Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

The Therapeutic Activities of Metformin: Focus on the Nrf2 Signaling Pathway and Oxidative Stress Amelioration

Author(s): Mohammad Yassin Zamanian, Lydia Giménez-Llort, Marjan Nikbakhtzadeh, Zahra Kamiab, Mahsa Heidari and Gholamreza Bazmandegan*

Volume 16, Issue 3, 2023

Published on: 11 August, 2022

Article ID: e200622206208 Pages: 15

DOI: 10.2174/1874467215666220620143655

Price: $65

Abstract

In the present study, the health-protective and therapeutic properties of MET have been discussed, focusing on the effect of MET on the Nrf2 expression in patients with different pathological conditions. Metformin (MET) regulates high blood glucose, thus being an integral part of the antidiabetic medications used to treat type 2 diabetes mellitus. It belongs to biguanide class medications that are administered through the oral route. Moreover, the agent is widely known for its anti-cancer, anti-oxidant, anti-inflammatory, and neuroprotective effects. The MET modulates the nuclear factor erythroid-2 related factor-2 (Nrf2) signaling pathway, which in turn yields the above-mentioned medical benefits to patients. The Nrf2 signaling pathways are modulated in multiple ways described subsequently: 1) MET acts on the cancer cells and inactivates Raf-ERK signaling, thus reducing Nrf2 expression, 2) MET obstructs the expression of proteins that are involved in apoptosis of tumor cells and also prevents tumor cells from oxidation through an AMPK-independent pathway; 3) MET carries out Keap1-independent mechanism for reducing the levels of Nrf2 protein in cancer cells; 4) MET upregulates the Nrf2-mediated transcription to stimulate the anti-oxidant process that prevents oxidative stress in cells system and consequently gives neuroprotection from rotenone and 5) MET downregulates p65 and upregulates Nrf2 which helps improve the angiogenesis impairment stimulated by gestational diabetes mellitus. This article presents an analysis of the health-protective properties of MET and also sheds light on the effect of MET on the Nrf2 expression in patients with different pathological conditions.

Keywords: Metformin, Nrf2, oxidative stress, cancer, neuroprotective, tumor cell.

Graphical Abstract
[1]
Wu, P.; Yan, Y.; Ma, L.L.; Hou, B.Y.; He, Y.Y.; Zhang, L.; Niu, Z.R.; Song, J.K.; Pang, X.C.; Yang, X.Y.; Du, G.H. Effects of the Nrf2 protein modulator salvianolic acid A alone or combined with metformin on diabetes-associated macrovascular and renal injury. J. Biol. Chem., 2016, 291(42), 22288-22301.
[http://dx.doi.org/10.1074/jbc.M115.712703] [PMID: 27417135]
[2]
Association, A.D. 9. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetes-2020. Diabetes Care, 2020, 43(Suppl. 1), S98-S110.
[http://dx.doi.org/10.2337/dc20-S009] [PMID: 31862752]
[3]
Sanchez-Rangel, E.; Inzucchi, S.E. Metformin: Clinical use in type 2 diabetes. Diabetologia, 2017, 60(9), 1586-1593.
[http://dx.doi.org/10.1007/s00125-017-4336-x] [PMID: 28770321]
[4]
Zhang, Q.; Hu, N. Effects of metformin on the gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes., 2020, 13, 5003-5014.
[http://dx.doi.org/10.2147/DMSO.S286430] [PMID: 33364804]
[5]
Solymár, M.; Ivic, I.; Pótó, L.; Hegyi, P.; Garami, A.; Hartmann, P.; Pétervári, E.; Czopf, L.; Hussain, A.; Gyöngyi, Z.; Sarlós, P.; Simon, M.; Mátrai, P.; Bérczi, B.; Balaskó, M. Metformin induces significant reduction of body weight, total cholesterol and LDL levels in the elderly - A meta-analysis. PLoS One, 2018, 13(11), e0207947.
[http://dx.doi.org/10.1371/journal.pone.0207947] [PMID: 30475888]
[6]
Gadducci, A.; Biglia, N.; Tana, R.; Cosio, S.; Gallo, M. Metformin use and gynecological cancers: A novel treatment option emerging from drug repositioning. Crit. Rev. Oncol. Hematol., 2016, 105, 73-83.
[http://dx.doi.org/10.1016/j.critrevonc.2016.06.006] [PMID: 27378194]
[7]
Esteghamati, A.; Eskandari, D.; Mirmiranpour, H.; Noshad, S.; Mousavizadeh, M.; Hedayati, M.; Nakhjavani, M. Effects of metformin on markers of oxidative stress and antioxidant reserve in patients with newly diagnosed type 2 diabetes: A randomized clinical trial. Clin. Nutr., 2013, 32(2), 179-185.
[http://dx.doi.org/10.1016/j.clnu.2012.08.006] [PMID: 22963881]
[8]
Formoso, G.; De Filippis, E.A.; Michetti, N.; Di Fulvio, P.; Pandolfi, A.; Bucciarelli, T.; Ciabattoni, G.; Nicolucci, A.; Davì, G.; Consoli, A. Decreased in vivo oxidative stress and decreased platelet activation following metformin treatment in newly diagnosed type 2 diabetic subjects. Diabetes Metab. Res. Rev., 2008, 24(3), 231-237.
[http://dx.doi.org/10.1002/dmrr.794] [PMID: 17966969]
[9]
Nna, V.U.; Abu Bakar, A.B.; Md Lazin, M.R.M.L.; Mohamed, M. Antioxidant, anti-inflammatory and synergistic anti-hyperglycemic effects of Malaysian propolis and metformin in streptozotocin-induced diabetic rats. Food Chem. Toxicol., 2018, 120, 305-320.
[http://dx.doi.org/10.1016/j.fct.2018.07.028] [PMID: 30026088]
[10]
Onken, B.; Driscoll, M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One, 2010, 5(1), e8758.
[http://dx.doi.org/10.1371/journal.pone.0008758] [PMID: 20090912]
[11]
Yu, C.; Jiao, Y.; Xue, J.; Zhang, Q.; Yang, H.; Xing, L.; Chen, G.; Wu, J.; Zhang, S.; Zhu, W.; Cao, J. Metformin sensitizes non-small cell lung cancer cells to an epigallocatechin-3-gallate (egcg) treatment by suppressing the nrf2/ho-1 signaling pathway. Int. J. Biol. Sci., 2017, 13(12), 1560-1569.
[http://dx.doi.org/10.7150/ijbs.18830] [PMID: 29230104]
[12]
Cai, L.; Jin, X.; Zhang, J.; Li, L.; Zhao, J. Metformin suppresses Nrf2-mediated chemoresistance in hepatocellular carcinoma cells by increasing glycolysis. Aging (Albany NY), 2020, 12(17), 17582-17600.
[http://dx.doi.org/10.18632/aging.103777] [PMID: 32927432]
[13]
Do, M.T.; Kim, H.G.; Khanal, T.; Choi, J.H.; Kim, D.H.; Jeong, T.C.; Jeong, H.G. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways. Toxicol. Appl. Pharmacol., 2013, 271(2), 229-238.
[http://dx.doi.org/10.1016/j.taap.2013.05.010] [PMID: 23707609]
[14]
Ahmed, S.M.U.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(2), 585-597.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.005] [PMID: 27825853]
[15]
Mohan, S.; Gupta, D. Crosstalk of toll-like receptors signaling and Nrf2 pathway for regulation of inflammation. Biomed. Pharmacother., 2018, 108, 1866-1878.
[http://dx.doi.org/10.1016/j.biopha.2018.10.019] [PMID: 30372892]
[16]
Silva-Islas, C.A.; Maldonado, P.D. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol. Res., 2018, 134, 92-99.
[http://dx.doi.org/10.1016/j.phrs.2018.06.013] [PMID: 29913224]
[17]
Moi, P.; Chan, K.; Asunis, I.; Cao, A.; Kan, Y.W. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc. Natl. Acad. Sci. USA, 1994, 91(21), 9926-9930.
[http://dx.doi.org/10.1073/pnas.91.21.9926] [PMID: 7937919]
[18]
Zamanian, M.; Hajizadeh, M.R.; Esmaeili Nadimi, A.; Shamsizadeh, A.; Allahtavakoli, M. Antifatigue effects of troxerutin on exercise endurance capacity, oxidative stress and matrix metalloproteinase-9 levels in trained male rats. Fundam. Clin. Pharmacol., 2017, 31(4), 447-455.
[http://dx.doi.org/10.1111/fcp.12280] [PMID: 28214375]
[19]
Zamanian, M; Bazmandegan, G; Sureda, A; Sobarzo-Sanchez, E; Yousefi-Manesh, H The protective roles and molecular mechanisms of troxerutin (Vitamin P4) for the treatment of chronic diseases: A mechanistic review. 2021, 19(1), 97-110.
[20]
Bazmandegan, G.; Boroushaki, M.T.; Shamsizadeh, A.; Ayoobi, F.; Hakimizadeh, E.; Allahtavakoli, M.J.B. Brown propolis attenuates cerebral ischemia-induced oxidative damage via affecting antioxidant enzyme system in mice. Biomed. Pharmacother., 2017, 85, 503-510.
[http://dx.doi.org/10.1016/j.biopha.2016.11.057]
[21]
Feng, W; Han, X; Hu, H; Chang, M; Ding, L; Xiang, H 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Net commun., 2021, 12(1), 1-16.
[22]
Wei, W.; Ma, N.; Fan, X.; Yu, Q.; Ci, X. The role of Nrf2 in acute kidney injury: Novel molecular mechanisms and therapeutic approaches. Free Radic. Biol. Med., 2020, 158, 1-12.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.06.025] [PMID: 32663513]
[23]
Kim, J.; Cha, Y-N.; Surh, Y-J. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat. Res., 2010, 690(1-2), 12-23.
[http://dx.doi.org/10.1016/j.mrfmmm.2009.09.007] [PMID: 19799917]
[24]
Pi, J.; Hayes, J.D.; Yamamoto, M. New insights into nuclear factor erythroid 2-related factors in toxicology and pharmacology. Toxicol. Appl. Pharmacol., 2019, 367, 33-35.
[http://dx.doi.org/10.1016/j.taap.2019.01.014] [PMID: 30731095]
[25]
Kassab, R.B.; Lokman, M.S.; Daabo, H.M.A.; Gaber, D.A.; Habotta, O.A.; Hafez, M.M.; Zhery, A.S.; Moneim, A.E.A.; Fouda, M.S. Ferulic acid influences Nrf2 activation to restore testicular tissue from cadmium-induced oxidative challenge, inflammation, and apoptosis in rats. J. Food Biochem., 2020, 44(12), e13505.
[http://dx.doi.org/10.1111/jfbc.13505] [PMID: 33047361]
[26]
Li, J.; Ichikawa, T.; Jin, Y.; Hofseth, L.J.; Nagarkatti, P.; Nagarkatti, M.; Windust, A.; Cui, T. An essential role of Nrf2 in American ginseng-mediated anti-oxidative actions in cardiomyocytes. J. Ethnopharmacol., 2010, 130(2), 222-230.
[http://dx.doi.org/10.1016/j.jep.2010.03.040] [PMID: 20447451]
[27]
Tu, W.; Wang, H.; Li, S.; Liu, Q.; Sha, H. The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging Dis., 2019, 10(3), 637-651.
[http://dx.doi.org/10.14336/AD.2018.0513] [PMID: 31165007]
[28]
Kitamura, H.; Motohashi, H. NRF2 addiction in cancer cells. Cancer Sci., 2018, 109(4), 900-911.
[http://dx.doi.org/10.1111/cas.13537] [PMID: 29450944]
[29]
Xu, W.; Hellerbrand, C.; Köhler, U.A.; Bugnon, P.; Kan, Y-W.; Werner, S.; Beyer, T.A. The Nrf2 transcription factor protects from toxin-induced liver injury and fibrosis. Lab. Invest., 2008, 88(10), 1068-1078.
[http://dx.doi.org/10.1038/labinvest.2008.75] [PMID: 18679376]
[30]
Baird, L.; Llères, D.; Swift, S.; Dinkova-Kostova, A.T. Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex. Proc. Natl. Acad. Sci. USA, 2013, 110(38), 15259-15264.
[http://dx.doi.org/10.1073/pnas.1305687110] [PMID: 23986495]
[31]
Lacher, S.E.; Lee, J.S.; Wang, X.; Campbell, M.R.; Bell, D.A.; Slattery, M. Beyond antioxidant genes in the ancient Nrf2 regulatory network. Free Radic. Biol., 2015, 88(Pt B), 452-465.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.06.044] [PMID: 26163000]
[32]
Dinkova-Kostova, A.T.; Holtzclaw, W.D.; Kensler, T.W. The role of Keap1 in cellular protective responses. Chem. Res. Toxicol., 2005, 18(12), 1779-1791.
[http://dx.doi.org/10.1021/tx050217c] [PMID: 16359168]
[33]
Shaw, P.; Chattopadhyay, A. Nrf2-ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms. J. Cell. Physiol., 2020, 235(4), 3119-3130.
[http://dx.doi.org/10.1002/jcp.29219] [PMID: 31549397]
[34]
Tonelli, C.; Chio, I.I.C.; Tuveson, D.A. Transcriptional regulation by Nrf2. Antioxid. Redox Signal., 2018, 29(17), 1727-1745.
[http://dx.doi.org/10.1089/ars.2017.7342] [PMID: 28899199]
[35]
Lee, D.; Bae, J.; Kim, Y.K.; Gil, M.; Lee, J-Y.; Park, C-S.; Lee, K.J. Inhibitory effects of berberine on lipopolysaccharide-induced inducible nitric oxide synthase and the high-mobility group box 1 release in macrophages. Biochem. Biophys. Res. Commun., 2013, 431(3), 506-511.
[http://dx.doi.org/10.1016/j.bbrc.2012.12.143] [PMID: 23333393]
[36]
Cong, Z-X.; Wang, H-D.; Wang, J-W.; Zhou, Y.; Pan, H.; Zhang, D-D.; Zhu, L. ERK and PI3K signaling cascades induce Nrf2 activation and regulate cell viability partly through Nrf2 in human glioblastoma cells. Oncol. Rep., 2013, 30(2), 715-722.
[http://dx.doi.org/10.3892/or.2013.2485] [PMID: 23708697]
[37]
Kaspar, J.W.; Jaiswal, A.K. An autoregulatory loop between Nrf2 and Cul3-Rbx1 controls their cellular abundance. J. Biol. Chem., 2010, 285(28), 21349-21358.
[http://dx.doi.org/10.1074/jbc.M110.121863] [PMID: 20452971]
[38]
Zhao, J.; Lin, X.; Meng, D.; Zeng, L.; Zhuang, R.; Huang, S.; Lv, W.; Hu, J. Nrf2 mediates metabolic reprogramming in non-small cell lung cancer. Front. Oncol., 2020, 10, 578315.
[http://dx.doi.org/10.3389/fonc.2020.578315] [PMID: 33324555]
[39]
Ji, L.; Li, H.; Gao, P.; Shang, G.; Zhang, D.D.; Zhang, N.; Jiang, T. Nrf2 pathway regulates multidrug-resistance-associated protein 1 in small cell lung cancer. PLoS One, 2013, 8(5), e63404.
[http://dx.doi.org/10.1371/journal.pone.0063404] [PMID: 23667609]
[40]
Son, Y-O.; Pratheeshkumar, P.; Roy, R.V.; Hitron, J.A.; Wang, L.; Zhang, Z.; Shi, X. Nrf2/p62 signaling in apoptosis resistance and its role in cadmium-induced carcinogenesis. J. Biol. Chem., 2014, 289(41), 28660-28675.
[http://dx.doi.org/10.1074/jbc.M114.595496] [PMID: 25157103]
[41]
Arnold, P.; Mojumder, D.; Detoledo, J.; Lucius, R.; Wilms, H. Pathophysiological processes in multiple sclerosis: Focus on nuclear factor erythroid-2-related factor 2 and emerging pathways. Clin. Pharmacol., 2014, 6, 35-42.
[PMID: 24591852]
[42]
Mitsuishi, Y.; Taguchi, K.; Kawatani, Y.; Shibata, T.; Nukiwa, T.; Aburatani, H.; Yamamoto, M.; Motohashi, H. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell, 2012, 22(1), 66-79.
[http://dx.doi.org/10.1016/j.ccr.2012.05.016] [PMID: 22789539]
[43]
Kumar, H.; Kim, I-S.; More, S.V.; Kim, B-W.; Choi, D-K. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat. Prod. Rep., 2014, 31(1), 109-139.
[http://dx.doi.org/10.1039/C3NP70065H] [PMID: 24292194]
[44]
Homma, S.; Ishii, Y.; Morishima, Y.; Yamadori, T.; Matsuno, Y.; Haraguchi, N.; Kikuchi, N.; Satoh, H.; Sakamoto, T.; Hizawa, N.; Itoh, K.; Yamamoto, M. Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin. Cancer Res., 2009, 15(10), 3423-3432.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2822] [PMID: 19417020]
[45]
Zhang, P.; Singh, A.; Yegnasubramanian, S.; Esopi, D.; Kombairaju, P.; Bodas, M.; Wu, H.; Bova, S.G.; Biswal, S. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol. Cancer Ther., 2010, 9(2), 336-346.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0589] [PMID: 20124447]
[46]
Yip, P.Y. Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathway in non-small cell lung cancer. Transl. Lung Cancer Res., 2015, 4(2), 165-176.
[PMID: 25870799]
[47]
Hammad, A.; Namani, A.; Elshaer, M.; Wang, X.J.; Tang, X. “NRF2 addiction” in lung cancer cells and its impact on cancer therapy. Cancer Lett., 2019, 467, 40-49.
[http://dx.doi.org/10.1016/j.canlet.2019.09.016] [PMID: 31574294]
[48]
Furfaro, A; Traverso, N; Domenicotti, C; Piras, S; Moretta, L; Marinari, U The Nrf2/HO-1 axis in cancer cell growth and chemoresistance. Oxid. Med. Cell. Longev., 2016, 2016
[49]
Cloer, E.W.; Goldfarb, D.; Schrank, T.P.; Weissman, B.E.; Major, M.B. NRF2 activation in cancer: From DNA to protein. Cancer Res., 2019, 79(5), 889-898.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2723] [PMID: 30760522]
[50]
Spong, C.Y.; Berghella, V.; Wenstrom, K.D.; Mercer, B.M.; Saade, G.R. Preventing the first cesarean delivery: Summary of a joint Eunice Kennedy Shriver national institute of child health and human development, society for maternal-fetal medicine, and American college of obstetricians and gynecologists workshop. Obstet. Gynecol., 2012, 120(5), 1181-1193.
[http://dx.doi.org/10.1097/AOG.0b013e3182704880] [PMID: 23090537]
[51]
Lai, S-W.; Liao, K-F.; Chen, P-C.; Tsai, P-Y.; Hsieh, D.P.H.; Chen, C-C. Antidiabetes drugs correlate with decreased risk of lung cancer: A population-based observation in Taiwan. Clin. Lung Cancer, 2012, 13(2), 143-148.
[http://dx.doi.org/10.1016/j.cllc.2011.10.002] [PMID: 22129971]
[52]
Ashinuma, H.; Takiguchi, Y.; Kitazono, S.; Kitazono-Saitoh, M.; Kitamura, A.; Chiba, T.; Tada, Y.; Kurosu, K.; Sakaida, E.; Sekine, I.; Tanabe, N.; Iwama, A.; Yokosuka, O.; Tatsumi, K. Antiproliferative action of metformin in human lung cancer cell lines. Oncol. Rep., 2012, 28(1), 8-14.
[PMID: 22576795]
[53]
Koeck, S.; Amann, A.; Huber, J.M.; Gamerith, G.; Hilbe, W.; Zwierzina, H. The impact of metformin and salinomycin on transforming growth factor β-induced epithelial-to-mesenchymal transition in non-small cell lung cancer cell lines. Oncol. Lett., 2016, 11(4), 2946-2952.
[http://dx.doi.org/10.3892/ol.2016.4323] [PMID: 27073581]
[54]
Yue, W.; Yang, C.S.; DiPaola, R.S.; Tan, X-L. Repurposing of metformin and aspirin by targeting AMPK-mTOR and inflammation for pancreatic cancer prevention and treatment. Cancer Prev. Res. (Phila.), 2014, 7(4), 388-397.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0337] [PMID: 24520038]
[55]
Ferla, R.; Haspinger, E.; Surmacz, E. Metformin inhibits leptin-induced growth and migration of glioblastoma cells. Oncol. Lett., 2012, 4(5), 1077-1081.
[http://dx.doi.org/10.3892/ol.2012.843] [PMID: 23162655]
[56]
Kato, K.; Gong, J.; Iwama, H.; Kitanaka, A.; Tani, J.; Miyoshi, H.; Nomura, K.; Mimura, S.; Kobayashi, M.; Aritomo, Y.; Kobara, H.; Mori, H.; Himoto, T.; Okano, K.; Suzuki, Y.; Murao, K.; Masaki, T. The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo. Mol. Cancer Ther., 2012, 11(3), 549-560.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0594] [PMID: 22222629]
[57]
Liu, B.; Fan, Z.; Edgerton, S.; Deng, X.; Alimova, I.; Lind, S. Cell cycle (Georgetown, Tex.). Cell Cycle, 2009, 8(13), 2031-2040.
[http://dx.doi.org/10.4161/cc.8.13.8814] [PMID: 19440038]
[58]
Vazquez-Martin, A.; Oliveras-Ferraros, C.; Menendez, J.A. The antidiabetic drug metformin suppresses HER2 (erbB-2) oncoprotein overexpression via inhibition of the mTOR effector p70S6K1 in human breast carcinoma cells. Cell Cycle, 2009, 8(1), 88-96.
[http://dx.doi.org/10.4161/cc.8.1.7499] [PMID: 19106626]
[59]
Ohta, T.; Iijima, K.; Miyamoto, M.; Nakahara, I.; Tanaka, H.; Ohtsuji, M.; Suzuki, T.; Kobayashi, A.; Yokota, J.; Sakiyama, T.; Shibata, T.; Yamamoto, M.; Hirohashi, S. Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res., 2008, 68(5), 1303-1309.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5003] [PMID: 18316592]
[60]
Hanna, R.K.; Zhou, C.; Malloy, K.M.; Sun, L.; Zhong, Y.; Gehrig, P.A.; Bae-Jump, V.L. Metformin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and modulation of the mTOR pathway. Gynecol. Oncol., 2012, 125(2), 458-469.
[http://dx.doi.org/10.1016/j.ygyno.2012.01.009] [PMID: 22252099]
[61]
Rocha, G.Z.; Dias, M.M.; Ropelle, E.R.; Osório-Costa, F.; Rossato, F.A.; Vercesi, A.E.; Saad, M.J.; Carvalheira, J.B. Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin. Cancer Res., 2011, 17(12), 3993-4005.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2243] [PMID: 21543517]
[62]
Wang, X-J.; Sun, Z.; Villeneuve, N.F.; Zhang, S.; Zhao, F.; Li, Y.; Chen, W.; Yi, X.; Zheng, W.; Wondrak, G.T.; Wong, P.K.; Zhang, D.D. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis, 2008, 29(6), 1235-1243.
[http://dx.doi.org/10.1093/carcin/bgn095] [PMID: 18413364]
[63]
Ren, D.; Villeneuve, N.F.; Jiang, T.; Wu, T.; Lau, A.; Toppin, H.A.; Zhang, D.D. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc. Natl. Acad. Sci. USA, 2011, 108(4), 1433-1438.
[http://dx.doi.org/10.1073/pnas.1014275108] [PMID: 21205897]
[64]
Tang, X.; Wang, H.; Fan, L.; Wu, X.; Xin, A.; Ren, H.; Wang, X.J. Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic. Biol. Med., 2011, 50(11), 1599-1609.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.03.008] [PMID: 21402146]
[65]
Shibata, T.; Ohta, T.; Tong, K.I.; Kokubu, A.; Odogawa, R.; Tsuta, K.; Asamura, H.; Yamamoto, M.; Hirohashi, S. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc. Natl. Acad. Sci. USA, 2008, 105(36), 13568-13573.
[http://dx.doi.org/10.1073/pnas.0806268105] [PMID: 18757741]
[66]
Singh, A.; Boldin-Adamsky, S.; Thimmulappa, R.K.; Rath, S.K.; Ashush, H.; Coulter, J.; Blackford, A.; Goodman, S.N.; Bunz, F.; Watson, W.H.; Gabrielson, E.; Feinstein, E.; Biswal, S. RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res., 2008, 68(19), 7975-7984.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1401] [PMID: 18829555]
[67]
Kweon, M.H.; Adhami, V.M.; Lee, J.S.; Mukhtar, H. Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate. J. Biol. Chem., 2006, 281(44), 33761-33772.
[http://dx.doi.org/10.1074/jbc.M604748200] [PMID: 16950787]
[68]
Zhang, J.; Jiao, K.; Liu, J.; Xia, Y. Metformin reverses the resistance mechanism of lung adenocarcinoma cells that knocks down the Nrf2 gene. Oncol. Lett., 2018, 16(5), 6071-6080.
[http://dx.doi.org/10.3892/ol.2018.9382] [PMID: 30333878]
[69]
Bazmandegan, G; Fatemi, I; Kaeidi, A; Khademalhosseini, M; Fathinejad, A Calcium dobesilate prevents cisplatin-induced nephrotoxicity by modulating oxidative and histopathological changes in mice., 2021, 394(3), 515-521.
[70]
Marullo, R.; Werner, E.; Degtyareva, N.; Moore, B.; Altavilla, G.; Ramalingam, S.S.; Doetsch, P.W. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One, 2013, 8(11), e81162.
[http://dx.doi.org/10.1371/journal.pone.0081162] [PMID: 24260552]
[71]
Huang, S.; He, T.; Yang, S.; Sheng, H.; Tang, X.; Bao, F.; Wang, Y.; Lin, X.; Yu, W.; Cheng, F.; Lv, W.; Hu, J. Metformin reverses chemoresistance in non-small cell lung cancer via accelerating ubiquitination-mediated degradation of Nrf2. Transl. Lung Cancer Res., 2020, 9(6), 2337-2355.
[http://dx.doi.org/10.21037/tlcr-20-1072] [PMID: 33489797]
[72]
Kulkarni, S.R.; Donepudi, A.C.; Xu, J.; Wei, W.; Cheng, Q.C.; Driscoll, M.V.; Johnson, D.A.; Johnson, J.A.; Li, X.; Slitt, A.L. Fasting induces nuclear factor E2-related factor 2 and ATP-binding Cassette transporters via protein kinase A and Sirtuin-1 in mouse and human. Antioxid. Redox Signal., 2014, 20(1), 15-30.
[http://dx.doi.org/10.1089/ars.2012.5082] [PMID: 23725046]
[73]
Arlt, A.; Bauer, I.; Schafmayer, C.; Tepel, J.; Müerköster, S.S.; Brosch, M.; Röder, C.; Kalthoff, H.; Hampe, J.; Moyer, M.P.; Fölsch, U.R.; Schäfer, H. Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene, 2009, 28(45), 3983-3996.
[http://dx.doi.org/10.1038/onc.2009.264] [PMID: 19734940]
[74]
Do, M.T.; Kim, H.G.; Choi, J.H.; Jeong, H.G. Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1α/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents. Free Radic. Biol. Med., 2014, 74, 21-34.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.06.010] [PMID: 24970682]
[75]
GM. D.; Karreth, F.A.; Humpton, T.J. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 2011, 475, 106-109.
[76]
Aldea, M.D.; Petrushev, B.; Soritau, O.; Tomuleasa, C.I.; Berindan-Neagoe, I.; Filip, A.G.; Chereches, G.; Cenariu, M.; Craciun, L.; Tatomir, C.; Florian, I.S.; Crivii, C.B.; Kacso, G. Metformin plus sorafenib highly impacts temozolomide resistant glioblastoma stem-like cells. J. BUON, 2014, 19(2), 502-511.
[PMID: 24965413]
[77]
Haugrud, A.B.; Zhuang, Y.; Coppock, J.D.; Miskimins, W.K. Dichloroacetate enhances apoptotic cell death via oxidative damage and attenuates lactate production in metformin-treated breast cancer cells. Breast Cancer Res. Treat., 2014, 147(3), 539-550.
[http://dx.doi.org/10.1007/s10549-014-3128-y] [PMID: 25212175]
[78]
Kim, E.H.; Kim, M-S.; Cho, C-K.; Jung, W-G.; Jeong, Y.K.; Jeong, J-H. Low and high linear energy transfer radiation sensitization of HCC cells by metformin. J. Radiat. Res. (Tokyo), 2014, 55(3), 432-442.
[http://dx.doi.org/10.1093/jrr/rrt131] [PMID: 24375278]
[79]
Wang, X.; Li, R.; Zhao, X.; Yu, X.; Sun, Q. Metformin Promotes HaCaT Cell Apoptosis through Generation of Reactive Oxygen Species via Raf-1-ERK1/2-Nrf2 Inactivation. Inflammation, 2018, 41(3), 948-958.
[http://dx.doi.org/10.1007/s10753-018-0749-z] [PMID: 29549478]
[80]
Zhang, M.; Zhang, C.; Zhang, L.; Yang, Q.; Zhou, S.; Wen, Q.; Wang, J. Nrf2 is a potential prognostic marker and promotes proliferation and invasion in human hepatocellular carcinoma. BMC Cancer, 2015, 15(1), 531.
[http://dx.doi.org/10.1186/s12885-015-1541-1] [PMID: 26194347]
[81]
Hayashi, A.; Suzuki, H.; Itoh, K.; Yamamoto, M.; Sugiyama, Y. Transcription factor Nrf2 is required for the constitutive and inducible expression of multidrug resistance-associated protein 1 in mouse embryo fibroblasts. Biochem. Biophys. Res. Commun., 2003, 310(3), 824-829.
[http://dx.doi.org/10.1016/j.bbrc.2003.09.086] [PMID: 14550278]
[82]
Vollrath Reyes, V; Wielandt Necochea, AM; Iruretagoyena, M Chianale Bertolini, JL Role of Nrf2 in the regulation of the Mrp2 (ABCC2) gene. Biochem. J., 2016, 395(3), 599-609.
[83]
Rizos, C.V.; Elisaf, M.S. Metformin and cancer. Eur. J. Pharmacol., 2013, 705(1-3), 96-108.
[http://dx.doi.org/10.1016/j.ejphar.2013.02.038] [PMID: 23499688]
[84]
Marinello, P.C.; da Silva, T.N.X.; Panis, C.; Neves, A.F.; Machado, K.L.; Borges, F.H.; Guarnier, F.A.; Bernardes, S.S.; de-Freitas-Junior, J.C.; Morgado-Díaz, J.A.; Luiz, R.C.; Cecchini, R.; Cecchini, A.L. Mechanism of metformin action in MCF-7 and MDA-MB-231 human breast cancer cells involves oxidative stress generation, DNA damage, and transforming growth factor β1 induction. Tumour Biol., 2016, 37(4), 5337-5346.
[http://dx.doi.org/10.1007/s13277-015-4395-x] [PMID: 26561471]
[85]
Queiroz, E.A.; Puukila, S.; Eichler, R.; Sampaio, S.C.; Forsyth, H.L.; Lees, S.J.; Barbosa, A.M.; Dekker, R.F.; Fortes, Z.B.; Khaper, N. Metformin induces apoptosis and cell cycle arrest mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast cancer cells. PLoS One, 2014, 9(5), e98207.
[http://dx.doi.org/10.1371/journal.pone.0098207] [PMID: 24858012]
[86]
Cuadrado, A.; Manda, G.; Hassan, A.; Alcaraz, M.J.; Barbas, C.; Daiber, A.; Ghezzi, P.; León, R.; López, M.G.; Oliva, B.; Pajares, M.; Rojo, A.I.; Robledinos-Antón, N.; Valverde, A.M.; Guney, E.; Schmidt, H.H.H.W. Transcription factor NRF2 as a therapeutic target for chronic diseases: A systems medicine approach. Pharmacol. Rev., 2018, 70(2), 348-383.
[http://dx.doi.org/10.1124/pr.117.014753] [PMID: 29507103]
[87]
Niture, S.K.; Khatri, R.; Jaiswal, A.K. Regulation of Nrf2-an update. Free Radic. Biol. Med., 2014, 66, 36-44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.02.008] [PMID: 23434765]
[88]
Karihtala, P.; Kauppila, S.; Soini, Y. Arja-Jukkola-Vuorinen, Oxidative stress and counteracting mechanisms in hormone receptor positive, triple-negative and basal-like breast carcinomas. BMC Cancer, 2011, 11(1), 262.
[http://dx.doi.org/10.1186/1471-2407-11-262] [PMID: 21693047]
[89]
Sośnicki, S.; Kapral, M.; Węglarz, L. Molecular targets of metformin antitumor action. Pharmacol. Rep., 2016, 68(5), 918-925.
[http://dx.doi.org/10.1016/j.pharep.2016.04.021] [PMID: 27362768]
[90]
Ashabi, G.; Khalaj, L.; Khodagholi, F.; Goudarzvand, M.; Sarkaki, A. Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia. Metab. Brain Dis., 2015, 30(3), 747-754.
[http://dx.doi.org/10.1007/s11011-014-9632-2] [PMID: 25413451]
[91]
Urpilainen, E.; Kangaskokko, J.; Puistola, U.; Karihtala, P. Metformin diminishes the unfavourable impact of Nrf2 in breast cancer patients with type 2 diabetes. Tumour Biol., 2019, 41(1), 1010428318815413.
[http://dx.doi.org/10.1177/1010428318815413] [PMID: 30803422]
[92]
Ramsey, C.P.; Glass, C.A.; Montgomery, M.B.; Lindl, K.A.; Ritson, G.P.; Chia, L.A.; Hamilton, R.L.; Chu, C.T.; Jordan-Sciutto, K.L. Expression of Nrf2 in neurodegenerative diseases. J. Neuropathol. Exp. Neurol., 2007, 66(1), 75-85.
[http://dx.doi.org/10.1097/nen.0b013e31802d6da9] [PMID: 17204939]
[93]
Nitti, M.; Piras, S.; Brondolo, L.; Marinari, U.M.; Pronzato, M.A.; Furfaro, A.L. Heme oxygenase 1 in the nervous system: Does it favor neuronal cell survival or induce neurodegeneration? Int. J. Mol. Sci., 2018, 19(8), 2260.
[http://dx.doi.org/10.3390/ijms19082260] [PMID: 30071692]
[94]
Ishii, T.; Itoh, K.; Takahashi, S.; Sato, H.; Yanagawa, T.; Katoh, Y.; Bannai, S.; Yamamoto, M. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J. Biol. Chem., 2000, 275(21), 16023-16029.
[http://dx.doi.org/10.1074/jbc.275.21.16023] [PMID: 10821856]
[95]
Hung, S-Y.; Liou, H-C.; Kang, K-H.; Wu, R-M.; Wen, C-C.; Fu, W-M. Overexpression of heme oxygenase-1 protects dopaminergic neurons against 1-methyl-4-phenylpyridinium-induced neurotoxicity. Mol. Pharmacol., 2008, 74(6), 1564-1575.
[http://dx.doi.org/10.1124/mol.108.048611] [PMID: 18799798]
[96]
Song, W.; Patel, A.; Qureshi, H.Y.; Han, D.; Schipper, H.M.; Paudel, H.K. The Parkinson disease-associated A30P mutation stabilizes α-synuclein against proteasomal degradation triggered by heme oxygenase-1 over-expression in human neuroblastoma cells. J. Neurochem., 2009, 110(2), 719-733.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06165.x] [PMID: 19457084]
[97]
Di Monte, D.A.; Schipper, H.M.; Hetts, S.; Langston, J.W. Iron-mediated bioactivation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in glial cultures. Glia, 1995, 15(2), 203-206.
[http://dx.doi.org/10.1002/glia.440150213] [PMID: 8567072]
[98]
Drolet, R.E.; Cannon, J.R.; Montero, L.; Greenamyre, J.T. Chronic rotenone exposure reproduces Parkinson’s disease gastrointestinal neuropathology. Neurobiol. Dis., 2009, 36(1), 96-102.
[http://dx.doi.org/10.1016/j.nbd.2009.06.017] [PMID: 19595768]
[99]
Xiong, N.; Long, X.; Xiong, J.; Jia, M.; Chen, C.; Huang, J.; Ghoorah, D.; Kong, X.; Lin, Z.; Wang, T. Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson’s disease models. Crit. Rev. Toxicol., 2012, 42(7), 613-632.
[http://dx.doi.org/10.3109/10408444.2012.680431] [PMID: 22574684]
[100]
Johnson, M.E.; Bobrovskaya, L. An update on the rotenone models of Parkinson’s disease: Their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology, 2015, 46, 101-116.
[http://dx.doi.org/10.1016/j.neuro.2014.12.002] [PMID: 25514659]
[101]
El-Ghaiesh, S.H.; Bahr, H.I.; Ibrahiem, A.T.; Ghorab, D.; Alomar, S.Y.; Farag, N.E.; Zaitone, S.A. Metformin protects from rotenone-induced nigrostriatal neuronal death in adult mice by activating ampk-foxo3 signaling and mitigation of angiogenesis. Front. Mol. Neurosci., 2020, 13, 84.
[http://dx.doi.org/10.3389/fnmol.2020.00084] [PMID: 32625061]
[102]
Katila, N.; Bhurtel, S.; Park, P.H.; Choi, D.Y. Metformin attenuates rotenone-induced oxidative stress and mitochondrial damage via the AKT/Nrf2 pathway. Neurochem. Int., 2021, 148, 105120.
[http://dx.doi.org/10.1016/j.neuint.2021.105120] [PMID: 34197898]
[103]
Shih, R.A.; Hu, H.; Weisskopf, M.G.; Schwartz, B.S. Cumulative lead dose and cognitive function in adults: A review of studies that measured both blood lead and bone lead. Environ. Health Perspect., 2007, 115(3), 483-492.
[http://dx.doi.org/10.1289/ehp.9786] [PMID: 17431502]
[104]
D’souza, H.S.; Dsouza, S.A.; Menezes, G.; Venkatesh, T. Diagnosis, evaluation, and treatment of lead poisoning in general population. Indian J. Clin. Biochem., 2011, 26(2), 197-201.
[http://dx.doi.org/10.1007/s12291-011-0122-6] [PMID: 22468050]
[105]
Yang, L.; Li, X.; Jiang, A.; Li, X.; Chang, W.; Chen, J.; Ye, F. Metformin alleviates lead-induced mitochondrial fragmentation via AMPK/Nrf2 activation in SH-SY5Y cells. Redox Biol., 2020, 36, 101626.
[http://dx.doi.org/10.1016/j.redox.2020.101626] [PMID: 32863218]
[106]
Guerrero-Beltrán, C.E.; Tapia, E.; Sánchez-González, D.J.; Martínez-Martínez, C.M.; Cristobal-García, M.; Pedraza-Chaverri, J. Tert-Butylhydroquinone pretreatment protects kidney from ischemia-reperfusion injury. J. Nephrol., 2012, 25(1), 84-89.
[http://dx.doi.org/10.5301/JN.2011.8345] [PMID: 21607921]
[107]
Allard, J.S.; Perez, E.J.; Fukui, K.; Carpenter, P.; Ingram, D.K.; de Cabo, R. Prolonged metformin treatment leads to reduced transcription of Nrf2 and neurotrophic factors without cognitive impairment in older C57BL/6J mice. Behav. Brain Res., 2016, 301, 1-9.
[http://dx.doi.org/10.1016/j.bbr.2015.12.012] [PMID: 26698400]
[108]
Sanadgol, N.; Barati, M.; Houshmand, F.; Hassani, S.; Clarner, T.; Shahlaei, M.; Golab, F. Metformin accelerates myelin recovery and ameliorates behavioral deficits in the animal model of multiple sclerosis via adjustment of AMPK/Nrf2/mTOR signaling and maintenance of endogenous oligodendrogenesis during brain self-repairing period. Pharmacol. Rep., 2020, 72(3), 641-658.
[http://dx.doi.org/10.1007/s43440-019-00019-8] [PMID: 32048246]
[109]
Yagishita, Y; Uruno, A; Chartoumpekis, DV; Kensler, TW Nrf2 represses the onset of type 1 diabetes in non-obese diabetic mice. 2019, 240(3), 403-416.
[110]
Cui, W.; Bai, Y.; Miao, X.; Luo, P.; Chen, Q.; Tan, Y. Prevention of diabetic nephropathy by sulforaphane: Possible role of Nrf2 upregulation and activation; Oxid., Med. Cell Long, 2012, 2012, .
[http://dx.doi.org/10.1155/2012/821936]
[111]
Zheng, H.; Whitman, S.A.; Wu, W.; Wondrak, G.T.; Wong, P.K.; Fang, D. Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. 2011, 60(11), 3055-3066.
[http://dx.doi.org/10.2337/db11-0807]
[112]
Alhaider, A.A.; Korashy, H.M.; Sayed-Ahmed, M.M.; Mobark, M.; Kfoury, H.; Mansour, M.A. Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through modulation of oxidative stress genes expression. Chem. Biol. Interact., 2011, 192(3), 233-242.
[http://dx.doi.org/10.1016/j.cbi.2011.03.014] [PMID: 21457706]
[113]
Metformin attenuates atherosclerosis in streptozotocin-induced diabetic ApoE-deficient mice through AMP-activated protein kinase. In: Diabetes; Zhang, M.; Song, P.; Guzman, M.R.; Asfa, S.; Zou, M-H., Eds.; Amer Diabetes Assoc 1701 N Beauregard ST, Alexandria, VA 22311-1717 USA, 2009.
[114]
Cheng, J-T.; Huang, C-C.; Liu, I-M.; Tzeng, T-F.; Chang, C.J. Novel mechanism for plasma glucose-lowering action of metformin in streptozotocin-induced diabetic rats. Diabetes, 2006, 55(3), 819-825.
[http://dx.doi.org/10.2337/diabetes.55.03.06.db05-0934] [PMID: 16505249]
[115]
Erejuwa, O.O.; Sulaiman, S.A.; Wahab, M.S.; Sirajudeen, K.N.S.; Salleh, M.S.M.; Gurtu, S. Glibenclamide or metformin combined with honey improves glycemic control in streptozotocin-induced diabetic rats. Int. J. Biol. Sci., 2011, 7(2), 244-252.
[http://dx.doi.org/10.7150/ijbs.7.244] [PMID: 21448302]
[116]
Innamorato, N.G.; Lastres-Becker, I.; Cuadrado, A. Role of microglial redox balance in modulation of neuroinflammation. Curr. Opin. Neurol., 2009, 22(3), 308-314.
[http://dx.doi.org/10.1097/WCO.0b013e32832a3225] [PMID: 19359988]
[117]
Jazwa, A.; Cuadrado, A. Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Curr. Drug Targets, 2010, 11(12), 1517-1531.
[http://dx.doi.org/10.2174/1389450111009011517] [PMID: 20704549]
[118]
Bryan, H.K.; Olayanju, A.; Goldring, C.E.; Park, B.K. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem. Pharmacol., 2013, 85(6), 705-717.
[http://dx.doi.org/10.1016/j.bcp.2012.11.016] [PMID: 23219527]
[119]
Sharma, A.; Rizky, L.; Stefanovic, N.; Tate, M.; Ritchie, R.H.; Ward, K.W.; de Haan, J.B. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activator dh404 protects against diabetes-induced endothelial dysfunction. Cardiovasc. Diabetol., 2017, 16(1), 33.
[http://dx.doi.org/10.1186/s12933-017-0513-y] [PMID: 28253885]
[120]
Manoharan, B.; Bobby, Z.; Dorairajan, G.; Jacob, S.E.; Gladwin, V.; Vinayagam, V.; Packirisamy, R.M. Increased placental expressions of nuclear factor erythroid 2-related factor 2 and antioxidant enzymes in gestational diabetes: Protective mechanisms against the placental oxidative stress? Eur. J. Obstet. Gynecol., 2019, 238, 78-85.
[http://dx.doi.org/10.1016/j.ejogrb.2019.05.016] [PMID: 31121342]
[121]
Sun, C.C.; Lai, Y.N.; Wang, W.H.; Xu, X.M.; Li, X.Q.; Wang, H.; Zheng, J.Y.; Zheng, J.Q. Metformin ameliorates gestational diabetes mellitus-induced endothelial dysfunction via downregulation of p65 and upregulation of Nrf2. Front. Pharmacol., 2020, 11, 575390.
[http://dx.doi.org/10.3389/fphar.2020.575390] [PMID: 33162888]
[122]
Ebokaiwe, A.P.; Obeten, K.E.; Okori, S.O.; David, E.E.; Olusanya, O.; Chukwu, C.J.; Okoro, N.; Ehiri, R.C. Co-administration of selenium nanoparticles and metformin abrogate testicular oxidative injury by suppressing redox imbalance, augmenting sperm quality and Nrf2 protein expression in streptozotocin-induced diabetic rats. Biol. Trace Elem. Res., 2020, 198(2), 544-556.
[http://dx.doi.org/10.1007/s12011-020-02082-2] [PMID: 32103411]
[123]
Dare, A.; Channa, M.L.; Nadar, A. L-ergothioneine and its combination with metformin attenuates renal dysfunction in type-2 diabetic rat model by activating Nrf2 antioxidant pathway. Biomed. Pharmacother., 2021, 141, 111921.
[http://dx.doi.org/10.1016/j.biopha.2021.111921] [PMID: 34346315]
[124]
Mohamed Abdelgawad, L.; Abd El-Hamed, M.M.; Sabry, D.; Abdelgwad, M. Efficacy of photobiomodulation and metformin on diabetic cell line of human periodontal ligament stem cells through keap1/Nrf2/Ho-1 Pathway. Rep. Biochem. Mol. Biol., 2021, 10(1), 30-40.
[http://dx.doi.org/10.52547/rbmb.10.1.30] [PMID: 34277866]
[125]
Rahimi, G.; Heydari, S.; Rahimi, B.; Abedpoor, N.; Niktab, I.; Safaeinejad, Z.; Peymani, M.; Seyed Forootan, F.; Derakhshan, Z.; Esfahani, M.H.N.; Ghaedi, K. A combination of herbal compound (SPTC) along with exercise or metformin more efficiently alleviated diabetic complications through down-regulation of stress oxidative pathway upon activating Nrf2-Keap1 axis in AGE rich diet-induced type 2 diabetic mice. Nutr. Metab. (Lond.), 2021, 18(1), 14.
[http://dx.doi.org/10.1186/s12986-021-00543-6] [PMID: 33468193]
[126]
Du, J.; Zhu, M.; Li, H.; Liang, G.; Li, Y.; Feng, S. Metformin attenuates cardiac remodeling in mice through the Nrf2/Keap1 signaling pathway. Exp. Ther. Med., 2020, 20(2), 838-845.
[http://dx.doi.org/10.3892/etm.2020.8764] [PMID: 32742327]
[127]
Abdelsamia, E.M.; Khaleel, S.A.; Balah, A.; Abdel Baky, N.A. Curcumin augments the cardioprotective effect of metformin in an experimental model of type I diabetes mellitus; Impact of Nrf2/HO-1 and JAK/STAT pathways. Biomed. Pharmacother., 2019, 109, 2136-2144.
[http://dx.doi.org/10.1016/j.biopha.2018.11.064] [PMID: 30551471]
[128]
Arbab, A.A.I.; Lu, X.; Abdalla, I.M.; Idris, A.A.; Chen, Z.; Li, M.; Mao, Y.; Xu, T.; Yang, Z. Metformin inhibits lipoteichoic acid-induced oxidative stress and inflammation through ampk/nrf2/nf-κb signaling pathway in bovine mammary epithelial cells. Front. Vet. Sci., 2021, 8, 661380.
[http://dx.doi.org/10.3389/fvets.2021.661380] [PMID: 34262962]
[129]
Li, X.; Leng, Y.; Jiang, Q.; Wang, Z.; Luo, P.; Zhang, C.; Chen, L.; Wang, Y.; Wang, H.; Yue, X.; Shen, C.; Zhou, Y.; Shi, C.; Xie, L. eye drops of metformin prevents fibrosis after glaucoma filtration surgery in rats via activating ampk/nrf2 signaling pathway. Front. Pharmacol., 2020, 11, 1038.
[http://dx.doi.org/10.3389/fphar.2020.01038] [PMID: 32903813]
[130]
Jia, L.; Xiong, Y.; Zhang, W.; Ma, X.; Xu, X. Metformin promotes osteogenic differentiation and protects against oxidative stress-induced damage in periodontal ligament stem cells via activation of the Akt/Nrf2 signaling pathway. Exp. Cell Res., 2020, 386(2), 111717.
[http://dx.doi.org/10.1016/j.yexcr.2019.111717] [PMID: 31715142]
[131]
Yan, Y.; Jun, C.; Lu, Y.; Jiangmei, S. Combination of metformin and luteolin synergistically protects carbon tetrachloride-induced hepatotoxicity: Mechanism involves antioxidant, anti-inflammatory, antiapoptotic, and Nrf2/HO-1 signaling pathway. Biofactors, 2019, 45(4), 598-606.
[http://dx.doi.org/10.1002/biof.1521] [PMID: 31336028]
[132]
Prasad, S.; Sajja, R.K.; Kaisar, M.A.; Park, J.H.; Villalba, H.; Liles, T.; Abbruscato, T.; Cucullo, L. Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol., 2017, 12, 58-69.
[http://dx.doi.org/10.1016/j.redox.2017.02.007] [PMID: 28212524]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy