Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Review Article

Novel Molecular Targets and Mechanisms for Neuroprotective Modulation in Neurodegenerative Disorders

Author(s): Aala Azari, Amin Goodarzi, Behrouz Jafarkhani, Mohammad Eghbali, Zohreh Karimi, Seyed Sajad Hosseini Balef and Hamid Irannejad*

Volume 22, Issue 2, 2022

Published on: 22 July, 2022

Page: [88 - 107] Pages: 20

DOI: 10.2174/1871524922666220616092132

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Neuronal death underlies the symptoms of several human neurological disorders, including Alzheimer's, Parkinson's and Huntington's diseases, and amyotrophic lateral sclerosis and their precise pathophysiology have not yet been elucidated. According to various studies, the prohibition is the best therapy with neuroprotective approaches, which are advanced and safe methods.

Methods: This review summarizes some of the already-known and newly emerged neuroprotective targets and strategies and their experimental effects have also been reported. Accordingly, literature was studied from 2000 to 2021, and appropriate articles were searched in Google Scholar and Scopus with the keywords given in the keywords section of the current review.

Results: Lewy bodies are the histopathologic characteristics of neurodegenerative disorders and are protein-rich intracellular deposits in which Alpha-synuclein is its major protein. Alphasynuclein’s toxic potential provides a compelling rationale for therapeutic strategies aimed at decreasing its burden in neuronal cells through numerous pathways, including ubiquitin-proteasome system and autophagy-lysosome pathway, proteolytic breakdown via cathepsin D, kallikrein-6 (neurosin), calpain-1 or MMP9, heat shock proteins, and proteolysis targeting chimera which consists of a target protein-ligand and an E3 ubiquitin ligase (E3) followed by target protein ubiquitination (PROTACs). Other targets that have been noticed recently are the mutant huntingtin, tau proteins and glycogen synthase kinase 3β; their accumulation proceeds extensive neuronal damage and up to the minute approach such as proteolysis targeting chimera promotes its degradation in cells. Various studies demonstrated that Mendelian gene mutations can result in neurodegenerative diseases. An additional target that has gained much interest is epigenetics, such as mutation, phosphodiesterase, RNA binding proteins and Nuclear respiratory factor 1.

Conclusion: The novel molecular targets and new strategies compiled and introduced here can be used by scientists to design and discover more efficient small molecule drugs against neurodegenerative diseases. And also, the genes in which their mutations can lead to the α-synuclein aggregation or accumulation have been discussed and considered a valuable information on epigenetics in dementia.

Keywords: Neuroprotection, α-synuclein, ubiquitin-proteasome system, PROTAC, heat shock protein, autophagy, epigenetics.

Graphical Abstract
[1]
Andlin-Sobocki, P.; Jonsson, B.; Wittchen, H.U.; Olesen, J. Costs of disorders of the brain in Europe. Eur. J. Neurol., 2005, 12(1), 1-27.
[http://dx.doi.org/10.1111/j.1468-1331.2005.01202.x]
[2]
Tan, D.X.; Manchester, L.C.; Sainz, R.; Mayo, J.C.; Alvares, F.L.; Reiter, R.J. Antioxidant strategies in protection against neurodegenerative disorders. Expert Opin. Ther. Pat., 2003, 13(10), 1513-1543.
[http://dx.doi.org/10.1517/13543776.13.10.1513]
[3]
Nieoullon, A. Neurodegenerative diseases and neuroprotection: current views and prospects. J. Appl. Biomed., 2011, 9(4), 173-183.
[http://dx.doi.org/10.2478/v10136-011-0013-4]
[4]
Agarwal, S.; Yadav, A.; Chaturvedi, R.K. Peroxisome Proliferator-Activated Receptors (PPARs) as therapeutic target in neurodegenerative disorders. Biochem. Biophys. Res. Commun., 2017, 483(4), 1166-1177.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.043] [PMID: 27514452]
[5]
Markesbery, W.R.; Jicha, G.A.; Liu, H.; Schmitt, F.A. Lewy body pathology in normal elderly subjects. J. Neuropathol. Exp. Neurol., 2009, 68(7), 816-822.
[6]
Urbizu, A.; Beyer, K. Epigenetics in lewy body diseases: Impact on gene expression, utility as a biomarker, and possibilities for therapy. Int. J. Mol. Sci., 2020, 21(13), 4718.
[http://dx.doi.org/10.3390/ijms21134718] [PMID: 32630630]
[7]
Wakabayashi, K.; Tanji, K.; Mori, F.; Takahashi, H. The lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of α-synuclein aggregates. Neuropathology, 2007, 27(5), 494-506.
[http://dx.doi.org/10.1111/j.1440-1789.2007.00803.x] [PMID: 18018486]
[8]
Pan, T.; Kondo, S.; Le, W.; Jankovic, J. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain, 2008, 131(Pt 8), 1969-1978.
[http://dx.doi.org/10.1093/brain/awm318] [PMID: 18187492]
[9]
Pineda, A.; Burré, J. Modulating membrane binding of α-synuclein as a therapeutic strategy. Proc. Natl. Acad. Sci. USA, 2017, 114(6), 1223-1225.
[http://dx.doi.org/10.1073/pnas.1620159114] [PMID: 28126719]
[10]
Crews, L.; Spencer, B.; Desplats, P.; Patrick, C.; Paulino, A.; Rockenstein, E.; Hansen, L.; Adame, A.; Galasko, D.; Masliah, E. Selective molecular alterations in the autophagy pathway in patients with lewy body disease and in models of α-synucleinopathy. PLoS One, 2010, 5(2), e9313.
[http://dx.doi.org/10.1371/journal.pone.0009313] [PMID: 20174468]
[11]
Watanabe, Y.; Tatebe, H.; Taguchi, K.; Endo, Y.; Tokuda, T.; Mizuno, T.; Nakagawa, M.; Tanaka, M. p62/SQSTM1-dependent autophagy of lewy body-like α-synuclein inclusions. PLoS One, 2012, 7(12), e52868.
[http://dx.doi.org/10.1371/journal.pone.0052868] [PMID: 23300799]
[12]
Tomoshige, S.; Nomura, S.; Ohgane, K.; Hashimoto, Y.; Ishikawa, M. Discovery of small molecules that induce the degradation of huntingtin. Angew. Chem. Int. Ed. Engl., 2017, 56(38), 11530-11533.
[http://dx.doi.org/10.1002/anie.201706529] [PMID: 28703441]
[13]
Kargbo, R.B. PROTAC compounds targeting α-synuclein protein for treating neurogenerative disorders: Alzheimer’s and Parkinson’s diseases. ACS Med. Chem. Lett., 2020, 11(6), 1086-1087.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00192] [PMID: 32550983]
[14]
Gatz, M.; Reynolds, C.A.; Fratiglioni, L.; Johansson, B.; Mortimer, J.A.; Berg, S.; Fiske, A.; Pedersen, N.L. Role of genes and environments for explaining Alzheimer disease. Arch. Gen. Psychiatry, 2006, 63(2), 168-174.
[http://dx.doi.org/10.1001/archpsyc.63.2.168] [PMID: 16461860]
[15]
Van Cauwenberghe, C.; Van Broeckhoven, C.; Sleegers, K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet. Med., 2016, 18(5), 421-430.
[http://dx.doi.org/10.1038/gim.2015.117] [PMID: 26312828]
[16]
Al-Chalabi, A.; Fang, F.; Hanby, M.F.; Leigh, P.N.; Shaw, C.E.; Ye, W. An estimate of amyotrophic lateral sclerosis heritability using twin data. J. Neurol. Neurosurg. Psychiatry, 2010, 81(12), 1324-1326.
[http://dx.doi.org/10.1136/jnnp.2010.207464]
[17]
Cheruvara, H.; Allen-Baume, V.L.; Kad, N.M.; Mason, J.M. Intracellular screening of a peptide library to derive a potent peptide inhibitor of α-synuclein aggregation. J. Biol. Chem., 2015, 290(12), 7426-7435.
[http://dx.doi.org/10.1074/jbc.M114.620484] [PMID: 25616660]
[18]
Cookson, M.R. Alpha-synuclein and neuronal cell death. Mol. Neurodegener., 2009, 4(14), 9.
[http://dx.doi.org/10.1186/1750-1326-4-9] [PMID: 19193223]
[19]
Van Rooijen, B.D.; Van Leijenhorst-Groener, K.A.; Claessens, M.M.A.E.; Subramaniam, V. Tryptophan fluorescence reveals structural features of alpha-synuclein oligomers. J. Mol. Biol., 2009, 394(5), 826-833.
[http://dx.doi.org/10.1016/j.jmb.2009.10.021] [PMID: 19837084]
[20]
Paslawski, W.; Mysling, S.; Thomsen, K.; Jørgensen, T.J.D.; Otzen, D.E. Co-existence of two different α-synuclein oligomers with different core structures determined by hydrogen/deuterium exchange mass spectrometry. Angew. Chem., 2014, 126(29), 7690-7693.
[http://dx.doi.org/10.1002/ange.201400491]
[21]
Dehay, B.; Bourdenx, M.; Gorry, P.; Przedborski, S.; Vila, M.; Hunot, S.; Singleton, A.; Olanow, C.W.; Merchant, K.M.; Bezard, E.; Petsko, G.A.; Meissner, W.G. Targeting α-synuclein for treatment of Parkinson’s disease: mechanistic and therapeutic considerations. Lancet Neurol., 2015, 14(8), 855-866.
[http://dx.doi.org/10.1016/S1474-4422(15)00006-X] [PMID: 26050140]
[22]
Chu, Y.; Dodiya, H.; Aebischer, P.; Olanow, C.W.; Kordower, J.H. Alterations in lysosomal and proteasomal markers in Parkinson’s disease: relationship to alpha-synuclein inclusions. Neurobiol. Dis., 2009, 35(3), 385-398.
[http://dx.doi.org/10.1016/j.nbd.2009.05.023] [PMID: 19505575]
[23]
Kiely, A.P.; Miners, J.S.; Courtney, R.; Strand, C.; Love, S.; Holton, J.L. Exploring the putative role of kallikrein-6, calpain-1 and cathepsin-D in the proteolytic degradation of α-synuclein in multiple system atrophy. Neuropathol. Appl. Neurobiol., 2019, 45(4), 347-360.
[http://dx.doi.org/10.1111/nan.12512] [PMID: 29993134]
[24]
Nalepa, G.; Rolfe, M.; Harper, J.W. Drug discovery in the ubiquitin-proteasome system. Nat. Rev. Drug Discov., 2006, 5(7), 596-613.
[http://dx.doi.org/10.1038/nrd2056] [PMID: 16816840]
[25]
Wang, Z.Y.; Liu, J.Y.; Yang, C.B.; Malampati, S.; Huang, Y.Y.; Li, M.X.; Li, M.; Song, J.X. Neuroprotective natural products for the treatment of Parkinson’s disease by targeting the autophagy-lysosome pathway: A systematic review. Phytother. Res., 2017, 31(8), 1119-1127.
[http://dx.doi.org/10.1002/ptr.5834] [PMID: 28504367]
[26]
Ventruti, A.; Cuervo, A.M. Autophagy and neurodegeneration. Curr. Neurol. Neurosci. Rep., 2007, 7(5), 443-451.
[http://dx.doi.org/10.1007/s11910-007-0068-5] [PMID: 17764636]
[27]
Massey, A.C.; Zhang, C.; Cuervo, A.M. Chaperone-mediated autophagy in aging and disease. Curr. Top. Dev. Biol., 2006, 73, 205-235.
[http://dx.doi.org/10.1016/S0070-2153(05)73007-6] [PMID: 16782460]
[28]
Cullen, V.; Lindfors, M.; Ng, J.; Paetau, A.; Swinton, E.; Kolodziej, P.; Boston, H.; Saftig, P.; Woulfe, J.; Feany, M.B.; Myllykangas, L.; Schlossmacher, M.G.; Tyynelä, J. Cathepsin D expression level affects alpha-synuclein processing, aggregation, and toxicity in vivo. Mol. Brain, 2009, 2(1), 5.
[http://dx.doi.org/10.1186/1756-6606-2-5] [PMID: 19203374]
[29]
Cuervo, A.M.; Dice, J.F. A receptor for the selective uptake and degradation of proteins by lysosomes. Science, 1996, 273(5274), 501-503.
[http://dx.doi.org/10.1126/science.273.5274.501] [PMID: 8662539]
[30]
Majeski, A.E.; Dice, J.F. Mechanisms of chaperone-mediated autophagy. Int. J. Biochem. Cell Biol., 2004, 36(12), 2435-2444.
[http://dx.doi.org/10.1016/j.biocel.2004.02.013]
[31]
Vogiatzi, T.; Xilouri, M.; Vekrellis, K.; Stefanis, L. Wild type α-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J. Biol. Chem., 2008, 283(35), 23542-23556.
[http://dx.doi.org/10.1074/jbc.M801992200] [PMID: 18566453]
[32]
Cuervo, A.M.; Stefanis, L.; Fredenburg, R.; Lansbury, P.T.; Sulzer, D. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science, 2004, 305(5688), 1292-1295.
[http://dx.doi.org/10.1126/science.1101738] [PMID: 15333840]
[33]
Ebrahimi-Fakhari, D.; Cantuti-Castelvetri, I.; Fan, Z.; Rockenstein, E.; Masliah, E.; Hyman, B.T.; McLean, P.J.; Unni, V.K. Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of α-synuclein. J. Neurosci., 2011, 31(41), 14508-14520.
[http://dx.doi.org/10.1523/JNEUROSCI.1560-11.2011] [PMID: 21994367]
[34]
Ghosh, A.; Tyson, T.; George, S; Hildebrandt, E.N.; Steiner, J.A.; Madaj, Z. Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson’s disease. Sci. Tansl. Med. 2016, 8(368) 368ra174
[http://dx.doi.org/10.1126/scitranslmed.aag2210]
[35]
Wu, J.Z.; Ardah, M.; Haikal, C.; Svanbergsson, A.; Diepenbroek, M.; Vaikath, N.N.; Li, W.; Wang, Z.Y.; Outeiro, T.F.; El-Agnaf, O.M.; Li, J.Y. Dihydromyricetin and salvianolic acid B inhibit alpha-synuclein aggregation and enhance chaperone-mediated autophagy. Transl. Neurodegener., 2019, 8(1), 18.
[http://dx.doi.org/10.1186/s40035-019-0159-7] [PMID: 31223479]
[36]
Fiolek, T.J.; Magyar, C.L.; Wall, T.J.; Davies, S.B.; Campbell, M.V.; Savich, C.J.; Tepe, J.J.; Mosey, R.A. Dihydroquinazolines enhance 20S proteasome activity and induce degradation of α-synuclein, an intrinsically disordered protein associated with neurodegeneration. Bioorg. Med. Chem. Lett., 2021, 36, 127821.
[http://dx.doi.org/10.1016/j.bmcl.2021.127821] [PMID: 33513387]
[37]
Hebron, M.L.; Lonskaya, I.; Moussa, C.E.H. Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of α-synuclein in Parkinson’s disease models. Hum. Mol. Genet., 2013, 22(16), 3315-3328.
[http://dx.doi.org/10.1093/hmg/ddt192] [PMID: 23666528]
[38]
Höllerhage, M.; Goebel, J.N.; de Andrade, A.; Hildebrandt, T.; Dolga, A.; Culmsee, C.; Oertel, W.H.; Hengerer, B.; Höglinger, G.U. Trifluoperazine rescues human dopaminergic cells from wild-type α-synuclein-induced toxicity. Neurobiol. Aging, 2014, 35(7), 1700-1711.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.01.027] [PMID: 24559643]
[39]
Macedo, D.; Jardim, C.; Figueira, I.; Almeida, A.F.; McDougall, G.J.; Stewart, D.; Yuste, J.E.; Tomás-Barberán, F.A.; Tenreiro, S.; Outeiro, T.F.; Santos, C.N. (Poly)phenol-digested metabolites modulate alpha-synuclein toxicity by regulating proteostasis. Sci. Rep., 2018, 8(1), 6965.
[http://dx.doi.org/10.1038/s41598-018-25118-z] [PMID: 29725038]
[40]
He, Q.; Koprich, J.B.; Wang, Y.; Yu, W.B.; Xiao, B.G.; Brotchie, J.M.; Wang, J. Treatment with trehalose prevents behavioral and neurochemical deficits produced in an AAV $α$-synuclein rat model of Parkinson’s disease. Mol. Neurobiol., 2016, 53(4), 2258-2268.
[http://dx.doi.org/10.1007/s12035-015-9173-7] [PMID: 25972237]
[41]
Kaur, S.; Nazir, A. Potential role of protein stabilizers in amelioration of Parkinson’s disease and associated effects in transgenic Caenorhabditis elegans model expressing alpha-synuclein. RSC Advances, 2015, 5(95), 77706-77715.
[http://dx.doi.org/10.1039/C5RA13546J]
[42]
McLean, P.J.; Kawamata, H.; Shariff, S.; Hewett, J.; Sharma, N.; Ueda, K.; Breakefield, X.O.; Hyman, B.T. TorsinA and heat shock proteins act as molecular chaperones: suppression of α-synuclein aggregation. J. Neurochem., 2002, 83(4), 846-854.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01190.x] [PMID: 12421356]
[43]
Outeiro, T.F.; Klucken, J.; Strathearn, K.E.; Liu, F.; Nguyen, P.; Rochet, J.C.; Hyman, B.T.; McLean, P.J. Small heat shock proteins protect against α-synuclein-induced toxicity and aggregation. Biochem. Biophys. Res. Commun., 2006, 351(3), 631-638.
[http://dx.doi.org/10.1016/j.bbrc.2006.10.085] [PMID: 17081499]
[44]
Klucken, J.; Shin, Y.; Masliah, E.; Hyman, B.T.; McLean, P.J. Hsp70 reduces $α$-synuclein aggregation and toxicity. J. Biol. Chem., 2004, 279(24), 25497-25502.
[http://dx.doi.org/10.1074/jbc.M400255200] [PMID: 15044495]
[45]
McLean, P.J.; Klucken, J.; Shin, Y.; Hyman, B.T. Geldanamycin induces Hsp70 and prevents α-synuclein aggregation and toxicity in vitro. Biochem. Biophys. Res. Commun., 2004, 321(3), 665-669.
[http://dx.doi.org/10.1016/j.bbrc.2004.07.021] [PMID: 15358157]
[46]
Daturpalli, S.; Waudby, C.A.; Meehan, S.; Jackson, S.E. Hsp90 inhibits α-synuclein aggregation by interacting with soluble oligomers. J. Mol. Biol., 2013, 425(22), 4614-4628.
[http://dx.doi.org/10.1016/j.jmb.2013.08.006] [PMID: 23948507]
[47]
Auluck, P.K.; Meulener, M.C.; Bonini, N.M. Mechanisms of suppression of $α$-synuclein neurotoxicity by geldanamycin in drosophila. J. Biol. Chem., 2005, 280(4), 2873-2878.
[http://dx.doi.org/10.1074/jbc.M412106200] [PMID: 15556931]
[48]
Putcha, P.; Danzer, K.M.; Kranich, L.R.; Scott, A.; Silinski, M.; Mabbett, S.; Hicks, C.D.; Veal, J.M.; Steed, P.M.; Hyman, B.T.; McLean, P.J. Brain-permeable small-molecule inhibitors of Hsp90 prevent α-synuclein oligomer formation and rescue α-synuclein-induced toxicity. J. Pharmacol. Exp. Ther., 2010, 332(3), 849-857.
[http://dx.doi.org/10.1124/jpet.109.158436] [PMID: 19934398]
[49]
Migdalska-Richards, A.; Daly, L.; Bezard, E.; Schapira, A.H.V. Ambroxol effects in glucocerebrosidase and α-synuclein transgenic mice. Ann. Neurol., 2016, 80(5), 766-775.
[http://dx.doi.org/10.1002/ana.24790] [PMID: 27859541]
[50]
Hasilik, A.; Neufeld, E.F. Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. J. Biol. Chem., 1980, 255(10), 4937-4945.
[51]
McGlinchey, R.P.; Lacy, S.M.; Walker, R.L., III; Lee, J.C. Cathepsin K is a potent disaggregase of α-synuclein fibrils. Biochem. Biophys. Res. Commun., 2020, 529(4), 1106-1111.
[http://dx.doi.org/10.1016/j.bbrc.2020.06.155] [PMID: 32819572]
[52]
Qiao, L.; Hamamichi, S.; Caldwell, K.A.; Caldwell, G.A.; Yacoubian, T.A.; Wilson, S.; Xie, Z.L.; Speake, L.D.; Parks, R.; Crabtree, D.; Liang, Q.; Crimmins, S.; Schneider, L.; Uchiyama, Y.; Iwatsubo, T.; Zhou, Y.; Peng, L.; Lu, Y.; Standaert, D.G.; Walls, K.C.; Shacka, J.J.; Roth, K.A.; Zhang, J. Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicity. Mol. Brain, 2008, 1(1), 17.
[http://dx.doi.org/10.1186/1756-6606-1-17] [PMID: 19021916]
[53]
McGlinchey, R.P.; Lee, J.C. Cysteine cathepsins are essential in lysosomal degradation of α-synuclein. Proc. Natl. Acad. Sci. USA, 2015, 112(30), 9322-9327.
[http://dx.doi.org/10.1073/pnas.1500937112] [PMID: 26170293]
[54]
Petraki, C.D.; Karavana, V.N.; Skoufogiannis, P.T.; Little, S.P.; Howarth, D.J.C.; Yousef, G.M. The spectrum of human kallikrein 6 (zyme/protease M/neurosin) expression in human tissues as assessed by immunohistochemistry. J. Histochem. Cytochem., 2001, 49(11), 1431-1441.
[55]
Iwata, A.; Maruyama, M.; Akagi, T.; Hashikawa, T.; Kanazawa, I.; Tsuji, S.; Nukina, N. Alpha-synuclein degradation by serine protease neurosin: implication for pathogenesis of synucleinopathies. Hum. Mol. Genet., 2003, 12(20), 2625-2635.
[http://dx.doi.org/10.1093/hmg/ddg283] [PMID: 12928483]
[56]
Tatebe, H.; Watanabe, Y.; Kasai, T.; Mizuno, T.; Nakagawa, M.; Tanaka, M.; Tokuda, T. Extracellular neurosin degrades α-synuclein in cultured cells. Neurosci. Res., 2010, 67(4), 341-346.
[http://dx.doi.org/10.1016/j.neures.2010.04.008] [PMID: 20403393]
[57]
Spencer, B.; Valera, E.; Rockenstein, E.; Trejo-Morales, M.; Adame, A.; Masliah, E. A brain-targeted, modified neurosin (kallikrein-6) reduces α-synuclein accumulation in a mouse model of multiple system atrophy. Mol. Neurodegener., 2015, 10(1), 48.
[http://dx.doi.org/10.1186/s13024-015-0043-6] [PMID: 26394760]
[58]
Spencer, B.; Michael, S.; Shen, J.; Kosberg, K.; Rockenstein, E.; Patrick, C.; Adame, A.; Masliah, E. Lentivirus mediated delivery of neurosin promotes clearance of wild-type α-synuclein and reduces the pathology in an α-synuclein model of LBD. Mol. Ther., 2013, 21(1), 31-41.
[http://dx.doi.org/10.1038/mt.2012.66] [PMID: 22508489]
[59]
Ximerakis, M.; Pampalakis, G.; Roumeliotis, T.I.; Sykioti, V-S.; Garbis, S.D.; Stefanis, L.; Sotiropoulou, G.; Vekrellis, K. Resistance of naturally secreted α-synuclein to proteolysis. FASEB J., 2014, 28(7), 3146-3158.
[http://dx.doi.org/10.1096/fj.13-245852] [PMID: 24723692]
[60]
Pampalakis, G.; Sykioti, V-S.; Ximerakis, M.; Stefanakou-Kalakou, I.; Melki, R.; Vekrellis, K.; Sotiropoulou, G. KLK6 proteolysis is implicated in the turnover and uptake of extracellular alpha-synuclein species. Oncotarget, 2017, 8(9), 14502-14515.
[http://dx.doi.org/10.18632/oncotarget.13264] [PMID: 27845893]
[61]
Perni, M.; Galvagnion, C.; Maltsev, A.; Meisl, G.; Müller, M.B.D.; Challa, P.K.; Kirkegaard, J.B.; Flagmeier, P.; Cohen, S.I.; Cascella, R.; Chen, S.W.; Limbocker, R.; Sormanni, P.; Heller, G.T.; Aprile, F.A.; Cremades, N.; Cecchi, C.; Chiti, F.; Nollen, E.A.; Knowles, T.P.; Vendruscolo, M.; Bax, A.; Zasloff, M.; Dobson, C.M. A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proc. Natl. Acad. Sci. USA, 2017, 114(6), E1009-E1017.
[http://dx.doi.org/10.1073/pnas.1610586114] [PMID: 28096355]
[62]
Davies, S.E.; Hallett, P.J.; Moens, T.; Smith, G.; Mangano, E.; Kim, H.T.; Goldberg, A.L.; Liu, J.L.; Isacson, O.; Tofaris, G.K. Enhanced ubiquitin-dependent degradation by Nedd4 protects against α-synuclein accumulation and toxicity in animal models of Parkinson’s disease. Neurobiol. Dis., 2014, 64, 79-87.
[http://dx.doi.org/10.1016/j.nbd.2013.12.011] [PMID: 24388974]
[63]
Hochstrasser, M. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr. Opin. Cell Biol., 1995, 7(2), 215-223.
[http://dx.doi.org/10.1016/0955-0674(95)80031-X] [PMID: 7612274]
[64]
Clague, M.J.; Heride, C.; Urbé, S. The demographics of the ubiquitin system. Trends Cell Biol., 2015, 25(7), 417-426.
[http://dx.doi.org/10.1016/j.tcb.2015.03.002] [PMID: 25906909]
[65]
Vassilev, L.T.; Vu, B.T.; Graves, B.; Carvajal, D.; Podlaski, F.; Filipovic, Z.; Kong, N.; Kammlott, U.; Lukacs, C.; Klein, C.; Fotouhi, N.; Liu, E.A. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science, 2004, 303(5659), 844-848.
[http://dx.doi.org/10.1126/science.1092472] [PMID: 14704432]
[66]
Kargbo, R.B. Treatment of Alzheimer’s by PROTAC-tau protein degradation. ACS Med. Chem. Lett., 2019, 10(5), 699-700.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00083] [PMID: 31097984]
[67]
Giasson, B.I.; Murray, I.V.; Trojanowski, J.Q.; Lee, V.M.Y. A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J. Biol. Chem., 2001, 276(4), 2380-2386.
[http://dx.doi.org/10.1074/jbc.M008919200] [PMID: 11060312]
[68]
Eskandari, H.; Ghanadian, M.; Noleto-Dias, C.; Lomax, C.; Tawfike, A.; Christiansen, G.; Sutherland, D.S.; Ward, J.L.; Mohammad-Beigi, H.; Otzen, D.E. Inhibitors of $\alpha$-synuclein fibrillation and oligomer toxicity in Rosa damascen: The all-pervading powers of flavonoids and phenolic glycosides. ACS Chem. Neurosci., 2020, 11(19), 3161-3173.
[http://dx.doi.org/10.1021/acschemneuro.0c00528] [PMID: 32886481]
[69]
Kerr, F.; Sofola-Adesakin, O.; Ivanov, D.K.; Gatliff, J.; Gomez Perez-Nievas, B.; Bertrand, H.C.; Martinez, P.; Callard, R.; Snoeren, I.; Cochemé, H.M.; Adcott, J.; Khericha, M.; Castillo-Quan, J.I.; Wells, G.; Noble, W.; Thornton, J.; Partridge, L. Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer’s disease. PLoS Genet., 2017, 13(3), e1006593.
[http://dx.doi.org/10.1371/journal.pgen.1006593] [PMID: 28253260]
[70]
Siracusa, R.; Paterniti, I.; Cordaro, M.; Crupi, R.; Bruschetta, G.; Campolo, M.; Cuzzocrea, S.; Esposito, E. Neuroprotective effects of temsirolimus in animal models of Parkinson’s disease. Mol. Neurobiol., 2018, 55(3), 2403-2419.
[http://dx.doi.org/10.1007/s12035-017-0496-4] [PMID: 28357809]
[71]
Liu, Y.; Jovcevski, B.; Pukala, T.L. C-phycocyanin from spirulina inhibits $\alpha$-synuclein and amyloid-$\beta$ fibril formation but not amorphous aggregation. J. Nat. Prod., 2019, 82(1), 66-73.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00610] [PMID: 30620188]
[72]
Singh, P.K.; Kotia, V.; Ghosh, D.; Mohite, G.M.; Kumar, A.; Maji, S.K. Curcumin modulates α-synuclein aggregation and toxicity. ACS Chem. Neurosci., 2013, 4(3), 393-407.
[http://dx.doi.org/10.1021/cn3001203] [PMID: 23509976]
[73]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[74]
Ahmad, B.; Lapidus, L.J. Curcumin prevents aggregation in α-synuclein by increasing reconfiguration rate. J. Biol. Chem., 2012, 287(12), 9193-9199.
[http://dx.doi.org/10.1074/jbc.M111.325548] [PMID: 22267729]
[75]
Irannejad, H.; Unsal Tan, O.; Ozadali, K.; Dadashpour, S.; Tuylu Kucukkilinc, T.; Ahangar, N.; Ahmadnejad, M.; Emami, S. 1,2-Diaryl-2-hydroxyiminoethanones as dual COX-1 and β-amyloid aggregation inhibitors: Biological evaluation and in silico study. Chem. Biol. Drug Des., 2015, 85(4), 494-503.
[http://dx.doi.org/10.1111/cbdd.12435] [PMID: 25227162]
[76]
Dadashpour, S.; Tuylu Kucukkilinc, T.; Unsal Tan, O.; Ozadali, K.; Irannejad, H.; Emami, S. Design, synthesis and in vitro study of 5,6-diaryl-1,2,4-triazine-3-ylthioacetate derivatives as COX-2 and β-amyloid aggregation inhibitors. Arch. Pharm., 2015, 348(3), 179-187.
[http://dx.doi.org/10.1002/ardp.201400400] [PMID: 25690564]
[77]
Tuylu Kucukkilinc, T.; Safari Yanghagh, K.; Ayazgok, B.; Ali Roknipour, M.; Homayouni Moghadam, F.; Moradi, A.; Emami, S.; Amini, M.; Irannejad, H. Synthesis and neuroprotective activity of novel 1,2,4-triazine derivatives with ethyl acetate moiety against H2O2 and Aβ-induced neurotoxicity. Med. Chem. Res., 2017, 26(11), 3057-3071.
[http://dx.doi.org/10.1007/s00044-017-2003-x]
[78]
Hamza, T.H.; Payami, H. The heritability of risk and age at onset of Parkinson’s disease after accounting for known genetic risk factors. J. Hum. Genet., 2010, 55(4), 241-243.
[http://dx.doi.org/10.1038/jhg.2010.13] [PMID: 20203693]
[79]
Pasinelli, P.; Brown, R.H. Molecular biology of amyotrophic lateral sclerosis: Insights from genetics. Nat. Rev. Neurosci., 2006, 7(9), 710-723.
[http://dx.doi.org/10.1038/nrn1971] [PMID: 16924260]
[80]
Bertram, L.; Tanzi, R.E. The genetic epidemiology of neurodegenerative disease. J. Clin. Invest., 2005, 115(6), 1449-1457.
[http://dx.doi.org/10.1172/JCI24761] [PMID: 15931380]
[81]
Van Blitterswijk, M.; Van Es, M.A.; Koppers, M.; Van Rheenen, W.; Medic, J.; Schelhaas, H.J.; Van Der Kooi, A.J.; De Visser, M.; Veldink, J.H.; Van Den Berg, L.H. VAPB and C9orf72 mutations in 1 familial amyotrophic lateral sclerosis patient. Neurobiol. Aging, 2012, 33(12), 2950.e1-2950.e4.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.07.004] [PMID: 22878164]
[82]
Kramer, N.J.; Haney, M.S.; Morgens, D.W.; Jovičić, A.; Couthouis, J.; Li, A.; Ousey, J.; Ma, R.; Bieri, G.; Tsui, C.K.; Shi, Y.; Hertz, N.T.; Tessier-Lavigne, M.; Ichida, J.K.; Bassik, M.C.; Gitler, A.D. CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity. Nat. Genet., 2018, 50(4), 603-612.
[http://dx.doi.org/10.1038/s41588-018-0070-7] [PMID: 29507424]
[83]
Kim, J.; Castellano, J.M.; Jiang, H.; Basak, J.M.; Parsadanian, M.; Pham, V.; Mason, S.M.; Paul, S.M.; Holtzman, D.M. Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular A β clearance. Neuron, 2009, 64(5), 632-644.
[http://dx.doi.org/10.1016/j.neuron.2009.11.013] [PMID: 20005821]
[84]
Glenner, G.G.; Wong, C.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun., 1984, 120(3), 885-890.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[85]
Ostojic, J.; Elfgren, C.; Passant, U.; Nilsson, K.; Gustafson, L.; Lannfelt, L.; Froelich Fabre, S. The tau R406W mutation causes progressive presenile dementia with bitemporal atrophy. Dement. Geriatr. Cogn. Disord., 2004, 17(4), 298-301.
[http://dx.doi.org/10.1159/000077158] [PMID: 15178940]
[86]
Rademakers, R.; Dermaut, B.; Peeters, K.; Cruts, M.; Heutink, P.; Goate, A.; Van Broeckhoven, C. Tau (MAPT) mutation Arg406Trp presenting clinically with Alzheimer’s disease does not share a common founder in Western Europe. Hum. Mutat., 2003, 22(5), 409-411.
[http://dx.doi.org/10.1002/humu.10269] [PMID: 14517953]
[87]
Rademakers, R.; Cruts, M.; Sleegers, K.; Dermaut, B.; Theuns, J.; Aulchenko, Y.; Weckx, S.; De Pooter, T.; Van den Broeck, M.; Corsmit, E.; De Rijk, P.; Del-Favero, J.; Van Swieten, J.; Van Duijn, C.M.; Van Broeckhoven, C. Linkage and association studies identify a novel locus for Alzheimer disease at 7q36 in a dutch population-based sample. Am. J. Hum. Genet., 2005, 77(4), 643-652.
[http://dx.doi.org/10.1086/491749] [PMID: 16175510]
[88]
Sala Frigerio, C.; Piscopo, P.; Calabrese, E.; Crestini, A.; Malvezzi Campeggi, L.; Civita di Fava, R.; Fogliarino, S.; Albani, D.; Marcon, G.; Cherchi, R.; Piras, R.; Forloni, G.; Confaloni, A. PEN-2 gene mutation in a familial Alzheimer’s disease case. J. Neurol., 2005, 252(9), 1033-1036.
[http://dx.doi.org/10.1007/s00415-005-0799-7] [PMID: 16170650]
[89]
Tanzi, R.E. The genetics of Alzheimer’s disease. Cold Spring Harb. Perspect. Med., 2012, 2(10), a006296.
[http://dx.doi.org/10.1101/cshperspect.a006296] [PMID: 23028126]
[90]
Strittmatter, W.J.; Saunders, A.M.; Schmechel, D.; Pericak-Vance, M.; Enghild, J.; Salvesen, G.S.; Roses, A.D.; Apolipoprotein, E. High-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 1993, 90(5), 1977-1981.
[http://dx.doi.org/10.1073/pnas.90.5.1977] [PMID: 8446617]
[91]
Corder, E.H.; Saunders, A.M.; Risch, N.J.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C. Jr; Rimmler, J.B.; Locke, P.A.; Conneally, P.M.; Schmader, K.E.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer’s disease. Nat. Genet., 1994, 7(2), 180-184.
[http://dx.doi.org/10.1038/ng0694-180] [PMID: 7920638]
[92]
Grünblatt, E.; Zander, N.; Bartl, J.; Jie, L.; Monoranu, C-M.; Arzberger, T.; Ravid, R.; Roggendorf, W.; Gerlach, M.; Riederer, P. Comparison analysis of gene expression patterns between sporadic Alzheimer’s and Parkinson’s disease. J. Alzheimers Dis., 2007, 12(4), 291-311.
[http://dx.doi.org/10.3233/JAD-2007-12402] [PMID: 18198416]
[93]
Renton, A.E.; Chiò, A.; Traynor, B.J. State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci., 2014, 17(1), 17-23.
[http://dx.doi.org/10.1038/nn.3584] [PMID: 24369373]
[94]
Cooper-Knock, J.; Shaw, P.J.; Kirby, J. The widening spectrum of C9ORF72-related disease: Genotype/phenotype correlations and potential modifiers of clinical phenotype. Acta Neuropathol., 2014, 127(3), 333-345.
[http://dx.doi.org/10.1007/s00401-014-1251-9] [PMID: 24493408]
[95]
DeJesus-Hernandez, M.; Mackenzie, I.R.; Boeve, B.F.; Boxer, A.L.; Baker, M.; Rutherford, N.J.; Nicholson, A.M.; Finch, N.A.; Flynn, H.; Adamson, J.; Kouri, N.; Wojtas, A.; Sengdy, P.; Hsiung, G.Y.; Karydas, A.; Seeley, W.W.; Josephs, K.A.; Coppola, G.; Geschwind, D.H.; Wszolek, Z.K.; Feldman, H.; Knopman, D.S.; Petersen, R.C.; Miller, B.L.; Dickson, D.W.; Boylan, K.B.; Graff-Radford, N.R.; Rademakers, R. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 2011, 72(2), 245-256.
[http://dx.doi.org/10.1016/j.neuron.2011.09.011] [PMID: 21944778]
[96]
Renton, A.E.; Majounie, E.; Waite, A.; Simón-Sánchez, J.; Rollinson, S.; Gibbs, J.R.; Schymick, J.C.; Laaksovirta, H.; van Swieten, J.C.; Myllykangas, L.; Kalimo, H.; Paetau, A.; Abramzon, Y.; Remes, A.M.; Kaganovich, A.; Scholz, S.W.; Duckworth, J.; Ding, J.; Harmer, D.W.; Hernandez, D.G.; Johnson, J.O.; Mok, K.; Ryten, M.; Trabzuni, D.; Guerreiro, R.J.; Orrell, R.W.; Neal, J.; Murray, A.; Pearson, J.; Jansen, I.E.; Sondervan, D.; Seelaar, H.; Blake, D.; Young, K.; Halliwell, N.; Callister, J.B.; Toulson, G.; Richardson, A.; Gerhard, A.; Snowden, J.; Mann, D.; Neary, D.; Nalls, M.A.; Peuralinna, T.; Jansson, L.; Isoviita, V.M.; Kaivorinne, A.L.; Hölttä-Vuori, M.; Ikonen, E.; Sulkava, R.; Benatar, M.; Wuu, J.; Chiò, A.; Restagno, G.; Borghero, G.; Sabatelli, M.; Heckerman, D.; Rogaeva, E.; Zinman, L.; Rothstein, J.D.; Sendtner, M.; Drepper, C.; Eichler, E.E.; Alkan, C.; Abdullaev, Z.; Pack, S.D.; Dutra, A.; Pak, E.; Hardy, J.; Singleton, A.; Williams, N.M.; Heutink, P.; Pickering-Brown, S.; Morris, H.R.; Tienari, P.J.; Traynor, B.J. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron, 2011, 72(2), 257-268.
[http://dx.doi.org/10.1016/j.neuron.2011.09.010] [PMID: 21944779]
[97]
Kabashi, E.; Valdmanis, P.N.; Dion, P.; Spiegelman, D.; McConkey, B.J. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat. Genet., 2008, 40, 572-574.
[98]
Sreedharan, J.; Blair, I.P.; Tripathi, V.B.; Hu, X.; Vance, C.; Rogelj, B.; Ackerley, S.; Durnall, J.C.; Williams, K.L.; Buratti, E.; Baralle, F.; de Belleroche, J.; Mitchell, J.D.; Leigh, P.N.; Al-Chalabi, A.; Miller, C.C.; Nicholson, G.; Shaw, C.E. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science, 2008, 319(5870), 1668-1672.
[http://dx.doi.org/10.1126/science.1154584] [PMID: 18309045]
[99]
Kwiatkowski, T.J., Jr; Bosco, D.A.; Leclerc, A.L.; Tamrazian, E.; Vanderburg, C.R.; Russ, C.; Davis, A.; Gilchrist, J.; Kasarskis, E.J.; Munsat, T.; Valdmanis, P.; Rouleau, G.A.; Hosler, B.A.; Cortelli, P.; de Jong, P.J.; Yoshinaga, Y.; Haines, J.L.; Pericak-Vance, M.A.; Yan, J.; Ticozzi, N.; Siddique, T.; McKenna-Yasek, D.; Sapp, P.C.; Horvitz, H.R.; Landers, J.E.; Brown, R.H., Jr Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science, 2009, 323(5918), 1205-1208.
[http://dx.doi.org/10.1126/science.1166066] [PMID: 19251627]
[100]
Vance, C.; Rogelj, B.; Hortobágyi, T.; De Vos, K.J.; Nishimura, A.L.; Sreedharan, J.; Hu, X.; Smith, B.; Ruddy, D.; Wright, P.; Ganesalingam, J.; Williams, K.L.; Tripathi, V.; Al-Saraj, S.; Al-Chalabi, A.; Leigh, P.N.; Blair, I.P.; Nicholson, G.; De Belleroche, J.; Gallo, J.M.; Miller, C.C.; Shaw, C.E. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science, 2009, 323(5918), 1208-1211.
[http://dx.doi.org/10.1126/science.1165942] [PMID: 19251628]
[101]
Johnson, J.O.; Pioro, E.P.; Boehringer, A.; Chia, R.; Feit, H.; Renton, A.E.; Pliner, H.A.; Abramzon, Y.; Marangi, G.; Winborn, B.J.; Gibbs, J.R.; Nalls, M.A.; Morgan, S.; Shoai, M.; Hardy, J.; Pittman, A.; Orrell, R.W.; Malaspina, A.; Sidle, K.C.; Fratta, P.; Harms, M.B.; Baloh, R.H.; Pestronk, A.; Weihl, C.C.; Rogaeva, E.; Zinman, L.; Drory, V.E.; Borghero, G.; Mora, G.; Calvo, A.; Rothstein, J.D.; Drepper, C.; Sendtner, M.; Singleton, A.B.; Taylor, J.P.; Cookson, M.R.; Restagno, G.; Sabatelli, M.; Bowser, R.; Chiò, A.; Traynor, B.J. Mutations in the matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat. Neurosci., 2014, 17(5), 664-666.
[http://dx.doi.org/10.1038/nn.3688] [PMID: 24686783]
[102]
Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; McCluskey, L.F.; Miller, B.L.; Masliah, E.; Mackenzie, I.R.; Feldman, H.; Feiden, W.; Kretzschmar, H.A.; Trojanowski, J.Q.; Lee, V.M. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 2006, 314(5796), 130-133.
[http://dx.doi.org/10.1126/science.1134108] [PMID: 17023659]
[103]
Iguchi, Y.; Katsuno, M.; Niwa, J.; Takagi, S.; Ishigaki, S.; Ikenaka, K.; Kawai, K.; Watanabe, H.; Yamanaka, K.; Takahashi, R.; Misawa, H.; Sasaki, S.; Tanaka, F.; Sobue, G. Loss of TDP-43 causes age-dependent progressive motor neuron degeneration. Brain, 2013, 136(Pt 5), 1371-1382.
[http://dx.doi.org/10.1093/brain/awt029] [PMID: 23449777]
[104]
Colombrita, C.; Onesto, E.; Megiorni, F.; Pizzuti, A.; Baralle, F.E.; Buratti, E.; Silani, V.; Ratti, A. TDP-43 and FUS RNA-binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post-transcriptional fate in motoneuron-like cells. J. Biol. Chem., 2012, 287(19), 15635-15647.
[http://dx.doi.org/10.1074/jbc.M111.333450] [PMID: 22427648]
[105]
Polymenidou, M.; Lagier-Tourenne, C.; Hutt, K.R.; Huelga, S.C.; Moran, J.; Liang, T.Y.; Ling, S.C.; Sun, E.; Wancewicz, E.; Mazur, C.; Kordasiewicz, H.; Sedaghat, Y.; Donohue, J.P.; Shiue, L.; Bennett, C.F.; Yeo, G.W.; Cleveland, D.W. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci., 2011, 14(4), 459-468.
[http://dx.doi.org/10.1038/nn.2779] [PMID: 21358643]
[106]
Tollervey, J.R.; Curk, T.; Rogelj, B.; Briese, M.; Cereda, M.; Kayikci, M.; König, J.; Hortobágyi, T.; Nishimura, A.L.; Zupunski, V.; Patani, R.; Chandran, S.; Rot, G.; Zupan, B.; Shaw, C.E.; Ule, J. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci., 2011, 14(4), 452-458.
[http://dx.doi.org/10.1038/nn.2778] [PMID: 21358640]
[107]
Xiao, S.; Sanelli, T.; Dib, S.; Sheps, D.; Findlater, J.; Bilbao, J.; Keith, J.; Zinman, L.; Rogaeva, E.; Robertson, J. RNA targets of TDP-43 identified by UV-CLIP are deregulated in ALS. Mol. Cell. Neurosci., 2011, 47(3), 167-180.
[http://dx.doi.org/10.1016/j.mcn.2011.02.013] [PMID: 21421050]
[108]
Kawahara, Y.; Mieda-Sato, A. TDP-43 promotes microRNA biogenesis as a component of the drosha and dicer complexes. Proc. Natl. Acad. Sci., 2012, 109(9), 3347-3352.
[http://dx.doi.org/10.1073/pnas.1112427109] [PMID: 22323604]
[109]
Ayala, Y.M.; De Conti, L.; Avendaño-Vázquez, S.E.; Dhir, A.; Romano, M.; D’Ambrogio, A.; Tollervey, J.; Ule, J.; Baralle, M.; Buratti, E.; Baralle, F.E. TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J., 2011, 30(2), 277-288.
[http://dx.doi.org/10.1038/emboj.2010.310] [PMID: 21131904]
[110]
Coelho, M.B.; Attig, J.; Bellora, N.; König, J.; Hallegger, M.; Kayikci, M.; Eyras, E.; Ule, J.; Smith, C.W. Nuclear matrix protein matrin 3 regulates alternative splicing and forms overlapping regulatory networks with PTB. EMBO J., 2015, 34(5), 653-668.
[http://dx.doi.org/10.15252/embj.201489852] [PMID: 25599992]
[111]
Salton, M.; Elkon, R.; Borodina, T.; Davydov, A.; Yaspo, M.L.; Halperin, E.; Shiloh, Y. Matrin 3 binds and stabilizes mRNA. PLoS One, 2011, 6(8), e23882.
[http://dx.doi.org/10.1371/journal.pone.0023882] [PMID: 21858232]
[112]
Tenzer, S.; Moro, A.; Kuharev, J.; Francis, A.C.; Vidalino, L.; Provenzani, A.; Macchi, P. Proteome-wide characterization of the RNA-binding protein RALY-interactome using the in vivo-Biotinylation-Pulldown-Quant (iBioPQ) approach. J. Proteome Res., 2013, 12(6), 2869-2884.
[http://dx.doi.org/10.1021/pr400193j] [PMID: 23614458]
[113]
Yamazaki, F.; Kim, H.H.; Lau, P.; Hwang, C.K.; Iuvone, P.M.; Klein, D.; Clokie, S.J. pY RNA1-s2: A highly retina-enriched small RNA that selectively binds to Matrin 3 (Matr3). PLoS One, 2014, 9(2), e88217.
[http://dx.doi.org/10.1371/journal.pone.0088217] [PMID: 24558381]
[114]
Buratti, E.; Baralle, F.E. Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J. Biol. Chem., 2001, 276(39), 36337-36343.
[http://dx.doi.org/10.1074/jbc.M104236200] [PMID: 11470789]
[115]
Avendaño-Vázquez, S.E.; Dhir, A.; Bembich, S.; Buratti, E.; Proudfoot, N.; Baralle, F.E. Autoregulation of TDP-43 mRNA levels involves interplay between transcription, splicing, and alternative poly A site selection. Genes Dev., 2012, 26(15), 1679-1684.
[116]
D’Alton, S.; Altshuler, M.; Lewis, J. Studies of alternative isoforms provide insight into TDP-43 autoregulation and pathogenesis. RNA, 2015, 21(8), 1419-1432.
[http://dx.doi.org/10.1261/rna.047647.114] [PMID: 26089325]
[117]
Gerbino, V.; Carrì, M.T.; Cozzolino, M.; Achsel, T. Mislocalised FUS mutants stall spliceosomal snRNPs in the cytoplasm. Neurobiol. Dis., 2013, 55, 120-128.
[http://dx.doi.org/10.1016/j.nbd.2013.03.003] [PMID: 23523636]
[118]
Yu, Y.; Reed, R. FUS functions in coupling transcription to splicing by mediating an interaction between RNAP II and U1 snRNP. Proc. Natl. Acad. Sci. USA, 2015, 112(28), 8608-8613.
[http://dx.doi.org/10.1073/pnas.1506282112] [PMID: 26124092]
[119]
Barmada, S.J.; Ju, S.; Arjun, A.; Batarse, A.; Archbold, H.C.; Peisach, D.; Li, X.; Zhang, Y.; Tank, E.M.; Qiu, H.; Huang, E.J.; Ringe, D.; Petsko, G.A.; Finkbeiner, S. Amelioration of toxicity in neuronal models of amyotrophic lateral sclerosis by hUPF1. Proc. Natl. Acad. Sci. USA, 2015, 112(25), 7821-7826.
[http://dx.doi.org/10.1073/pnas.1509744112] [PMID: 26056265]
[120]
Daigle, J.G.; Lanson, N.A., Jr; Smith, R.B.; Casci, I.; Maltare, A.; Monaghan, J.; Nichols, C.D.; Kryndushkin, D.; Shewmaker, F.; Pandey, U.B. RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Hum. Mol. Genet., 2013, 22(6), 1193-1205.
[http://dx.doi.org/10.1093/hmg/dds526] [PMID: 23257289]
[121]
Kidd, S.A.; Lachiewicz, A.; Barbouth, D.; Blitz, R.K.; Delahunty, C.; McBrien, D.; Visootsak, J.; Berry-Kravis, E. Fragile X syndrome: A review of associated medical problems. Pediatrics, 2014, 134(5), 995-1005.
[http://dx.doi.org/10.1542/peds.2013-4301] [PMID: 25287458]
[122]
Nelson, D.L.; Orr, H.T.; Warren, S.T. The unstable repeats-three evolving faces of neurological disease. Neuron, 2013, 77(5), 825-843.
[http://dx.doi.org/10.1016/j.neuron.2013.02.022] [PMID: 23473314]
[123]
Vasilyev, N.; Polonskaia, A.; Darnell, J.C.; Darnell, R.B.; Patel, D.J.; Serganov, A. Crystal structure reveals specific recognition of a G-quadruplex RNA by a β-turn in the RGG motif of FMRP. Proc. Natl. Acad. Sci. USA, 2015, 112(39), E5391-E5400.
[http://dx.doi.org/10.1073/pnas.1515737112] [PMID: 26374839]
[124]
Darnell, J.C.; Van Driesche, S.J.; Zhang, C.; Hung, K.Y.S.; Mele, A.; Fraser, C.E.; Stone, E.F.; Chen, C.; Fak, J.J.; Chi, S.W.; Licatalosi, D.D.; Richter, J.D.; Darnell, R.B. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell, 2011, 146(2), 247-261.
[http://dx.doi.org/10.1016/j.cell.2011.06.013] [PMID: 21784246]
[125]
Orr, H.T. Cell biology of spinocerebellar ataxia. J. Cell Biol., 2012, 197(2), 167-177.
[http://dx.doi.org/10.1083/jcb.201105092] [PMID: 22508507]
[126]
Nonhoff, U.; Ralser, M.; Welzel, F.; Piccini, I.; Balzereit, D.; Yaspo, M-L.; Lehrach, H.; Krobitsch, S. Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol. Biol. Cell, 2007, 18(4), 1385-1396.
[http://dx.doi.org/10.1091/mbc.e06-12-1120] [PMID: 17392519]
[127]
Satterfield, T.F.; Pallanck, L.J. Ataxin-2 and its drosophila homolog, ATX2, physically assemble with polyribosomes. Hum. Mol. Genet., 2006, 15(16), 2523-2532.
[http://dx.doi.org/10.1093/hmg/ddl173] [PMID: 16835262]
[128]
Nishi, A.; Snyder, G.L. Advanced research on dopamine signaling to develop drugs for the treatment of mental disorders: biochemical and behavioral profiles of phosphodiesterase inhibition in dopaminergic neurotransmission. J. Pharmacol. Sci., 2010, 114(1), 6-16.
[http://dx.doi.org/10.1254/jphs.10R01FM] [PMID: 20716858]
[129]
Lu, Y.F.; Hawkins, R.D. Ryanodine receptors contribute to cGMP-induced late-phase LTP and CREB phosphorylation in the hippocampus. J. Neurophysiol., 2002, 88(3), 1270-1278.
[http://dx.doi.org/10.1152/jn.2002.88.3.1270] [PMID: 12205148]
[130]
Merz, K.; Herold, S.; Lie, D.C. CREB in adult neurogenesis-master and partner in the development of adult-born neurons? Eur. J. Neurosci., 2011, 33(6), 1078-1086.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07606.x] [PMID: 21395851]
[131]
Hanger, D.P.; Anderton, B.H.; Noble, W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol. Med., 2009, 15(3), 112-119.
[http://dx.doi.org/10.1016/j.molmed.2009.01.003] [PMID: 19246243]
[132]
Shi, J.; Qian, W.; Yin, X.; Iqbal, K.; Grundke-Iqbal, I.; Gu, X.; Ding, F.; Gong, C.X.; Liu, F. Cyclic AMP-dependent protein kinase regulates the alternative splicing of tau exon 10: A mechanism involved in tau pathology of Alzheimer’s disease. J. Biol. Chem., 2011, 286(16), 14639-14648.
[http://dx.doi.org/10.1074/jbc.M110.204453] [PMID: 21367856]
[133]
Domek-Łopacińska, K.U.; Strosznajder, J.B. Cyclic GMP and nitric oxide synthase in aging and Alzheimer’s disease. Mol. Neurobiol., 2010, 41(2-3), 129-137.
[http://dx.doi.org/10.1007/s12035-010-8104-x] [PMID: 20213343]
[134]
Bopp, T.; Becker, C.; Klein, M.; Klein-Hessling, S.; Palmetshofer, A.; Serfling, E.; Heib, V.; Becker, M.; Kubach, J.; Schmitt, S.; Stoll, S.; Schild, H.; Staege, M.S.; Stassen, M.; Jonuleit, H.; Schmitt, E. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J. Exp. Med., 2007, 204(6), 1303-1310.
[http://dx.doi.org/10.1084/jem.20062129] [PMID: 17502663]
[135]
Dong, R.P.; Umezawa, Y.; Ikushima, H.; Munakata, Y.; Schlossman, S.F.; Morimoto, C. Different regulatory effects of pentoxifylline on human T cell activation pathways. J. Clin. Immunol., 1997, 17(3), 247-252.
[http://dx.doi.org/10.1023/A:1027362629161] [PMID: 9168405]
[136]
Silva, J.C.R.; Rocha, M.F.G.; Lima, A.A.M.; Brito, G.A.C.; De Menezes, D.B.; Rao, V.S.N. Effects of pentoxifylline and nabumetone on the serum levels of IL-1β and TNFalpha in rats with adjuvant arthritis. Inflamm. Res., 2000, 49(1), 14-19.
[http://dx.doi.org/10.1007/PL00000198] [PMID: 10778916]
[137]
Bollen, E.; Prickaerts, J. Phosphodiesterases in neurodegenerative disorders. IUBMB Life, 2012, 64(12), 965-970.
[http://dx.doi.org/10.1002/iub.1104] [PMID: 23129425]
[138]
Bender, A.T.; Beavo, J.A. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol. Rev., 2006, 58(3), 488-520.
[http://dx.doi.org/10.1124/pr.58.3.5] [PMID: 16968949]
[139]
Pérez-Torres, S.; Cortés, R.; Tolnay, M.; Probst, A.; Palacios, J.M.; Mengod, G. Alterations on phosphodiesterase type 7 and 8 isozyme mRNA expression in Alzheimer’s disease brains examined by in situ hybridization. Exp. Neurol., 2003, 182(2), 322-334.
[http://dx.doi.org/10.1016/S0014-4886(03)00042-6] [PMID: 12895443]
[140]
Brun, A.; Englund, E. A white matter disorder in dementia of the Alzheimer’s type: A pathoanatomical study. Ann. Neurol., 1986, 19(3), 253-262.
[http://dx.doi.org/10.1002/ana.410190306] [PMID: 3963770]
[141]
Mizrachi, K.; Aricha, R.; Feferman, T.; Kela-Madar, N.; Mandel, I.; Paperna, T.; Miller, A.; Ben-Nun, A.; Berrih-Aknin, S.; Souroujon, M.C.; Fuchs, S. Involvement of phosphodiesterases in autoimmune diseases. J. Neuroimmunol., 2010, 220(1-2), 43-51.
[http://dx.doi.org/10.1016/j.jneuroim.2009.12.012] [PMID: 20100627]
[142]
Wong, M-L.; Whelan, F.; Deloukas, P.; Whittaker, P.; Delgado, M.; Cantor, R.M.; McCann, S.M.; Licinio, J. Phosphodiesterase genes are associated with susceptibility to major depression and antidepressant treatment response. Proc. Natl. Acad. Sci. USA, 2006, 103(41), 15124-15129.
[http://dx.doi.org/10.1073/pnas.0602795103] [PMID: 17008408]
[143]
Appenzeller, S.; Schirmacher, A.; Halfter, H.; Bäumer, S.; Pendziwiat, M.; Timmerman, V.; De Jonghe, P.; Fekete, K.; Stögbauer, F.; Lüdemann, P.; Hund, M.; Quabius, E.S.; Ringelstein, E.B.; Kuhlenbäumer, G. Autosomal-dominant striatal degeneration is caused by a mutation in the phosphodiesterase 8B gene. Am. J. Hum. Genet., 2010, 86(1), 83-87.
[http://dx.doi.org/10.1016/j.ajhg.2009.12.003] [PMID: 20085714]
[144]
Reyes-Irisarri, E.; Pérez-Torres, S.; Mengod, G. Neuronal expression of cAMP-specific phosphodiesterase 7B mRNA in the rat brain. Neuroscience, 2005, 132(4), 1173-1185.
[http://dx.doi.org/10.1016/j.neuroscience.2005.01.050] [PMID: 15857719]
[145]
McLachlan, C.S.; Chen, M.L.; Lynex, C.N.; Goh, D.L.M.; Brenner, S.; Tay, S.K.H. Changes in PDE4D isoforms in the hippocampus of a patient with advanced Alzheimer’s disease. Arch. Neurol., 2007, 64, 456-457.
[146]
Lakics, V.; Karran, E.H.; Boess, F.G. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology, 2010, 59(6), 367-374.
[http://dx.doi.org/10.1016/j.neuropharm.2010.05.004] [PMID: 20493887]
[147]
Polli, J.W.; Kincaid, R.L. Expression of calmodulin-dependent Phosphodiesterase isoform (PDE1B1) correlates with brain regions having extensive dopaminergic innervation. J. Neurosci., 1994, 14(3), 1251-1261.
[148]
Satoh, J.; Kawana, N.; Yamamoto, Y. Pathway analysis of ChIPSeq- based NRF1 target genes suggests a logical hypothesis of their involvement in the pathogenesis of neurodegenerative diseases. Gene Regul. Sys. Biol 2013, 7 S13204
[http://dx.doi.org/10.4137/GRSB.S13204]
[149]
Silva, M.C.; Ferguson, F.M.; Cai, Q.; Donovan, K.A.; Nandi, G.; Patnaik, D.; Zhang, T.; Huang, H.T.; Lucente, D.E.; Dickerson, B.C.; Mitchison, T.J.; Fischer, E.S.; Gray, N.S.; Haggarty, S.J. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. eLife, 2019, 8, e45457.
[http://dx.doi.org/10.7554/eLife.45457] [PMID: 30907729]
[150]
Jiang, X.; Zhou, J.; Wang, Y.; Liu, X.; Xu, K.; Xu, J.; Feng, F.; Sun, H. PROTACs suppression of GSK-3β, a crucial kinase in neurodegenerative diseases. Eur. J. Med. Chem., 2021, 210, 112949.
[http://dx.doi.org/10.1016/j.ejmech.2020.112949] [PMID: 33097303]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy