prop., 2010, 13(3), 535-545.
[http://dx.doi.org/10.1080/10942910802713149]
[80]
Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. phenolic compounds: current industrial applications, limitations and future challenges. Food Funct., 2021, 12(1), 14-29.
[http://dx.doi.org/10.1039/D0FO02324H ] [PMID: 33242057]
[81]
Dorman, H.J.; Deans, S.G. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol., 2000, 88(2), 308-316.
[http://dx.doi.org/10.1046/j.1365-2672.2000.00969.x ] [PMID: 10736000]
[82]
Batra, P.; Sharma, A.K. Anti-cancer potential of flavonoids: recent trends and future perspectives. Biotech., 2013, 3(6), 439-459.
[http://dx.doi.org/10.1007/s13205-013-0117-5 ] [PMID: 28324424]
[83]
Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci., 2016, 8, 33-42.
[http://dx.doi.org/10.1016/j.cofs.2016.02.002]
[84]
Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem., 2005, 53(6), 1841-1856.
[http://dx.doi.org/10.1021/jf030723c ] [PMID: 15769103]
[85]
Cos, P.; Ying, L.; Calomme, M.; Hu, J.P.; Cimanga, K.; Van Poel, B.; Pieters, L.; Vlietinck, A.J.; Vanden Berghe, D. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J. Nat. Prod., 1998, 61(1), 71-76.
[http://dx.doi.org/10.1021/np970237h ] [PMID: 9461655]
[86]
Parr, A.J.; Bolwell, G.P. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric., 2002, 80(7), 985-1012.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<985:AID-JSFA572>3.0.CO;2-7]
[87]
Fukumoto, L.R.; Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem., 2000, 48(8), 3597-3604.
[http://dx.doi.org/10.1021/jf000220w ] [PMID: 10956156]
[88]
Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep., 2020, 10(1), 2611.
[http://dx.doi.org/10.1038/s41598-020-59451-z ] [PMID: 32054964]
[89]
Sidoryk, K.; Jaromin, A.; Filipczak, N.; Cmoch, P.; Cybulski, M. Synthesis and antioxidant activity of caffeic acid derivatives. Mol., 2018, 23(9), 2199.
[http://dx.doi.org/10.3390/molecules23092199 ] [PMID: 30200272]
[90]
Zheng, L.F.; Dai, F.; Zhou, B.; Yang, L.; Liu, Z.L. Prooxidant activity of hydroxycinnamic acids on DNA damage in the presence of Cu(II) ions: mechanism and structure-activity relationship. Food Chem. Toxicol., 2008, 46(1), 149-156.
[http://dx.doi.org/10.1016/j.fct.2007.07.010 ] [PMID: 17764801]
[91]
Espíndola, K.M.M.; Ferreira, R.G.; Narvaez, L.E.M.; Silva Rosario, A.C.R.; da Silva, A.H.M.; Silva, A.G.B.; Vieira, A.P.O.; Monteiro, M.C. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front. Oncol., 2019, 9, 541.
[http://dx.doi.org/10.3389/fonc.2019.00541 ] [PMID: 31293975]
[92]
Damasceno, S.S.; Dantas, B.B.; Ribeiro-Filho, J.; Antônio, M.; Araújo, D.; Galberto, M.; da Costa, J. Chemical properties of caffeic and feru-lic Acids in biological system: implications in cancer therapy. A review. Curr. Pharm. Des., 2017, 23(20), 3015-3023.
[http://dx.doi.org/10.2174/1381612822666161208145508 ] [PMID: 27928956]
[93]
Zeb, A. A comprehensive review on different classes of polyphenolic compounds present in edible oils. Food Res. Int., 2021, 143, 110312.
[http://dx.doi.org/10.1016/j.foodres.2021.110312 ] [PMID: 33992331]
[94]
Chiou, A.; Kalogeropoulos, N. Virgin olive oil as frying oil. Compr. Rev. Food Sci. Food Saf., 2017, 16(4), 632-646.
[http://dx.doi.org/10.1111/1541-4337.12268 ] [PMID: 33371562]
[95]
Aladedunye, F.; Przybylski, R.; Matthaus, B. Performance of antioxidative compounds under frying conditions: A review. Crit. Rev. Food Sci. Nutr., 2017, 57(8), 1539-1561.
[http://dx.doi.org/10.1080/10408398.2013.777686 ] [PMID: 25607749]
[96]
Cheng, K.W.; Wu, Q.; Zheng, Z.P.; Peng, X.; Simon, J.E.; Chen, F.; Wang, M. Inhibitory effect of fruit extracts on the formation of heter-ocyclic amines. J. Agric. Food Chem., 2007, 55(25), 10359-10365.
[http://dx.doi.org/10.1021/jf071820z ] [PMID: 18004801]
[97]
Gómez-Alonso, S.; Fregapane, G.; Salvador, M.D.; Gordon, M.H. Changes in phenolic composition and antioxidant activity of virgin olive oil during frying. J. Agric. Food Chem., 2003, 51(3), 667-672.
[http://dx.doi.org/10.1021/jf025932w ] [PMID: 12537439]
[98]
Złotek, U.; Lewicki, S.; Markiewicz, A.; Szymanowska, U.; Jakubczyk, A. Effects of drying methods on antioxidant, anti-inflammatory, and anticancer potentials of phenolic acids in lovage elicited by jasmonic acid and yeast extract. Antioxidants, 2021, 10(5), 662.
[http://dx.doi.org/10.3390/antiox10050662 ] [PMID: 33923284]
[99]
Roleira, F.M.F.; Tavares-da-Silva, E.J.; Varela, C.L.; Costa, S.C.; Silva, T.; Garrido, J.; Borges, F. Plant derived and dietary phenolic anti-oxidants: anticancer properties. Food Chem., 2015, 183, 235-258.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.039 ] [PMID: 25863633]
[100]
Palko-Łabuz, A.; Gliszczyńska, A.; Skonieczna, M.; Poła, A.; Wesołowska, O.; Środa-Pomianek, K. Conjugation with phospholipids as a modification increasing anticancer activity of phenolic acids in metastatic melanoma-in vitro and in silico studies. Int. J. Mol. Sci., 2021, 22(16), 8397.
[http://dx.doi.org/10.3390/ijms22168397 ] [PMID: 34445104]
[101]
Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Mol., 2010, 15(10), 7313-7352.
[http://dx.doi.org/10.3390/molecules15107313 ] [PMID: 20966876]
[102]
Rosa, L.S.; Silva, N.J.A.; Soares, N.C.P.; Monteiro, M.C. Anticancer properties of phenolic acids in colon cancer-a review. J. Nutr. Food Sci., 2016, 6(2), 1000468.
[http://dx.doi.org/10.4172/2155-9600.1000468]
[103]
Kurata, R.; Adachi, M.; Yamakawa, O.; Yoshimoto, M. Growth suppression of human cancer cells by polyphenolics from sweetpotato (Ipomoea batatas L.) leaves. J. Agric. Food Chem., 2007, 55(1), 185-190.
[http://dx.doi.org/10.1021/jf0620259 ] [PMID: 17199331]
[104]
Jayaprakasam, B.; Vanisree, M.; Zhang, Y.; Dewitt, D.L.; Nair, M.G. Impact of alkyl esters of caffeic and ferulic acids on tumor cell proliferation, cyclooxygenase enzyme, and lipid peroxidation. J. Agric. Food Chem., 2006, 54(15), 5375-5381.
[http://dx.doi.org/10.1021/jf060899p ] [PMID: 16848520]
[105]
Hameed, S.; Fatima, Z. Novel regulatory mechanism of pathogenicity and virulence to combat MDR in Candida albicans. Int. J. Microbiol., 2013, 10.
[106]
Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug resistance: An emerging crisis. Interdiscip. Perspect. Infect. Dis., 2014., 541340.
[107]
Ansari, M. A.; Fatima, Z.; Hameed, S. Sesamol: A natural phenolic compound with promising anticandidal potential J. Pathog., 2014., 895193.
[http://dx.doi.org/10.1155/2014/895193]
[108]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564 ] [PMID: 10515903]
[109]
Sánchez-Maldonado, A.F.; Schieber, A.; Gänzle, M.G. Structure-function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. J. Appl. Microbiol., 2011, 111(5), 1176-1184.
[http://dx.doi.org/10.1111/j.1365-2672.2011.05141.x ] [PMID: 21895894]
[110]
Campos, F.M.; Couto, J.A.; Figueiredo, A.R.; Tóth, I.V.; Rangel, A.O.; Hogg, T.A. Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. Int. J. Food Microbiol., 2009, 135(2), 144-151.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.07.031 ] [PMID: 19733929]
[111]
Itzincab-Mejia, L.; Lopez-Luna, A.; Gimeno, M.; Shirai, K.; Barzana, E. Enzymatic grafting of gallate ester onto chitosan: Evaluation of antioxidant and antibacterial activities. Int. J. Food Sci. Technol., 2013, 48(10), 2034-2041.
[http://dx.doi.org/10.1111/ijfs.12181]
[112]
Aslan, E.; Adem, S. Investigation of the effects of some drugs and phenolic compounds on human dihydrofolate reductase activity. J. Biochem. Mol. Toxicol., 2015, 29(3), 135-139.
[http://dx.doi.org/10.1002/jbt.21677 ] [PMID: 25418905]
[113]
Liu, J.; Pu, H.; Liu, S.; Kan, J.; Jin, C. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: a review. Carbohydr. Polym., 2017, 174, 999-1017.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.014 ] [PMID: 28821158]
[114]
Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest., 2004, 114(12), 1752-1761.
[http://dx.doi.org/10.1172/JCI21625 ] [PMID: 15599400]
[115]
Vinayagam, R.; Jayachandran, M.; Xu, B. Antidiabetic effects of simple phenolic acids: a comprehensive review. Phytother. Res., 2016, 30(2), 184-199.
[http://dx.doi.org/10.1002/ptr.5528]
[116]
Ali Asgar, M. Anti-diabetic potential of phenolic compounds: a review. Int. J. Food Prop., 2013, 16(1), 91-103.
[http://dx.doi.org/10.1080/10942912.2011.595864]
[117]
Shakthi Deve, A.; Kumar, S.T.; Kumaresan, K.; Rapheal, V.S. Extraction process optimization of polyphenols from indian Citrus sinen-sis-As novel antiglycative agents in the management of diabetes mellitus. J. Diabetes Metab. Disord., 2014, 13, 11.
[http://dx.doi.org/10.1186/2251-6581-13-11 ] [PMID: 24397983]
[118]
Prabhakar, P.K.; Doble, M. Synergistic effect of phytochemicals in combination with hypoglycemic drugs on glucose uptake in myo-tubes. Phytomedicine, 2009, 16(12), 1119-1126.
[http://dx.doi.org/10.1016/j.phymed.2009.05.021 ] [PMID: 19660925]
[119]
Scazzocchio, B.; Varì, R.; Filesi, C.; D’Archivio, M.; Santangelo, C.; Giovannini, C.; Iacovelli, A.; Silecchia, G.; Li Volti, G.; Galvano, F.; Masella, R. Cyanidin-3-O-β-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARγ activity in human omental adipocytes. Diabetes, 2011, 60(9), 2234-2244.
[http://dx.doi.org/10.2337/db10-1461 ] [PMID: 21788573]
[120]
Prasad, C.N.; Anjana, T.; Banerji, A.; Gopalakrishnapillai, A. Gallic acid induces GLUT4 translocation and glucose uptake activity in 3T3-L1 cells. FEBS Lett., 2010, 584(3), 531-536.
[http://dx.doi.org/10.1016/j.febslet.2009.11.092 ] [PMID: 19962377]
[121]
Savych, A.; Marchyshyn, S.; Kyryliv, M.; Bekus, I. Cinnamic acid and its derivatives in the herbal mixtures and their antidiabetic activi-ty. Farmacia, 2021, 69(3), 595-601.
[http://dx.doi.org/10.31925/farmacia.2021.3.23]
[122]
Syam, A.F.; Sadikin, M.; Wanandi, S.I.; Rani, A.A. Molecular mechanism on healing process of peptic ulcer. Acta Med. Indones., 2009, 41(2), 95-98.
[PMID: 19390129]
[123]
Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An overview on the role of dietary phenolics for the treat-ment of cancers. Nutr. J., 2016, 15(1), 99.
[http://dx.doi.org/10.1186/s12937-016-0217-2 ] [PMID: 27903278]
[124]
Righi, N.; Boumerfeg, S.; Deghima, A.; Fernandes, P.A.R.; Coelho, E.; Baali, F.; Cardoso, S.M.; Coimbra, M.A.; Baghiani, A. Phenolic profile, safety assessment, and anti-inflammatory activity of Salvia verbenaca L. J. Ethnopharmacol., 2021, 272, 113940.
[http://dx.doi.org/10.1016/j.jep.2021.113940 ] [PMID: 33631275]
[125]
Lee, D.S.; Je, J.Y. Gallic acid-grafted-chitosan inhibits foodborne pathogens by a membrane damage mechanism. J. Agric. Food Chem., 2013, 61(26), 6574-6579.
[http://dx.doi.org/10.1021/jf401254g ] [PMID: 23635088]
[126]
Massberg, S.; Schulz, C.; Gawaz, M. Role of platelets in the pathophysiology of acute coronary syndrome. Semin. Vasc. Med., 2003, 3(2), 147-162.
[http://dx.doi.org/10.1055/s-2003-40673 ] [PMID: 15199478]
[127]
Hwang, S.J.; Kim, Y-W.; Park, Y.; Lee, H-J.; Kim, K-W. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm. Res., 2014, 63(1), 81-90.
[http://dx.doi.org/10.1007/s00011-013-0674-4 ] [PMID: 24127072]
[128]
Chen, W-P.; Wu, L-D. Chlorogenic acid suppresses interleukin-1β-induced inflammatory mediators in human chondrocytes. Int. J. Clin. Exp. Pathol., 2014, 7(12), 8797-8801.
[PMID: 25674248]
[129]
Ahn, C.B.; Jung, W.K.; Park, S.J.; Kim, Y.T.; Kim, W.S.; Je, J.Y. Gallic acid-g-chitosan modulates inflammatory responses in LPS-stimulated RAW264.7 cells via NF-κB, AP-1, and MAPK Pathways. Inflammation, 2016, 39(1), 366-374.
[http://dx.doi.org/10.1007/s10753-015-0258-2 ] [PMID: 26412258]
[130]
Hori, J.I.; Zamboni, D.S.; Carra, D.B.; Goldman, G.H.; Berretta, A.A. The inhibition of inflammasome by Brazilian propolis (EPPAF) Evid.-Based Complement. Altern. Med, 2013., 418508.
[http://dx.doi.org/10.1155/2013/418508]
[131]
Ranneh, Y.; Akim, A.M.; Hamid, H.A.; Khazaai, H.; Fadel, A.; Zakaria, Z.A. honey and its nutritional and anti-inflammatory value. BMC Complement. Med. Ther., 2021, 21(1), 1-17.
[132]
Balderrama-Carmona, A.P.; Silva-Beltrán, N.P.; Gálvez-Ruiz, J.C.; Ruíz-Cruz, S.; Chaidez-Quiroz, C.; Morán-Palacio, E.F. Antiviral, anti-oxidant, and antihemolytic effect of annona muricata L. Leaves extracts. Plants, 2020, 9(12), 1650.
[http://dx.doi.org/10.3390/plants9121650 ] [PMID: 33256023]
[133]
Ozçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol., 2011, 49(4), 396-402.
[http://dx.doi.org/10.3109/13880209.2010.519390 ] [PMID: 21391841]
[134]
Zulhendri, F.; Chandrasekaran, K.; Kowacz, M.; Ravalia, M.; Kripal, K.; Fearnley, J.; Perera, C.O. Antiviral, antibacterial, antifungal, and antiparasitic properties of propolis: a review. Foods, 2021, 10(6), 1360.
[http://dx.doi.org/10.3390/foods10061360 ] [PMID: 34208334]
[135]
Wang, L.Y.; Niu, Y.Y.; Zhao, M.Y.; Yu, Y.M.; Li, Y.T.; Wu, Z.Y.; Yan, C.W. Supramolecular self-assembly of amantadine hydrochlo-ride with ferulic acid via dual optimization strategy establishes a precedent of synergistic antiviral drug-phenolic acid nutraceutical co-crystal. Analyst, 2021, 146(12), 3988-3999.
[http://dx.doi.org/10.1039/D1AN00478F ] [PMID: 34013306]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy