Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Amyloid Beta Peptide-Mediated Alterations in Mitochondrial Dynamics and its Implications for Alzheimer’s Disease

Author(s): Luis Ángel Monsalvo-Maraver, Marisol Maya-López, Edgar Rangel-López, Isaac Túnez, Alexey A. Tinkov, Anatoly Skalny, Beatriz Ferrer, Michael Aschner* and Abel Santamaría*

Volume 22, Issue 7, 2023

Published on: 11 August, 2022

Page: [1039 - 1056] Pages: 18

DOI: 10.2174/1871527321666220616094036

Price: $65

Open Access Journals Promotions 2
Abstract

Alzheimer’s disease (AD) is considered the most frequent neurodegenerative disorder worldwide, compromising cognitive function in patients, with an average incidence of 1-3% in the open population. Protein aggregation into amyloidogenic plaques and neurofibrillary tangles, as well as neurodegeneration in the hippocampal and cortical areas, represent the neuropathological hallmarks of this disorder. Mechanisms involved in neurodegeneration include protein misfolding, augmented apoptosis, disrupted molecular signaling pathways and axonal transport, oxidative stress, inflammation, and mitochondrial dysfunction, among others. It is precisely through a disrupted energy metabolism that neural cells trigger toxic mechanisms leading to cell death. In this regard, the study of mitochondrial dynamics constitutes a relevant topic to decipher the role of mitochondrial dysfunction in neurological disorders, especially when considering that amyloid-beta peptides can target mitochondria. Specifically, the amyloid beta (Aβ) peptide, known to accumulate in the brain of AD patients, has been shown to disrupt overall mitochondrial metabolism by impairing energy production, mitochondrial redox activity, and calcium homeostasis, thus highlighting its key role in the AD pathogenesis. In this work, we review and discuss recent evidence supporting the concept that mitochondrial dysfunction mediated by amyloid peptides contributes to the development of AD.

Keywords: Amyloid beta-peptide, protein aggregation, mitochondrial function, energy metabolism alterations, mitophagy, neurodegeneration, Alzheimer’s disease.

Graphical Abstract
[1]
Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet 2021; 397(10284): 1577-90.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4] [PMID: 33667416]
[2]
Fratiglioni L, De Ronchi D, Agüero-Torres H. Worldwide prevalence and incidence of dementia. Drugs Aging 1999; 15(5): 365-75.
[http://dx.doi.org/10.2165/00002512-199915050-00004] [PMID: 10600044]
[3]
Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology 2013; 80(19): 1778-83.
[http://dx.doi.org/10.1212/WNL.0b013e31828726f5] [PMID: 23390181]
[4]
Jalbert JJ, Daiello LA, Lapane KL. Dementia of the Alzheimer type. Epidemiol Rev 2008; 30(1): 15-34.
[http://dx.doi.org/10.1093/epirev/mxn008] [PMID: 18635578]
[5]
Apostolova LG. Alzheimer disease. Continuum (Minneap Minn) 2016; 22: 419-34.
[http://dx.doi.org/10.1212/CON.0000000000000307] [PMID: 27042902]
[6]
Rahman MH, Akter R, Kamal MA. Prospective function of different antioxidant containing natural products in the treatments of neurodegenerative diseases. CNS Neurol Disord Drug Targets 2021; 20(8): 694-703.
[http://dx.doi.org/10.2174/1871527319666200722153611] [PMID: 32703143]
[7]
Walia V, Kaushik D, Mittal V, et al. Delineation of neuroprotective effects and possible benefits of antioxidants therapy for the treatment of Alzheimer’s diseases by targeting mitochondrial-derived reactive oxygen species: Bench to bedside. Mol Neurobiol 2022; 59(1): 657-80.
[http://dx.doi.org/10.1007/s12035-021-02617-1] [PMID: 34751889]
[8]
Arendt T, Brückner MK, Morawski M, Jäger C, Gertz HJ. Early neurone loss in Alzheimer’s disease: Cortical or subcortical? Acta Neuropathol Commun 2015; 3(1): 10.
[http://dx.doi.org/10.1186/s40478-015-0187-1] [PMID: 25853173]
[9]
Padurariu M, Ciobica A, Mavroudis I, Fotiou D, Baloyannis S. Hippocampal neuronal loss in the CA1 and CA3 areas of Alzheimer’s disease patients. Psychiatr Danub 2012; 24(2): 152-8.
[PMID: 22706413]
[10]
Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers 2015; 1(15056): 15056.
[http://dx.doi.org/10.1038/nrdp.2015.56] [PMID: 27188934]
[11]
Kunkle BW, Grenier-Boley B, Sims R, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ tau, immunity and lipid processing. Nat Genet 2019; 51(3): 414-30.
[http://dx.doi.org/10.1038/s41588-019-0358-2] [PMID: 30820047]
[12]
Xin Y, Sheng J, Miao M, Wang L, Yang Z, Huang H. A review of imaging genetics in Alzheimer’s disease. J Clin Neurosci 2022; 100: 155-63.
[http://dx.doi.org/10.1016/j.jocn.2022.04.017] [PMID: 35487021]
[13]
Bird TD. Genetic aspects of Alzheimer disease. Genet Med 2008; 10(4): 231-9.
[http://dx.doi.org/10.1097/GIM.0b013e31816b64dc] [PMID: 18414205]
[14]
Chen GF, Xu TH, Yan Y, et al. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 2017; 38(9): 1205-35.
[http://dx.doi.org/10.1038/aps.2017.28] [PMID: 28713158]
[15]
Busciglio J, Gabuzda DH, Matsudaira P, Yankner BA. Generation of beta-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc Natl Acad Sci USA 1993; 90(5): 2092-6.
[http://dx.doi.org/10.1073/pnas.90.5.2092] [PMID: 8446635]
[16]
Shoji M, Golde TE, Ghiso J, et al. Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 1992; 258(5079): 126-9.
[http://dx.doi.org/10.1126/science.1439760] [PMID: 1439760]
[17]
Soba P, Eggert S, Wagner K, et al. Homo- and heterodimerization of APP family members promotes intercellular adhesion. EMBO J 2005; 24(20): 3624-34.
[http://dx.doi.org/10.1038/sj.emboj.7600824] [PMID: 16193067]
[18]
Wang Z, Wang B, Yang L, et al. Presynaptic and postsynaptic interaction of the amyloid precursor protein promotes peripheral and central synaptogenesis. J Neurosci 2009; 29(35): 10788-801.
[http://dx.doi.org/10.1523/JNEUROSCI.2132-09.2009] [PMID: 19726636]
[19]
Sabo SL, Ikin AF, Buxbaum JD, Greengard P. The amyloid precursor protein and its regulatory protein, FE65, in growth cones and synapses in vitro and in vivo. J Neurosci 2003; 23(13): 5407-15.
[http://dx.doi.org/10.1523/JNEUROSCI.23-13-05407.2003] [PMID: 12843239]
[20]
Young-Pearse TL, Bai J, Chang R, Zheng JB, LoTurco JJ, Selkoe DJ. A critical function for β-amyloid precursor protein in neuronal migration revealed by in utero RNA interference. J Neurosci 2007; 27(52): 14459-69.
[http://dx.doi.org/10.1523/JNEUROSCI.4701-07.2007] [PMID: 18160654]
[21]
Weyer SW, Zagrebelsky M, Herrmann U, et al. Comparative analysis of single and combined APP/APLP knockouts reveals reduced spine density in APP-KO mice that is prevented by APPsα expression. Acta Neuropathol Commun 2014; 2(1): 36.
[http://dx.doi.org/10.1186/2051-5960-2-36] [PMID: 24684730]
[22]
Müller UC, Deller T, Korte M. Not just amyloid: Physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 2017; 18(5): 281-98.
[http://dx.doi.org/10.1038/nrn.2017.29] [PMID: 28360418]
[23]
Puzzo D, Privitera L, Fa’ M, et al. Endogenous amyloid-β is necessary for hippocampal synaptic plasticity and memory. Ann Neurol 2011; 69(5): 819-30.
[http://dx.doi.org/10.1002/ana.22313] [PMID: 21472769]
[24]
Morley JE, Farr SA. The role of amyloid-beta in the regulation of memory. Biochem Pharmacol 2014; 88(4): 479-85.
[http://dx.doi.org/10.1016/j.bcp.2013.12.018] [PMID: 24398426]
[25]
Finnie PSB, Nader K. Amyloid beta secreted during consolidation prevents memory malleability. Curr Biol 2020; 30(10): 1934-1940.e4.
[http://dx.doi.org/10.1016/j.cub.2020.02.083] [PMID: 32243855]
[26]
Grimm MO, Grimm HS, Pätzold AJ, et al. Regulation of cholesterol and sphingomyelin metabolism by amyloid-β and presenilin. Nat Cell Biol 2005; 7(11): 1118-23.
[http://dx.doi.org/10.1038/ncb1313] [PMID: 16227967]
[27]
Lazarevic V. Fieńko S, Andres-Alonso M, et al. Physiological concentrations of amyloid beta regulate recycling of synaptic vesicles via alpha7 acetylcholine receptor and CDK5/calcineurin signaling. Front Mol Neurosci 2017; 10: 221.
[http://dx.doi.org/10.3389/fnmol.2017.00221] [PMID: 28785201]
[28]
Whitson JS, Selkoe DJ, Cotman CW. Amyloid beta protein enhances the survival of hippocampal neurons in vitro. Science 1989; 243(4897): 1488-90.
[http://dx.doi.org/10.1126/science.2928783] [PMID: 2928783]
[29]
Whitson JS, Glabe CG, Shintani E, Abcar A, Cotman CW. β- amyloid protein promotes neuritic branching in hippocampal cultures. Neurosci Lett 1990; 110(3): 319-24.
[http://dx.doi.org/10.1016/0304-3940(90)90867-9] [PMID: 2183090]
[30]
Giuffrida ML, Caraci F, Pignataro B, et al. β-amyloid monomers are neuroprotective. J Neurosci 2009; 29(34): 10582-7.
[http://dx.doi.org/10.1523/JNEUROSCI.1736-09.2009] [PMID: 19710311]
[31]
Yan Y, Wang C. Abeta40 protects non-toxic Abeta42 monomer from aggregation. J Mol Biol 2007; 369(4): 909-16.
[http://dx.doi.org/10.1016/j.jmb.2007.04.014] [PMID: 17481654]
[32]
Morley JE, Farr SA. Hormesis and amyloid-β protein: Physiology or pathology? J Alzheimers Dis 2012; 29(3): 487-92.
[http://dx.doi.org/10.3233/JAD-2011-111928] [PMID: 22258515]
[33]
Rudolph S, Klein AN, Tusche M, et al. Competitive mirror image phage display derived peptide modulates amyloid beta aggregation and toxicity. PLoS One 2016; 11(2): e0147470.
[http://dx.doi.org/10.1371/journal.pone.0147470] [PMID: 26840229]
[34]
Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ. Amyloid-β oligomers: Their production, toxicity and therapeutic inhibition. Biochem Soc Trans 2002; 30(4): 552-7.
[http://dx.doi.org/10.1042/bst0300552] [PMID: 12196135]
[35]
Sarkar B, Das AK, Maiti S. Thermodynamically stable amyloid-β monomers have much lower membrane affinity than the small oligomers. Front Physiol 2013; 4(84): 84.
[http://dx.doi.org/10.3389/fphys.2013.00084] [PMID: 23781202]
[36]
Goure WF, Krafft GA, Jerecic J, Hefti F. Targeting the proper amyloid-beta neuronal toxins: A path forward for Alzheimer’s disease immunotherapeutics. Alzheimers Res Ther 2014; 6(4): 42.
[http://dx.doi.org/10.1186/alzrt272] [PMID: 25045405]
[37]
Gibbs E, Silverman JM, Zhao B, et al. A rationally designed humanized antibody selective for amyloid beta oligomers in Alzheimer’s disease. Sci Rep 2019; 9(1): 9870.
[http://dx.doi.org/10.1038/s41598-019-46306-5] [PMID: 31285517]
[38]
Gulisano W, Melone M, Li Puma DD, et al. The effect of amyloid-β peptide on synaptic plasticity and memory is influenced by different isoforms, concentrations, and aggregation status. Neurobiol Aging 2018; 71: 51-60.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.06.025] [PMID: 30092511]
[39]
Portelius E, Bogdanovic N, Gustavsson MK, et al. Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer’s disease. Acta Neuropathol 2010; 120(2): 185-93.
[http://dx.doi.org/10.1007/s00401-010-0690-1] [PMID: 20419305]
[40]
Mukherjee S, Perez KA, Lago LC, et al. Quantification of N-terminal amyloid-β isoforms reveals isomers are the most abundant form of the amyloid-β peptide in sporadic Alzheimer’s disease. Brain Commun 2021; 3(2): b028.
[http://dx.doi.org/10.1093/braincomms/fcab028] [PMID: 33928245]
[41]
Kummer MP, Heneka MT. Truncated and modified amyloid-beta species. Alzheimers Res Ther 2014; 6(3): 28.
[http://dx.doi.org/10.1186/alzrt258] [PMID: 25031638]
[42]
Wildburger NC, Esparza TJ, LeDuc RD, et al. Diversity of amyloid-beta proteoforms in the Alzheimer’s disease brain. Sci Rep 2017; 7(1): 9520.
[http://dx.doi.org/10.1038/s41598-017-10422-x] [PMID: 28842697]
[43]
Vander Zanden CM, Wampler L, Bowers I, Watkins EB, Majewski J, Chi EY. Fibrillar and nonfibrillar amyloid beta structures drive two modes of membrane-mediated toxicity. Langmuir 2019; 35(48): 16024-36.
[http://dx.doi.org/10.1021/acs.langmuir.9b02484] [PMID: 31509701]
[44]
Shankar GM, Li S, Mehta TH, et al. Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 2008; 14(8): 837-42.
[http://dx.doi.org/10.1038/nm1782] [PMID: 18568035]
[45]
Resende R, Ferreiro E, Pereira C, Resende de Oliveira C. Neurotoxic effect of oligomeric and fibrillar species of amyloid-beta peptide 1-42: Involvement of endoplasmic reticulum calcium release in oligomer-induced cell death. Neuroscience 2008; 155(3): 725-37.
[http://dx.doi.org/10.1016/j.neuroscience.2008.06.036] [PMID: 18621106]
[46]
Resende R, Ferreiro E, Pereira C, Oliveira CR. ER stress is involved in Abeta-induced GSK-3β activation and tau phosphorylation. J Neurosci Res 2008; 86(9): 2091-9.
[http://dx.doi.org/10.1002/jnr.21648] [PMID: 18335524]
[47]
Busciglio J, Lorenzo A, Yeh J, Yankner BA. β-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 1995; 14(4): 879-88.
[http://dx.doi.org/10.1016/0896-6273(95)90232-5] [PMID: 7718249]
[48]
Bennett RE, DeVos SL, Dujardin S, et al. Enhanced tau aggregation in the presence of amyloid β. Am J Pathol 2017; 187(7): 1601-12.
[http://dx.doi.org/10.1016/j.ajpath.2017.03.011] [PMID: 28500862]
[49]
Smith DG, Cappai R, Barnham KJ. The redox chemistry of the Alzheimer’s disease amyloid β peptide. Biochim Biophys Acta 2007; 1768(8): 1976-90.
[http://dx.doi.org/10.1016/j.bbamem.2007.02.002] [PMID: 17433250]
[50]
Larson M, Sherman MA, Amar F, et al. The complex PrP(c)-Fyn couples human oligomeric Aβ with pathological tau changes in Alzheimer’s disease. J Neurosci 2012; 32(47): 16857-71a.
[http://dx.doi.org/10.1523/JNEUROSCI.1858-12.2012] [PMID: 23175838]
[51]
Patnaik A, Zagrebelsky M, Korte M, Holz A. Signaling via the p75 neurotrophin receptor facilitates amyloid-β-induced dendritic spine pathology. Sci Rep 2020; 10(1): 13322.
[http://dx.doi.org/10.1038/s41598-020-70153-4] [PMID: 32770070]
[52]
Shen LL, Li WW, Xu YL, et al. Neurotrophin receptor p75 mediates amyloid β-induced tau pathology. Neurobiol Dis 2019; 132: 104567.
[http://dx.doi.org/10.1016/j.nbd.2019.104567] [PMID: 31394202]
[53]
Costantini C, Rossi F, Formaggio E, Bernardoni R, Cecconi D, Della-Bianca V. Characterization of the signaling pathway downstream p75 neurotrophin receptor involved in β-amyloid peptide-dependent cell death. J Mol Neurosci 2005; 25(2): 141-56.
[http://dx.doi.org/10.1385/JMN:25:2:141] [PMID: 15784962]
[54]
Hashimoto Y, Kaneko Y, Tsukamoto E, et al. Molecular characterization of neurohybrid cell death induced by Alzheimer’s amyloid-β peptides via p75NTR/PLAIDD. J Neurochem 2004; 90(3): 549-58.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02513.x] [PMID: 15255932]
[55]
Du Yan S, Zhu H, Fu J, et al. Amyloid-β peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: A proinflammatory pathway in Alzheimer disease. Proc Natl Acad Sci USA 1997; 94(10): 5296-301.
[http://dx.doi.org/10.1073/pnas.94.10.5296] [PMID: 9144231]
[56]
Nitti M, Furfaro AL, Traverso N, et al. PKC delta and NADPH oxidase in AGE-induced neuronal death. Neurosci Lett 2007; 416(3): 261-5.
[http://dx.doi.org/10.1016/j.neulet.2007.02.013] [PMID: 17317001]
[57]
Zhang F, Gannon M, Chen Y, et al. β-amyloid redirects norepinephrine signaling to activate the pathogenic GSK3β/tau cascade. Sci Transl Med 2020; 12(526): 1-10.
[http://dx.doi.org/10.1126/scitranslmed.aay6931] [PMID: 31941827]
[58]
Wu H, Wei S, Huang Y, et al. Aβ monomer induces phosphorylation of Tau at Ser-214 through β2AR-PKA-JNK signaling pathway. FASEB J 2020; 34(4): 5092-105.
[http://dx.doi.org/10.1096/fj.201902230RR] [PMID: 32067279]
[59]
Rui Y, Gu J, Yu K, Hartzell HC, Zheng JQ. Inhibition of AMPA receptor trafficking at hippocampal synapses by β-amyloid oligomers: The mitochondrial contribution. Mol Brain 2010; 3(1): 10.
[http://dx.doi.org/10.1186/1756-6606-3-10] [PMID: 20346152]
[60]
Thornton C, Bright NJ, Sastre M, Muckett PJ, Carling D. AMP-activated protein kinase (AMPK) is a tau kinase, activated in response to amyloid β-peptide exposure. Biochem J 2011; 434(3): 503-12.
[http://dx.doi.org/10.1042/BJ20101485] [PMID: 21204788]
[61]
Costa RO, Lacor PN, Ferreira IL, et al. Endoplasmic reticulum stress occurs downstream of GluN2B subunit of N-methyl-d-aspartate receptor in mature hippocampal cultures treated with amyloid-β oligomers. Aging Cell 2012; 11(5): 823-33.
[http://dx.doi.org/10.1111/j.1474-9726.2012.00848.x] [PMID: 22708890]
[62]
Birnbaum JH, Bali J, Rajendran L, Nitsch RM, Tackenberg C. Calcium flux-independent NMDA receptor activity is required for Aβ oligomer-induced synaptic loss. Cell Death Dis 2015; 6(6): e1791-1.
[http://dx.doi.org/10.1038/cddis.2015.160] [PMID: 26086964]
[63]
George AA, Vieira JM, Xavier-Jackson C, et al. Implications of oligomeric amyloid-beta (oAβ42) signaling through α7β2-nicotinic acetylcholine receptors (nAChRs) on basal forebrain cholinergic neuronal intrinsic excitability and cognitive decline. J Neurosci 2021; 41(3): 555-75.
[http://dx.doi.org/10.1523/JNEUROSCI.0876-20.2020] [PMID: 33239400]
[64]
Liu Q, Xie X, Lukas RJ, St John PA, Wu J. A novel nicotinic mechanism underlies β-amyloid-induced neuronal hyperexcitation. J Neurosci 2013; 33(17): 7253-63.
[http://dx.doi.org/10.1523/JNEUROSCI.3235-12.2013] [PMID: 23616534]
[65]
Wang HY, Li W, Benedetti NJ, Lee DH. α 7 nicotinic acetylcholine receptors mediate β-amyloid peptide-induced tau protein phosphorylation. J Biol Chem 2003; 278(34): 31547-53.
[http://dx.doi.org/10.1074/jbc.M212532200] [PMID: 12801934]
[66]
Snyder EM, Nong Y, Almeida CG, et al. Regulation of NMDA receptor trafficking by amyloid-β. Nat Neurosci 2005; 8(8): 1051-8.
[http://dx.doi.org/10.1038/nn1503] [PMID: 16025111]
[67]
Fang F, Lue LF, Yan S, et al. RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. FASEB J 2010; 24(4): 1043-55.
[http://dx.doi.org/10.1096/fj.09-139634] [PMID: 19906677]
[68]
Jana M, Palencia CA, Pahan K. Fibrillar amyloid-β peptides activate microglia via TLR2: Implications for Alzheimer’s disease. J Immunol 2008; 181(10): 7254-62.
[http://dx.doi.org/10.4049/jimmunol.181.10.7254] [PMID: 18981147]
[69]
Han SH, Kim YH, Mook-Jung I. RAGE: The beneficial and deleterious effects by diverse mechanisms of actions. Mol Cells 2011; 31(2): 91-7.
[http://dx.doi.org/10.1007/s10059-011-0030-x] [PMID: 21347704]
[70]
Zhang D, Hu X, Qian L, et al. Microglial MAC1 receptor and PI3K are essential in mediating β-amyloid peptide-induced microglial activation and subsequent neurotoxicity. J Neuroinflammation 2011; 8(1): 3.
[http://dx.doi.org/10.1186/1742-2094-8-3] [PMID: 21232086]
[71]
Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat Rev Neurosci 2007; 8(1): 57-69.
[http://dx.doi.org/10.1038/nrn2038] [PMID: 17180163]
[72]
Matos M, Augusto E, Oliveira CR, Agostinho P. Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: Involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience 2008; 156(4): 898-910.
[http://dx.doi.org/10.1016/j.neuroscience.2008.08.022] [PMID: 18790019]
[73]
Abramov AY, Duchen MR. The role of an astrocytic NADPH oxidase in the neurotoxicity of amyloid beta peptides. Philos Trans R Soc Lond B Biol Sci 2005; 360(1464): 2309-14.
[http://dx.doi.org/10.1098/rstb.2005.1766] [PMID: 16321801]
[74]
Talantova M, Sanz-Blasco S, Zhang X, et al. Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci USA 2013; 110(27): E2518-27.
[http://dx.doi.org/10.1073/pnas.1306832110] [PMID: 23776240]
[75]
Urrutia PJ, Hirsch EC, González-Billault C, Núñez MT. Hepcidin attenuates amyloid beta-induced inflammatory and pro-oxidant responses in astrocytes and microglia. J Neurochem 2017; 142(1): 140-52.
[http://dx.doi.org/10.1111/jnc.14005] [PMID: 28266714]
[76]
Bouvier DS, Jones EV, Quesseveur G, et al. High resolution dissection of reactive glial nets in Alzheimer’s disease. Sci Rep 2016; 6(1): 24544.
[http://dx.doi.org/10.1038/srep24544] [PMID: 27090093]
[77]
LaFerla FM, Green KN, Oddo S. Intracellular amyloid-β in Alzheimer’s disease. Nat Rev Neurosci 2007; 8(7): 499-509.
[http://dx.doi.org/10.1038/nrn2168] [PMID: 17551515]
[78]
Grundke-Iqbal I, Iqbal K, George L, Tung YC, Kim KS, Wisniewski HM. Amyloid protein and neurofibrillary tangles coexist in the same neuron in Alzheimer disease. Proc Natl Acad Sci USA 1989; 86(8): 2853-7.
[http://dx.doi.org/10.1073/pnas.86.8.2853] [PMID: 2649895]
[79]
Kelly L, Seifi M, Ma R, et al. Identification of intraneuronal amyloid beta oligomers in locus coeruleus neurons of Alzheimer’s patients and their potential impact on inhibitory neurotransmitter receptors and neuronal excitability. Neuropathol Appl Neurobiol 2021; 47(4): 488-505.
[http://dx.doi.org/10.1111/nan.12674] [PMID: 33119191]
[80]
Welikovitch LA, Do Carmo S, Maglóczky Z, et al. Evidence of intraneuronal Aβ accumulation preceding tau pathology in the entorhinal cortex. Acta Neuropathol 2018; 136(6): 901-17.
[http://dx.doi.org/10.1007/s00401-018-1922-z] [PMID: 30362029]
[81]
Aoki M, Volkmann I, Tjernberg LO, Winblad B, Bogdanovic N. Amyloid β-peptide levels in laser capture microdissected cornu ammonis 1 pyramidal neurons of Alzheimer’s brain. Neuroreport 2008; 19(11): 1085-9.
[http://dx.doi.org/10.1097/WNR.0b013e328302c858] [PMID: 18596605]
[82]
Mochizuki A, Tamaoka A, Shimohata A, Komatsuzaki Y, Shoji S. Abeta42-positive non-pyramidal neurons around amyloid plaques in Alzheimer’s disease. Lancet 2000; 355(9197): 42-3.
[http://dx.doi.org/10.1016/S0140-6736(99)04937-5] [PMID: 10615894]
[83]
Takuma K, Fang F, Zhang W, et al. RAGE-mediated signaling contributes to intraneuronal transport of amyloid-β and neuronal dysfunction. Proc Natl Acad Sci USA 2009; 106(47): 20021-6.
[http://dx.doi.org/10.1073/pnas.0905686106] [PMID: 19901339]
[84]
Bilousova T, Melnik M, Miyoshi E, et al. Apolipoprotein E/amyloid-β complex accumulates in Alzheimer disease cortical synapses via apolipoprotein e receptors and is enhanced by APOE4. Am J Pathol 2019; 189(8): 1621-36.
[http://dx.doi.org/10.1016/j.ajpath.2019.04.010] [PMID: 31108099]
[85]
Nagele RG, D’Andrea MR, Anderson WJ, Wang HY. Intracellular accumulation of β-amyloid(1-42) in neurons is facilitated by the α 7 nicotinic acetylcholine receptor in Alzheimer’s disease. Neuroscience 2002; 110(2): 199-211.
[http://dx.doi.org/10.1016/S0306-4522(01)00460-2] [PMID: 11958863]
[86]
Bi X, Gall CM, Zhou J, Lynch G. Uptake and pathogenic effects of amyloid beta peptide 1-42 are enhanced by integrin antagonists and blocked by NMDA receptor antagonists. Neuroscience 2002; 112(4): 827-40.
[http://dx.doi.org/10.1016/S0306-4522(02)00132-X] [PMID: 12088742]
[87]
Rushworth JV, Griffiths HH, Watt NT, Hooper NM. Prion protein-mediated toxicity of amyloid-β oligomers requires lipid rafts and the transmembrane LRP1. J Biol Chem 2013; 288(13): 8935-51.
[http://dx.doi.org/10.1074/jbc.M112.400358] [PMID: 23386614]
[88]
Matsuzaki K, Kato K, Yanagisawa K. A beta polymerization through interaction with membrane gangliosides. Biochim Biophys Acta 2010; 1801(8): 868-77.
[http://dx.doi.org/10.1016/j.bbalip.2010.01.008] [PMID: 20117237]
[89]
Saavedra L, Mohamed A, Ma V, Kar S, de Chaves EP. Internalization of β-amyloid peptide by primary neurons in the absence of apolipoprotein E. J Biol Chem 2007; 282(49): 35722-32.
[http://dx.doi.org/10.1074/jbc.M701823200] [PMID: 17911110]
[90]
Lai AY, McLaurin J. Mechanisms of amyloid-Beta Peptide uptake by neurons: The role of lipid rafts and lipid raft-associated proteins. Int J Alzheimers Dis 2011; 2011: 1-11.
[http://dx.doi.org/10.4061/2011/548380] [PMID: 21197446]
[91]
Kandimalla KK, Scott OG, Fulzele S, Davidson MW, Poduslo JF. Mechanism of neuronal versus endothelial cell uptake of Alzheimer’s disease amyloid β protein. PLoS One 2009; 4(2): e4627.
[http://dx.doi.org/10.1371/journal.pone.0004627] [PMID: 19247480]
[92]
Plácido AI, Pereira CMF, Duarte AI, et al. The role of endoplasmic reticulum in amyloid precursor protein processing and trafficking: Implications for Alzheimer’s disease. Biochim Biophys Acta 2014; 1842(9): 1444-53.
[http://dx.doi.org/10.1016/j.bbadis.2014.05.003] [PMID: 24832819]
[93]
Chia PZC, Toh WH, Sharples R, Gasnereau I, Hill AF, Gleeson PA. Intracellular itinerary of internalised β-secretase, BACE1, and its potential impact on β-amyloid peptide biogenesis. Traffic 2013; 14(9): 997-1013.
[http://dx.doi.org/10.1111/tra.12088] [PMID: 23773724]
[94]
Choy RWY, Cheng Z, Schekman R. Amyloid Precursor Protein (APP) traffics from the cell surface via endosomes for Amyloid β (Aβ) production in the trans-Golgi network. Proc Natl Acad Sci USA 2012; 109(30): E2077-82.
[http://dx.doi.org/10.1073/pnas.1208635109] [PMID: 22711829]
[95]
Tam JH, Seah C, Pasternak SH. The Amyloid Precursor Protein is rapidly transported from the Golgi apparatus to the lysosome and where it is processed into beta-amyloid. Mol Brain 2014; 7(1): 54.
[http://dx.doi.org/10.1186/s13041-014-0054-1] [PMID: 25085554]
[96]
Vetrivel KS, Thinakaran G. Amyloidogenic processing of β-amyloid precursor protein in intracellular compartments. Neurology 2006; 66(2) (Suppl. 1): S69-73.
[http://dx.doi.org/10.1212/01.wnl.0000192107.17175.39] [PMID: 16432149]
[97]
Vetrivel KS, Cheng H, Lin W, et al. Association of γ-secretase with lipid rafts in post-Golgi and endosome membranes. J Biol Chem 2004; 279(43): 44945-54.
[http://dx.doi.org/10.1074/jbc.M407986200] [PMID: 15322084]
[98]
Tan JZA, Fourriere L, Wang J, Perez F, Boncompain G, Gleeson PA. Distinct anterograde trafficking pathways of BACE1 and amyloid precursor protein from the TGN and the regulation of amyloid-β production. Mol Biol Cell 2020; 31(1): 27-44.
[http://dx.doi.org/10.1091/mbc.E19-09-0487] [PMID: 31746668]
[99]
Fourriere L, Gleeson PA. Amyloid β production along the neuronal secretory pathway: Dangerous liaisons in the Golgi? Traffic 2021; 22(9): 319-27.
[http://dx.doi.org/10.1111/tra.12808] [PMID: 34189821]
[100]
Greenfield JP, Tsai J, Gouras GK, et al. Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer β-amyloid peptides. Proc Natl Acad Sci USA 1999; 96(2): 742-7.
[http://dx.doi.org/10.1073/pnas.96.2.742] [PMID: 9892704]
[101]
Cook DG, Forman MS, Sung JC, et al. Alzheimer’s A β(1-42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nat Med 1997; 3(9): 1021-3.
[http://dx.doi.org/10.1038/nm0997-1021] [PMID: 9288730]
[102]
Tomita S, Kirino Y, Suzuki T. Cleavage of Alzheimer’s amyloid precursor protein (APP) by secretases occurs after O-glycosylation of APP in the protein secretory pathway. Identification of intracellular compartments in which APP cleavage occurs without using toxic agents that interfere with protein metabolism. J Biol Chem 1998; 273(11): 6277-84.
[http://dx.doi.org/10.1074/jbc.273.11.6277] [PMID: 9497354]
[103]
Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 2006; 26(35): 9057-68.
[http://dx.doi.org/10.1523/JNEUROSCI.1469-06.2006] [PMID: 16943564]
[104]
Pavlov PF, Wiehager B, Sakai J, et al. Mitochondrial γ-secretase participates in the metabolism of mitochondria-associated amyloid precursor protein. FASEB J 2011; 25(1): 78-88.
[http://dx.doi.org/10.1096/fj.10-157230] [PMID: 20833873]
[105]
Devi L, Ohno M. Mitochondrial dysfunction and accumulation of the β-secretase-cleaved C-terminal fragment of APP in Alzheimer’s disease transgenic mice. Neurobiol Dis 2012; 45(1): 417-24.
[http://dx.doi.org/10.1016/j.nbd.2011.09.001] [PMID: 21933711]
[106]
Area-Gomez E, de Groof AJ, Boldogh I, et al. Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am J Pathol 2009; 175(5): 1810-6.
[http://dx.doi.org/10.2353/ajpath.2009.090219] [PMID: 19834068]
[107]
Schreiner B, Hedskog L, Wiehager B, Ankarcrona M. Amyloid-β peptides are generated in mitochondria-associated endoplasmic reticulum membranes. J Alzheimers Dis 2015; 43(2): 369-74.
[http://dx.doi.org/10.3233/JAD-132543] [PMID: 25096627]
[108]
Hansson Petersen CA, Alikhani N, Behbahani H, et al. The amyloid β-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci USA 2008; 105(35): 13145-50.
[http://dx.doi.org/10.1073/pnas.0806192105] [PMID: 18757748]
[109]
Gouras GK, Tsai J, Naslund J, et al. Intraneuronal Abeta42 accumulation in human brain. Am J Pathol 2000; 156(1): 15-20.
[http://dx.doi.org/10.1016/S0002-9440(10)64700-1] [PMID: 10623648]
[110]
Wirths O, Multhaup G, Czech C, et al. Intraneuronal Abeta accumulation precedes plaque formation in β-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett 2001; 306(1-2): 116-20.
[http://dx.doi.org/10.1016/S0304-3940(01)01876-6] [PMID: 11403971]
[111]
Yang AJ, Chandswangbhuvana D, Margol L, Glabe CG. Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid Abeta1-42 pathogenesis. J Neurosci Res 1998; 52(6): 691-8.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19980615)52:6<691:AID-JNR8>3.0.CO;2-3] [PMID: 9669318]
[112]
Umeda T, Tomiyama T, Sakama N, et al. Intraneuronal amyloid β oligomers cause cell death via endoplasmic reticulum stress, endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. J Neurosci Res 2011; 89(7): 1031-42.
[http://dx.doi.org/10.1002/jnr.22640] [PMID: 21488093]
[113]
Zaretsky DV, Zaretskaia MV, Molkov YI. Membrane channel hypothesis of lysosomal permeabilization by beta-amyloid. Neurosci Lett 2022; 770: 136338.
[http://dx.doi.org/10.1016/j.neulet.2021.136338] [PMID: 34767924]
[114]
Tseng BP, Green KN, Chan JL, Blurton-Jones M, LaFerla FM. Abeta inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol Aging 2008; 29(11): 1607-18.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.04.014] [PMID: 17544172]
[115]
Fernandez-Perez EJ, Muñoz B, Bascuñan DA, et al. Synaptic dysregulation and hyperexcitability induced by intracellular amyloid beta oligomers. Aging Cell 2021; 20(9): e13455.
[http://dx.doi.org/10.1111/acel.13455] [PMID: 34409748]
[116]
Bayer TA, Wirths O. Intracellular accumulation of amyloid-Beta - a predictor for synaptic dysfunction and neuron loss in Alzheimer’s disease. Front Aging Neurosci 2010; 2(8): 8.
[http://dx.doi.org/10.3389/fnagi.2010.00008] [PMID: 20552046]
[117]
Huang L, McClatchy DB, Maher P, et al. Intracellular amyloid toxicity induces oxytosis/ferroptosis regulated cell death. Cell Death Dis 2020; 11(10): 828.
[http://dx.doi.org/10.1038/s41419-020-03020-9] [PMID: 33024077]
[118]
Lee H, Yoon Y. Mitochondrial fission and fusion. Biochem Soc Trans 2016; 44(6): 1725-35.
[http://dx.doi.org/10.1042/BST20160129] [PMID: 27913683]
[119]
Manczak M, Calkins MJ, Reddy PH. Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: Implications for neuronal damage. Hum Mol Genet 2011; 20(13): 2495-509.
[http://dx.doi.org/10.1093/hmg/ddr139] [PMID: 21459773]
[120]
Wang X, Su B, Lee HG, et al. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 2009; 29(28): 9090-103.
[http://dx.doi.org/10.1523/JNEUROSCI.1357-09.2009] [PMID: 19605646]
[121]
Reddy PH, Manczak M, Yin X. Mitochondria-division inhibitor 1 protects against amyloid-β induced mitochondrial fragmentation and synaptic damage in Alzheimer’s disease. J Alzheimers Dis 2017; 58(1): 147-62.
[http://dx.doi.org/10.3233/JAD-170051] [PMID: 28409745]
[122]
Ahmed ME, Selvakumar GP, Kempuraj D, et al. Synergy in disruption of mitochondrial dynamics by Aβ (1-42) and glia maturation factor (GMF) in SH-SY5Y cells is mediated through alterations in fission and fusion proteins. Mol Neurobiol 2019; 56(10): 6964-75.
[http://dx.doi.org/10.1007/s12035-019-1544-z] [PMID: 30949973]
[123]
Batista AF, Rody T, Forny-Germano L, et al. Interleukin-1β mediates alterations in mitochondrial fusion/fission proteins and memory impairment induced by amyloid-β oligomers. J Neuroinflammation 2021; 18(1): 1-15.
[http://dx.doi.org/10.1186/s12974-021-02099-x] [PMID: 33402173]
[124]
Park SJ, Bae JE, Jo DS, et al. Increased O-GlcNAcylation of Drp1 by amyloid-beta promotes mitochondrial fission and dysfunction in neuronal cells. Mol Brain 2021; 14(1): 6.
[http://dx.doi.org/10.1186/s13041-020-00727-w] [PMID: 33422108]
[125]
Guo MY, Shang L, Hu YY, et al. The role of Cdk5-mediated Drp1 phosphorylation in Aβ1-42 induced mitochondrial fission and neuronal apoptosis. J Cell Biochem 2018; 119(6): 4815-25.
[http://dx.doi.org/10.1002/jcb.26680] [PMID: 29345339]
[126]
Kim B, Park J, Chang KT, Lee DS. Peroxiredoxin 5 prevents amyloid-beta oligomer-induced neuronal cell death by inhibiting ERK-Drp1-mediated mitochondrial fragmentation. Free Radic Biol Med 2016; 90: 184-94.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.11.015] [PMID: 26582373]
[127]
Park J, Choi H, Min JS, et al. Loss of mitofusin 2 links beta-amyloid-mediated mitochondrial fragmentation and Cdk5-induced oxidative stress in neuron cells. J Neurochem 2015; 132(6): 687-702.
[http://dx.doi.org/10.1111/jnc.12984] [PMID: 25359615]
[128]
Baek SH, Park SJ, Jeong JI, et al. Inhibition of drp1 ameliorates synaptic depression, Aβ deposition, and cognitive impairment in an Alzheimer’s disease model. J Neurosci 2017; 37(20): 5099-110.
[http://dx.doi.org/10.1523/JNEUROSCI.2385-16.2017] [PMID: 28432138]
[129]
Sarkar P, Zaja I, Bienengraeber M, et al. Epoxyeicosatrienoic acids pretreatment improves amyloid β-induced mitochondrial dysfunction in cultured rat hippocampal astrocytes. Am J Physiol Heart Circ Physiol 2014; 306(4): H475-84.
[http://dx.doi.org/10.1152/ajpheart.00001.2013] [PMID: 24285116]
[130]
Popov LD. Mitochondrial biogenesis: An update. J Cell Mol Med 2020; 24(9): 4892-9.
[http://dx.doi.org/10.1111/jcmm.15194] [PMID: 32279443]
[131]
Dong W, Wang F, Guo W, et al. Aβ25–35 suppresses mitochondrial biogenesis in primary hippocampal neurons. Cell Mol Neurobiol 2016; 36(1): 83-91.
[http://dx.doi.org/10.1007/s10571-015-0222-6] [PMID: 26055049]
[132]
Manczak M, Kandimalla R, Yin X, Reddy PH. Hippocampal mutant APP and amyloid beta-induced cognitive decline, dendritic spine loss, defective autophagy, mitophagy and mitochondrial abnormalities in a mouse model of Alzheimer’s disease. Hum Mol Genet 2018; 27(8): 1332-42.
[http://dx.doi.org/10.1093/hmg/ddy042] [PMID: 29408999]
[133]
Manczak M, Kandimalla R, Fry D, Sesaki H, Reddy PH. Protective effects of reduced dynamin-related protein 1 against amyloid beta-induced mitochondrial dysfunction and synaptic damage in Alzheimer’s disease. Hum Mol Genet 2016; 25(23): 5148-66.
[http://dx.doi.org/10.1093/hmg/ddw330] [PMID: 27677309]
[134]
Reddy PH, Yin X, Manczak M, et al. Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease. Hum Mol Genet 2018; 27(14): 2502-16.
[http://dx.doi.org/10.1093/hmg/ddy154] [PMID: 29701781]
[135]
Reddy AP, Yin X, Sawant N, Reddy PH. Protective effects of antidepressant citalopram against abnormal APP processing and amyloid beta-induced mitochondrial dynamics, biogenesis, mitophagy and synaptic toxicities in Alzheimer’s disease. Hum Mol Genet 2021; 30(10): 847-64.
[http://dx.doi.org/10.1093/hmg/ddab054] [PMID: 33615359]
[136]
Reddy AP, Sawant N, Morton H, et al. Selective serotonin reuptake inhibitor citalopram ameliorates cognitive decline and protects against amyloid beta-induced mitochondrial dynamics, biogenesis, autophagy, mitophagy and synaptic toxicities in a mouse model of Alzheimer’s disease. Hum Mol Genet 2021; 30(9): 789-810.
[http://dx.doi.org/10.1093/hmg/ddab091] [PMID: 33791799]
[137]
Kerr JS, Adriaanse BA, Greig NH, et al. Mitophagy and Alzheimer’s disease: Cellular and molecular mechanisms. Trends Neurosci 2017; 40(3): 151-66.
[http://dx.doi.org/10.1016/j.tins.2017.01.002] [PMID: 28190529]
[138]
Lonskaya I, Hebron ML, Desforges NM, Schachter JB, Moussa CE. Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance. J Mol Med (Berl) 2014; 92(4): 373-86.
[http://dx.doi.org/10.1007/s00109-013-1112-3] [PMID: 24337465]
[139]
Kam MK, Lee DG, Kim B, et al. Amyloid-beta oligomers induce Parkin-mediated mitophagy by reducing Miro1. Biochem J 2020; 477(23): 4581-97.
[http://dx.doi.org/10.1042/BCJ20200488] [PMID: 33155636]
[140]
Ye X, Sun X, Starovoytov V, Cai Q. Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer’s disease patient brains. Hum Mol Genet 2015; 24(10): 2938-51.
[http://dx.doi.org/10.1093/hmg/ddv056] [PMID: 25678552]
[141]
Chakravorty A, Jetto CT, Manjithaya R. Dysfunctional mitochondria and mitophagy as drivers of Alzheimer’s disease pathogenesis. Front Aging Neurosci 2019; 11(311): 311.
[http://dx.doi.org/10.3389/fnagi.2019.00311] [PMID: 31824296]
[142]
Kshirsagar S, Sawant N, Morton H, Reddy AP, Reddy PH. Protective effects of mitophagy enhancers against amyloid beta-induced mitochondrial and synaptic toxicities in Alzheimer disease. Hum Mol Genet 2022; 31(3): 423-39.
[http://dx.doi.org/10.1093/hmg/ddab262] [PMID: 34505123]
[143]
Fang EF, Hou Y, Palikaras K, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 2019; 22(3): 401-12.
[http://dx.doi.org/10.1038/s41593-018-0332-9] [PMID: 30742114]
[144]
Flannery PJ, Trushina E. Mitochondrial dynamics and transport in Alzheimer’s disease. Mol Cell Neurosci 2019; 98: 109-20.
[http://dx.doi.org/10.1016/j.mcn.2019.06.009] [PMID: 31216425]
[145]
Calkins MJ, Reddy PH. Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer’s disease neurons. Biochim Biophys Acta 2011; 1812(4): 507-13.
[http://dx.doi.org/10.1016/j.bbadis.2011.01.007] [PMID: 21241801]
[146]
Wang Q, Tian J, Chen H, Du H, Guo L. Amyloid beta-mediated KIF5A deficiency disrupts anterograde axonal mitochondrial movement. Neurobiol Dis 2019; 127: 410-8.
[http://dx.doi.org/10.1016/j.nbd.2019.03.021] [PMID: 30923004]
[147]
Kim C, Choi H, Jung ES, et al. HDAC6 inhibitor blocks amyloid beta-induced impairment of mitochondrial transport in hippocampal neurons. PLoS One 2012; 7(8): e42983.
[http://dx.doi.org/10.1371/journal.pone.0042983] [PMID: 22937007]
[148]
Rui Y, Tiwari P, Xie Z, Zheng JQ. Acute impairment of mitochondrial trafficking by β-amyloid peptides in hippocampal neurons. J Neurosci 2006; 26(41): 10480-7.
[http://dx.doi.org/10.1523/JNEUROSCI.3231-06.2006] [PMID: 17035532]
[149]
Decker H, Lo KY, Unger SM, Ferreira ST, Silverman MA. Amyloid-β peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3β in primary cultured hippocampal neurons. J Neurosci 2010; 30(27): 9166-71.
[http://dx.doi.org/10.1523/JNEUROSCI.1074-10.2010] [PMID: 20610750]
[150]
Pigino G, Morfini G, Atagi Y, et al. Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta. Proc Natl Acad Sci USA 2009; 106(14): 5907-12.
[http://dx.doi.org/10.1073/pnas.0901229106] [PMID: 19321417]
[151]
Zhang L, Trushin S, Christensen TA, et al. Differential effect of amyloid beta peptides on mitochondrial axonal trafficking depends on their state of aggregation and binding to the plasma membrane. Neurobiol Dis 2018; 114: 1-16.
[http://dx.doi.org/10.1016/j.nbd.2018.02.003] [PMID: 29477640]
[152]
Wang X, Perry G, Smith MA, Zhu X. Amyloid-β-derived diffusible ligands cause impaired axonal transport of mitochondria in neurons. Neurodegener Dis 2010; 7(1-3): 56-9.
[http://dx.doi.org/10.1159/000283484] [PMID: 20160460]
[153]
Cha MY, Cho HJ, Kim C, et al. Mitochondrial ATP synthase activity is impaired by suppressed O-GlcNAcylation in Alzheimer’s disease. Hum Mol Genet 2015; 24(22): 6492-504.
[http://dx.doi.org/10.1093/hmg/ddv358] [PMID: 26358770]
[154]
Beck SJ, Guo L, Phensy A, et al. Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer’s disease. Nat Commun 2016; 7(1): 11483.
[http://dx.doi.org/10.1038/ncomms11483] [PMID: 27151236]
[155]
Gao X, Zheng CY, Yang L, Tang XC, Zhang HY. Huperzine A protects isolated rat brain mitochondria against β-amyloid peptide. Free Radic Biol Med 2009; 46(11): 1454-62.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.02.028] [PMID: 19272446]
[156]
Bobba A, Amadoro G, Valenti D, Corsetti V, Lassandro R, Atlante A. Mitochondrial respiratory chain Complexes I and IV are impaired by β-amyloid via direct interaction and through Complex I-dependent ROS production, respectively. Mitochondrion 2013; 13(4): 298-311.
[http://dx.doi.org/10.1016/j.mito.2013.03.008] [PMID: 23562762]
[157]
Rhein V, Baysang G, Rao S, et al. Amyloid-beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells. Cell Mol Neurobiol 2009; 29(6-7): 1063-71.
[http://dx.doi.org/10.1007/s10571-009-9398-y] [PMID: 19350381]
[158]
Kalra J, Kumar P, Majeed ABA, Prakash A. Modulation of LOX and COX pathways via inhibition of amyloidogenesis contributes to mitoprotection against β-amyloid oligomer-induced toxicity in an animal model of Alzheimer’s disease in rats. Pharmacol Biochem Behav 2016; 146-147: 1-12.
[http://dx.doi.org/10.1016/j.pbb.2016.04.002] [PMID: 27106205]
[159]
Hernandez-Zimbron LF, Luna-Muñoz J, Mena R, et al. Amyloid-β peptide binds to cytochrome C oxidase subunit 1. PLoS One 2012; 7(8): e42344.
[http://dx.doi.org/10.1371/journal.pone.0042344] [PMID: 22927926]
[160]
Hong WK, Han EH, Kim DG, Ahn JY, Park JS, Han BG. Amyloid-β-peptide reduces the expression level of mitochondrial cytochrome oxidase subunits. Neurochem Res 2007; 32(9): 1483-8.
[http://dx.doi.org/10.1007/s11064-007-9336-7] [PMID: 17514422]
[161]
Hu H, Li M. Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons. Biochem Biophys Res Commun 2016; 478(1): 174-80.
[http://dx.doi.org/10.1016/j.bbrc.2016.07.071] [PMID: 27444386]
[162]
Piao Z, Song L, Yao L, Zhang L, Lu Y. Schisandrin restores the amyloid β-induced impairments on mitochondrial function, energy metabolism, biogenesis, and dynamics in rat primary hippocampal neurons. Pharmacology 2021; 106(5-6): 254-64.
[http://dx.doi.org/10.1159/000507818] [PMID: 33691319]
[163]
Zhang D, Zhang Y, Liu G, Zhang J. Dactylorhin B reduces toxic effects of β-amyloid fragment (25-35) on neuron cells and isolated rat brain mitochondria. Naunyn Schmiedebergs Arch Pharmacol 2006; 374(2): 117-25.
[http://dx.doi.org/10.1007/s00210-006-0095-9] [PMID: 17021851]
[164]
Amadoro G, Corsetti V, Atlante A, et al. Interaction between NH(2)-tau fragment and Aβ in Alzheimer’s disease mitochondria contributes to the synaptic deterioration. Neurobiol Aging 2012; 33(4): 833.e1-833.e25.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.08.001] [PMID: 21958963]
[165]
Jia K, Du H. Mitochondrial Permeability Transition: A pore intertwines brain aging and Alzheimer’s disease. Cells 2021; 10(3): 649.
[http://dx.doi.org/10.3390/cells10030649] [PMID: 33804048]
[166]
Bonora M, Giorgi C, Pinton P. Molecular mechanisms and consequences of mitochondrial permeability transition. Nat Rev Mol Cell Biol 2022; 23(4): 266-85.
[http://dx.doi.org/10.1038/s41580-021-00433-y] [PMID: 34880425]
[167]
Manczak M, Reddy PH. Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer’s disease. Hum Mol Genet 2012; 21(23): 5131-46.
[http://dx.doi.org/10.1093/hmg/dds360] [PMID: 22926141]
[168]
Cuadrado-Tejedor M, Vilariño M, Cabodevilla F, Del Río J, Frechilla D, Pérez-Mediavilla A. Enhanced expression of the voltage-dependent anion channel 1 (VDAC1) in Alzheimer’s disease transgenic mice: An insight into the pathogenic effects of amyloid-β. J Alzheimers Dis 2011; 23(2): 195-206.
[http://dx.doi.org/10.3233/JAD-2010-100966] [PMID: 20930307]
[169]
Smilansky A, Dangoor L, Nakdimon I, Ben-Hail D, Mizrachi D, Shoshan-Barmatz V. The voltage-dependent anion channel 1 mediates amyloid β toxicity and represents a potential target for Alzheimer disease therapy. J Biol Chem 2015; 290(52): 30670-83.
[http://dx.doi.org/10.1074/jbc.M115.691493] [PMID: 26542804]
[170]
Javadov S, Kuznetsov A. Mitochondrial permeability transition and cell death: The role of cyclophilin d. Front Physiol 2013; 4(76): 76.
[http://dx.doi.org/10.3389/fphys.2013.00076] [PMID: 23596421]
[171]
Du H, Guo L, Zhang W, Rydzewska M, Yan S. Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model. Neurobiol Aging 2011; 32(3): 398-406.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.03.003] [PMID: 19362755]
[172]
Du H, Guo L, Fang F, et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat Med 2008; 14(10): 1097-105.
[http://dx.doi.org/10.1038/nm.1868] [PMID: 18806802]
[173]
Valasani KR, Sun Q, Fang D, et al. Identification of a small molecule cyclophilin d inhibitor for rescuing Aβ-mediated mitochondrial dysfunction. ACS Med Chem Lett 2016; 7(3): 294-9.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00451] [PMID: 26985318]
[174]
Gauba E, Chen H, Guo L, Du H. Cyclophilin D deficiency attenuates mitochondrial F1Fo ATP synthase dysfunction via OSCP in Alzheimer’s disease. Neurobiol Dis 2019; 121: 138-47.
[http://dx.doi.org/10.1016/j.nbd.2018.09.020] [PMID: 30266287]
[175]
Guo L, Du H, Yan S, et al. Cyclophilin D deficiency rescues axonal mitochondrial transport in Alzheimer’s neurons. PLoS One 2013; 8(1): e54914.
[http://dx.doi.org/10.1371/journal.pone.0054914] [PMID: 23382999]
[176]
Ren R, Zhang Y, Li B, Wu Y, Li B. Effect of β-amyloid (25-35) on mitochondrial function and expression of mitochondrial permeability transition pore proteins in rat hippocampal neurons. J Cell Biochem 2011; 112(5): 1450-7.
[http://dx.doi.org/10.1002/jcb.23062] [PMID: 21321998]
[177]
Qu M, Zhou Z, Chen C, et al. Inhibition of mitochondrial permeability transition pore opening is involved in the protective effects of mortalin overexpression against beta-amyloid-induced apoptosis in SH-SY5Y cells. Neurosci Res 2012; 72(1): 94-102.
[http://dx.doi.org/10.1016/j.neures.2011.09.009] [PMID: 22001761]
[178]
Camilleri A, Zarb C, Caruana M, et al. Mitochondrial membrane permeabilisation by amyloid aggregates and protection by polyphenols. Biochim Biophys Acta 2013; 1828(11): 2532-43.
[http://dx.doi.org/10.1016/j.bbamem.2013.06.026] [PMID: 23817009]
[179]
Esteras N, Abramov AY. Mitochondrial calcium deregulation in the mechanism of beta-amyloid and tau pathology. Cells 2020; 9(9): 1-17.
[http://dx.doi.org/10.3390/cells9092135] [PMID: 32967303]
[180]
Calvo-Rodríguez M, García-Durillo M, Villalobos C, Núñez L. Aging enables Ca2+ overload and apoptosis induced by amyloid-β oligomers in rat hippocampal neurons: Neuroprotection by non-steroidal anti-inflammatory drugs and r-flurbiprofen in aging neurons. J Alzheimers Dis 2016; 54(1): 207-21.
[http://dx.doi.org/10.3233/JAD-151189] [PMID: 27447424]
[181]
Calvo-Rodriguez M, Bacskai BJ. High mitochondrial calcium levels precede neuronal death in vivo in Alzheimer’s disease. Cell Stress 2020; 4(7): 187-90.
[http://dx.doi.org/10.15698/cst2020.07.226] [PMID: 32656500]
[182]
Calvo-Rodriguez M, Hou SS, Snyder AC, et al. Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease. Nat Commun 2020; 11(1): 2146.
[http://dx.doi.org/10.1038/s41467-020-16074-2] [PMID: 32358564]
[183]
Calvo-Rodriguez M, Hernando-Perez E, Nuñez L, Villalobos C. Amyloid β oligomers increase ER-mitochondria Ca2+ cross talk in young hippocampal neurons and exacerbate aging-induced intracellular Ca2+ remodeling. Front Cell Neurosci 2019; 13(22): 22.
[http://dx.doi.org/10.3389/fncel.2019.00022] [PMID: 30800057]
[184]
Jadiya P, Kolmetzky DW, Tomar D, et al. Impaired mitochondrial calcium efflux contributes to disease progression in models of Alzheimer’s disease. Nat Commun 2019; 10(1): 3885.
[http://dx.doi.org/10.1038/s41467-019-11813-6] [PMID: 31467276]
[185]
Zhang B, Jia K, Tian J, Du H. Cyclophilin D counterbalances mitochondrial calcium uniporter-mediated brain mitochondrial calcium uptake. Biochem Biophys Res Commun 2020; 529(2): 314-20.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.204] [PMID: 32703429]
[186]
Agostinho P, Lopes JP, Velez Z, Oliveira CR. Overactivation of calcineurin induced by amyloid-beta and prion proteins. Neurochem Int 2008; 52(6): 1226-33.
[http://dx.doi.org/10.1016/j.neuint.2008.01.005] [PMID: 18295934]
[187]
Sun Z, Ma X, Yang H, Zhao J, Zhang J. Brain-derived neurotrophic factor prevents beta- amyloid-induced apoptosis of pheochromocytoma cells by regulating Bax/Bcl-2 expression. Neural Regen Res 2012; 7(5): 347-51.
[PMID: 25774173]
[188]
Li Y, Liu Q, Sun J, Wang J, Liu X, Gao J. Mitochondrial protective mechanism of simvastatin protects against amyloid β peptide-induced injury in SH-SY5Y cells. Int J Mol Med 2018; 41(5): 2997-3005.
[PMID: 29436584]
[189]
Chi CW, Lin YL, Wang YH, Chen CF, Wang CN, Shiao YJ. Tournefolic acid B attenuates amyloid β protein-mediated toxicity by abrogating the calcium overload in mitochondria and retarding the caspase 8-truncated Bid-cytochrome c pathway in rat cortical neurons. Eur J Pharmacol 2008; 586(1-3): 35-43.
[http://dx.doi.org/10.1016/j.ejphar.2008.02.058] [PMID: 18374914]
[190]
Yao M, Nguyen TVV, Pike CJ. β-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J Neurosci 2005; 25(5): 1149-58.
[http://dx.doi.org/10.1523/JNEUROSCI.4736-04.2005] [PMID: 15689551]
[191]
Yao M, Nguyen TVV, Pike CJ. Estrogen regulates Bcl-w and Bim expression: Role in protection against β-amyloid peptide-induced neuronal death. J Neurosci 2007; 27(6): 1422-33.
[http://dx.doi.org/10.1523/JNEUROSCI.2382-06.2007] [PMID: 17287517]
[192]
Kim J, Yang Y, Song SS, et al. Beta-amyloid oligomers activate apoptotic BAK pore for cytochrome c release. Biophys J 2014; 107(7): 1601-8.
[http://dx.doi.org/10.1016/j.bpj.2014.07.074] [PMID: 25296312]
[193]
Sharoar MG, Islam MI, Shahnawaz M, Shin SY, Park IS. Amyloid β binds procaspase-9 to inhibit assembly of Apaf-1 apoptosome and intrinsic apoptosis pathway. Biochim Biophys Acta 2014; 1843(4): 685-93.
[http://dx.doi.org/10.1016/j.bbamcr.2014.01.008] [PMID: 24424093]
[194]
Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: From physiology to neurodegeneration. FEBS Lett 2018; 592(5): 692-702.
[http://dx.doi.org/10.1002/1873-3468.12964] [PMID: 29292494]
[195]
Kaminsky YG, Kosenko EA. Effects of amyloid-beta peptides on hydrogen peroxide-metabolizing enzymes in rat brain in vivo. Free Radic Res 2008; 42(6): 564-73.
[http://dx.doi.org/10.1080/10715760802159057] [PMID: 18569014]
[196]
Manczak M, Mao P, Calkins MJ, et al. Mitochondria-targeted antioxidants protect against amyloid-β toxicity in Alzheimer’s disease neurons. J Alzheimers Dis 2010; 20(2) (Suppl. 2): S609-31.
[http://dx.doi.org/10.3233/JAD-2010-100564] [PMID: 20463406]
[197]
Ansari MA, Joshi G, Huang Q, et al. In vivo administration of D609 leads to protection of subsequently isolated gerbil brain mitochondria subjected to in vitro oxidative stress induced by amyloid beta-peptide and other oxidative stressors: Relevance to Alzheimer’s disease and other oxidative stress-related neurodegenerative disorders. Free Radic Biol Med 2006; 41(11): 1694-703.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.09.002] [PMID: 17145558]
[198]
Ma WW, Hou CC, Zhou X, et al. Genistein alleviates the mitochondria-targeted DNA damage induced by β-amyloid peptides 25-35 in C6 glioma cells. Neurochem Res 2013; 38(7): 1315-23.
[http://dx.doi.org/10.1007/s11064-013-1019-y] [PMID: 23519932]
[199]
Mossmann D, Vögtle FN, Taskin AA, et al. Amyloid-β peptide induces mitochondrial dysfunction by inhibition of preprotein maturation. Cell Metab 2014; 20(4): 662-9.
[http://dx.doi.org/10.1016/j.cmet.2014.07.024] [PMID: 25176146]
[200]
Yao J, Du H, Yan S, et al. Inhibition of amyloid-β (Abeta) peptide-binding alcohol dehydrogenase-Abeta interaction reduces Abeta accumulation and improves mitochondrial function in a mouse model of Alzheimer’s disease. J Neurosci 2011; 31(6): 2313-20.
[http://dx.doi.org/10.1523/JNEUROSCI.4717-10.2011] [PMID: 21307267]
[201]
Morsy A, Trippier PC. Amyloid-binding alcohol dehydrogenase (ABAD) inhibitors for the treatment of Alzheimer’s disease: Miniperspective. J Med Chem 2019; 62(9): 4252-64.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01530] [PMID: 30444369]
[202]
Borger E, Aitken L, Du H, Zhang W, Gunn-Moore FJ, Yan SS. Is amyloid binding alcohol dehydrogenase a drug target for treating Alzheimer’s disease? Curr Alzheimer Res 2013; 10(1): 21-9.
[PMID: 22742981]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy