Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Review Article Section: Bioinformatics

Natural Agents Targeting Hsp90 Co-chaperones could be Promising Candidates for Viral Resistance Prevention

Author(s): Yuan Quan, Bo-Min Lv and Hong-Yu Zhang*

Volume 2, Issue 6, 2022

Published on: 19 August, 2022

Page: [416 - 424] Pages: 9

DOI: 10.2174/2210298102666220615160026

Open Access Journals Promotions 2
Abstract

Viral infections have constituted a serious menace to global health. The emergence of resistant strains resulting from adaptive evolution poses a great challenge to virus control. Heat Shock Protein 90 (Hsp90) can shepherd virus-mutated proteins to fold into functional conformations. Therefore, inhibiting Hsp90 can block the evolution of viruses. However, none of the current Hsp90 inhibitors has been approved because of the unacceptable side effects. Considering the importance of co-chaperones for Hsp90 conformational cycle, inhibiting Hsp90 through cochaperones may be a safe and effective strategy. Some natural agents can bind the co-chaperones to indirectly modulate Hsp90 activity with low toxicity. Besides, some of these natural agents indicate antiviral effects. Therefore, natural products are highly expected to be used as virus resistance preventives by targeting the co-chaperones of Hsp90.

Keywords: Natural agents, virus resistance preventives, heat shock protein 90, co-chaperones, antiviral effects, Hsp90.

Graphical Abstract
[1]
Berlin, D.A.; Gulick, R.M.; Martinez, F.J. Severe COVID-19. N. Engl. J. Med., 2020, 383(25), 2451-2460.
[http://dx.doi.org/10.1056/NEJMcp2009575] [PMID: 32412710]
[2]
McNeil, C.J.; Shetty, A.K. Zika virus: A serious global health threat. J. Trop. Pediatr., 2017, 63(3), 242-248.
[http://dx.doi.org/10.1093/tropej/fmw080] [PMID: 27923889]
[3]
Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis., 2020, 20(5), 533-534.
[http://dx.doi.org/10.1016/S1473-3099(20)30120-1] [PMID: 32087114]
[4]
Margolis, D.M.; Archin, N.M.; Cohen, M.S.; Eron, J.J.; Ferrari, G.; Garcia, J.V.; Gay, C.L.; Goonetilleke, N.; Joseph, S.B.; Swanstrom, R.; Turner, A.W.; Wahl, A. Curing HIV: Seeking to target and clear persistent infection. Cell, 2020, 181(1), 189-206.
[http://dx.doi.org/10.1016/j.cell.2020.03.005] [PMID: 32220311]
[5]
Villa, T.G.; Abril, A.G.; Sánchez, S.; de Miguel, T.; Sánchez-Pérez, A. Animal and human RNA viruses: Genetic variability and ability to overcome vaccines. Arch. Microbiol., 2021, 203(2), 443-464.
[http://dx.doi.org/10.1007/s00203-020-02040-5] [PMID: 32989475]
[6]
Long, J.S.; Mistry, B.; Haslam, S.M.; Barclay, W.S. Host and viral determinants of influenza A virus species specificity. Nat. Rev. Microbiol., 2019, 17(2), 67-81.
[http://dx.doi.org/10.1038/s41579-018-0115-z] [PMID: 30487536]
[7]
Li, M.; Lou, F.; Fan, H. SARS-CoV-2 variants of concern delta: A great challenge to prevention and control of COVID-19. Signal Transduct. Target. Ther., 2021, 6(1), 349.
[http://dx.doi.org/10.1038/s41392-021-00767-1] [PMID: 34580279]
[8]
Karim, S.S.A.; Karim, Q.A. Omicron SARS-CoV-2 variant: A new chapter in the COVID-19 pandemic. Lancet, 2021, 398(10317), 2126-2128.
[http://dx.doi.org/10.1016/S0140-6736(21)02758-6] [PMID: 34871545]
[9]
Lin, C.L.; Kao, J.H. Natural history of acute and chronic hepatitis B: The role of HBV genotypes and mutants. Best Pract. Res. Clin. Gastroenterol., 2017, 31(3), 249-255.
[http://dx.doi.org/10.1016/j.bpg.2017.04.010] [PMID: 28774406]
[10]
Irwin, K.K.; Renzette, N.; Kowalik, T.F.; Jensen, J.D. Antiviral drug resistance as an adaptive process. Virus Evol., 2016, 2(1), vew014.
[http://dx.doi.org/10.1093/ve/vew014] [PMID: 28694997]
[11]
Sanjuán, R.; Domingo-Calap, P. Mechanisms of viral mutation. Cell. Mol. Life Sci., 2016, 73(23), 4433-4448.
[http://dx.doi.org/10.1007/s00018-016-2299-6] [PMID: 27392606]
[12]
Rosenberg, S.M.; Queitsch, C. Medicine. Combating evolution to fight disease. Science, 2014, 343(6175), 1088-1089.
[http://dx.doi.org/10.1126/science.1247472] [PMID: 24604189]
[13]
Heaton, S.M. Harnessing host-virus evolution in antiviral therapy and immunotherapy. Clin. Transl. Immunology, 2019, 8(7), e1067.
[http://dx.doi.org/10.1002/cti2.1067] [PMID: 31312450]
[14]
Phillips, A.M.; Gonzalez, L.O.; Nekongo, E.E.; Ponomarenko, A.I.; McHugh, S.M.; Butty, V.L.; Levine, S.S.; Lin, Y.S.; Mirny, L.A.; Shoulders, M.D.; Shoulders, M.D. Host proteostasis modulates influenza evolution. eLife, 2017, 6, e28652.
[http://dx.doi.org/10.7554/eLife.28652] [PMID: 28949290]
[15]
Schopf, F.H.; Biebl, M.M.; Buchner, J. The Hsp90 chaperone machinery. Nat. Rev. Mol. Cell Biol., 2017, 18(6), 345-360.
[http://dx.doi.org/10.1038/nrm.2017.20] [PMID: 28429788]
[16]
Wang, Y.; Jin, F.; Wang, R.; Li, F.; Wu, Y.; Kitazato, K.; Wang, Y. Hsp90: A promising broad-spectrum antiviral drug target. Arch. Virol., 2017, 162(11), 3269-3282.
[http://dx.doi.org/10.1007/s00705-017-3511-1] [PMID: 28780632]
[17]
Costa, T.E.M.M.; Raghavendra, N.M.; Penido, C. Natural heat shock protein 90 inhibitors in cancer and inflammation. Eur. J. Med. Chem., 2020, 189, 112063.
[http://dx.doi.org/10.1016/j.ejmech.2020.112063] [PMID: 31972392]
[18]
Geller, R.; Andino, R.; Frydman, J. Hsp90 inhibitors exhibit resistance-free antiviral activity against respiratory syncytial virus. PLoS One, 2013, 8(2), e56762.
[http://dx.doi.org/10.1371/journal.pone.0056762] [PMID: 23460813]
[19]
Li, L.; Wang, L.; You, Q.D.; Xu, X.L. Heat shock protein 90 inhibitors: An update on achievements, challenges, and future directions. J. Med. Chem., 2020, 63(5), 1798-1822.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00940] [PMID: 31663736]
[20]
Patridge, E.; Gareiss, P.; Kinch, M.S.; Hoyer, D. An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discov. Today, 2016, 21(2), 204-207.
[http://dx.doi.org/10.1016/j.drudis.2015.01.009] [PMID: 25617672]
[21]
Chu, Z.; Wang, C.; Tang, Q.; Shi, X.; Gao, X.; Ma, J.; Lu, K.; Han, Q.; Jia, Y.; Wang, X.; Adam, F.E.A.; Liu, H.; Xiao, S.; Wang, X.; Yang, Z. Newcastle disease virus V protein inhibits cell apoptosis and promotes viral replication by targeting CacyBP/SIP. Front. Cell. Infect. Microbiol., 2018, 8, 304.
[http://dx.doi.org/10.3389/fcimb.2018.00304] [PMID: 30234028]
[22]
Xu, Y.; Liu, F.; Liu, J.; Wang, D.; Yan, Y.; Ji, S.; Zan, J.; Zhou, J. The co-chaperone Cdc37 regulates the rabies virus phosphoprotein stability by targeting to Hsp90AA1 machinery. Sci. Rep., 2016, 6(1), 27123.
[http://dx.doi.org/10.1038/srep27123] [PMID: 27251758]
[23]
Taguwa, S.; Maringer, K.; Li, X.; Bernal-Rubio, D.; Rauch, J.N.; Gestwicki, J.E.; Andino, R.; Fernandez-Sesma, A.; Frydman, J. Defining Hsp70 subnetworks in dengue virus replication reveals key vulnerability in flavivirus infection. Cell, 2015, 163(5), 1108-1123.
[http://dx.doi.org/10.1016/j.cell.2015.10.046] [PMID: 26582131]
[24]
Lackie, R.E.; Maciejewski, A.; Ostapchenko, V.G.; Marques-Lopes, J.; Choy, W.Y.; Duennwald, M.L.; Prado, V.F.; Prado, M.A.M. The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases. Front. Neurosci., 2017, 11, 254.
[http://dx.doi.org/10.3389/fnins.2017.00254] [PMID: 28559789]
[25]
Pan, T.; Peng, Z.; Tan, L.; Zou, F.; Zhou, N.; Liu, B.; Liang, L.; Chen, C.; Liu, J.; Wu, L.; Liu, G.; Peng, Z.; Liu, W.; Ma, X.; Zhang, J.; Zhu, X.; Liu, T.; Li, M.; Huang, X.; Tao, L.; Zhang, Y.; Zhang, H. Nonsteroidal anti-inflammatory drugs potently inhibit the replication of zika viruses by inducing the degradation of AXL. J. Virol., 2018, 92(20), e01018-e18.
[http://dx.doi.org/10.1128/JVI.01018-18] [PMID: 30068645]
[26]
Wang, X.; Grammatikakis, N.; Hu, J. Role of p50/CDC37 in hepadnavirus assembly and replication. J. Biol. Chem., 2002, 277(27), 24361-24367.
[http://dx.doi.org/10.1074/jbc.M202198200] [PMID: 11986322]
[27]
Yang, Y.; Lu, Q.; Shao, X.; Mo, B.; Nie, X.; Liu, W.; Chen, X.; Tang, Y.; Deng, Y.; Yan, J. Development of a three-gene prognostic signature for hepatitis B virus associated hepatocellular carcinoma based on integrated transcriptomic analysis. J. Cancer, 2018, 9(11), 1989-2002.
[http://dx.doi.org/10.7150/jca.23762] [PMID: 29896284]
[28]
Ge, X.; Rameix-Welti, M.A.; Gault, E.; Chase, G.; dos Santos Afonso, E.; Picard, D.; Schwemmle, M.; Naffakh, N. Influenza virus infection induces the nuclear relocalization of the Hsp90 co-chaperone p23 and inhibits the glucocorticoid receptor response. PLoS One, 2011, 6(8), e23368.
[http://dx.doi.org/10.1371/journal.pone.0023368] [PMID: 21853119]
[29]
Hu, J.; Toft, D.O.; Seeger, C. Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids. EMBO J., 1997, 16(1), 59-68.
[http://dx.doi.org/10.1093/emboj/16.1.59] [PMID: 9009268]
[30]
Taguwa, S.; Kambara, H.; Omori, H.; Tani, H.; Abe, T.; Mori, Y.; Suzuki, T.; Yoshimori, T.; Moriishi, K.; Matsuura, Y. Cochaperone activity of human butyrate-induced transcript 1 facilitates hepatitis C virus replication through an Hsp90-dependent pathway. J. Virol., 2009, 83(20), 10427-10436.
[http://dx.doi.org/10.1128/JVI.01035-09] [PMID: 19656872]
[31]
Meyer, B.K.; Petrulis, J.R.; Perdew, G.H. Aryl hydrocarbon (Ah) receptor levels are selectively modulated by Hsp90-associated immunophilin homolog XAP2. Cell Stress Chaperones, 2000, 5(3), 243-254.
[http://dx.doi.org/10.1379/1466-1268(2000)005<0243:AHARLA>2.0.CO;2] [PMID: 11005382]
[32]
Okamoto, T.; Nishimura, Y.; Ichimura, T.; Suzuki, K.; Miyamura, T.; Suzuki, T.; Moriishi, K.; Matsuura, Y. Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90. EMBO J., 2006, 25(20), 5015-5025.
[http://dx.doi.org/10.1038/sj.emboj.7601367] [PMID: 17024179]
[33]
Zhong, L.; Zhou, X.; Li, Y.; Qing, K.; Xiao, X.; Samulski, R.J.; Srivastava, A. Single-polarity recombinant adeno-associated virus 2 vector-mediated transgene expression in vitro and in vivo: Mechanism of transduction. Mol. Ther., 2008, 16(2), 290-295.
[http://dx.doi.org/10.1038/sj.mt.6300376] [PMID: 18087261]
[34]
Quarato, G.; D’Aprile, A.; Gavillet, B.; Vuagniaux, G.; Moradpour, D.; Capitanio, N.; Piccoli, C. The cyclophilin inhibitor alisporivir prevents hepatitis C virus-mediated mitochondrial dysfunction. Hepatology, 2012, 55(5), 1333-1343.
[http://dx.doi.org/10.1002/hep.25514] [PMID: 22135208]
[35]
Wei, B.; Cui, Y.; Huang, Y.; Liu, H.; Li, L.; Li, M.; Ruan, K.C.; Zhou, Q.; Wang, C. Tom70 mediates sendai virus-induced apoptosis on mitochondria. J. Virol., 2015, 89(7), 3804-3818.
[http://dx.doi.org/10.1128/JVI.02959-14] [PMID: 25609812]
[36]
Munday, D.C.; Howell, G.; Barr, J.N.; Hiscox, J.A. Proteomic analysis of mitochondria in respiratory epithelial cells infected with human respiratory syncytial virus and functional implications for virus and cell biology. J. Pharm. Pharmacol., 2015, 67(3), 300-318.
[http://dx.doi.org/10.1111/jphp.12349] [PMID: 25533920]
[37]
Khachatoorian, R.; Cohn, W.; Buzzanco, A.; Riahi, R.; Arumugaswami, V.; Dasgupta, A.; Whitelegge, J.P.; French, S.W. Hsp70 copurifies with zika virus particles. Virology, 2018, 522, 228-233.
[http://dx.doi.org/10.1016/j.virol.2018.07.009] [PMID: 30053656]
[38]
Lahaye, X.; Vidy, A.; Fouquet, B.; Blondel, D. Hsp70 protein positively regulates rabies virus infection. J. Virol., 2012, 86(9), 4743-4751.
[http://dx.doi.org/10.1128/JVI.06501-11] [PMID: 22345440]
[39]
Manzoor, R.; Kuroda, K.; Yoshida, R.; Tsuda, Y.; Fujikura, D.; Miyamoto, H.; Kajihara, M.; Kida, H.; Takada, A. Heat shock protein 70 modulates influenza A virus polymerase activity. J. Biol. Chem., 2014, 289(11), 7599-7614.
[http://dx.doi.org/10.1074/jbc.M113.507798] [PMID: 24474693]
[40]
Gao, J.; Xiao, S.; Liu, X.; Wang, L.; Ji, Q.; Mo, D.; Chen, Y. Inhibition of Hsp70 reduces porcine reproductive and respiratory syndrome virus replication in vitro. BMC Microbiol., 2014, 14(1), 64.
[http://dx.doi.org/10.1186/1471-2180-14-64] [PMID: 24625230]
[41]
Wyżewski, Z.; Gregorczyk, K.P.; Szczepanowska, J.; Szulc-Dąbrowska, L. Functional role of Hsp60 as a positive regulator of human viral infection progression. Acta Virol., 2018, 62(1), 33-40.
[http://dx.doi.org/10.4149/av_2018_104] [PMID: 29521101]
[42]
Dufva, M.; Olsson, M.; Rymo, L. Epstein-Barr virus nuclear antigen 5 interacts with HAX-1, a possible component of the B-cell receptor signalling pathway. J. Gen. Virol., 2001, 82(Pt 7), 1581-1587.
[http://dx.doi.org/10.1099/0022-1317-82-7-1581] [PMID: 11413368]
[43]
Tani, J.; Shimamoto, S.; Mori, K.; Kato, N.; Moriishi, K.; Matsuura, Y.; Tokumitsu, H.; Tsuchiya, M.; Fujimoto, T.; Kato, K.; Miyoshi, H.; Masaki, T.; Kobayashi, R. Ca(2+)/S100 proteins regulate HCV virus NS5A-FKBP8/FKBP38 interaction and HCV virus RNA replication. Liver Int., 2013, 33(7), 1008-1018.
[http://dx.doi.org/10.1111/liv.12151] [PMID: 23522085]
[44]
Meyer, B.K.; Pray-Grant, M.G.; Vanden Heuvel, J.P.; Perdew, G.H. Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity. Mol. Cell. Biol., 1998, 18(2), 978-988.
[http://dx.doi.org/10.1128/MCB.18.2.978] [PMID: 9447995]
[45]
Katoh, H.; Kubota, T.; Nakatsu, Y.; Tahara, M.; Kidokoro, M.; Takeda, M. Heat shock protein 90 ensures efficient mumps virus replication by assisting with viral polymerase complex formation. J. Virol., 2017, 91(6), e02220-e02316.
[http://dx.doi.org/10.1128/JVI.02220-16] [PMID: 28053100]
[46]
Dutta, S.; Tan, Y.J. Structural and functional characterization of human SGT and its interaction with Vpu of the human immunodeficiency virus type 1. Biochemistry, 2008, 47(38), 10123-10131.
[http://dx.doi.org/10.1021/bi800758a] [PMID: 18759457]
[47]
Zhang, T.; Li, Y.; Yu, Y.; Zou, P.; Jiang, Y.; Sun, D. Characterization of celastrol to inhibit Hsp90 and dc37 interaction. J. Biol. Chem., 2009, 284(51), 35381-35389.
[http://dx.doi.org/10.1074/jbc.M109.051532] [PMID: 19858214]
[48]
Grover, A.; Shandilya, A.; Agrawal, V.; Pratik, P.; Bhasme, D.; Bisaria, V.S.; Sundar, D. Hsp90/Cdc37 chaperone/co-chaperone complex, a novel junction anticancer target elucidated by the mode of action of herbal drug withaferin A. BMC Bioinformatics, 2011, 12(S1), S30.
[http://dx.doi.org/10.1186/1471-2105-12-S1-S30] [PMID: 21342561]
[49]
Tseng, C.K.; Hsu, S.P.; Lin, C.K.; Wu, Y.H.; Lee, J.C.; Young, K.C. Celastrol inhibits hepatitis C virus replication by upregulating heme oxygenase-1 via the JNK MAPK/Nrf2 pathway in human hepatoma cells. Antiviral Res., 2017, 146, 191-200.
[http://dx.doi.org/10.1016/j.antiviral.2017.09.010] [PMID: 28935193]
[50]
Straughn, A.R.; Kakar, S.S.; Withaferin, A. A potential therapeutic agent against COVID-19 infection. J. Ovarian Res., 2020, 13(1), 79.
[http://dx.doi.org/10.1186/s13048-020-00684-x] [PMID: 32684166]
[51]
Ali, M.M.; Roe, S.M.; Vaughan, C.K.; Meyer, P.; Panaretou, B.; Piper, P.W.; Prodromou, C.; Pearl, L.H. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature, 2006, 440(7087), 1013-1017.
[http://dx.doi.org/10.1038/nature04716] [PMID: 16625188]
[52]
Omar, S.; Zhang, J.; MacKinnon, S.; Leaman, D.; Durst, T.; Philogene, B.J.; Arnason, J.T.; Sanchez-Vindas, P.E.; Poveda, L.; Tamez, P.A.; Pezzuto, J.M. Traditionally-used antimalarials from the meliaceae. Curr. Top. Med. Chem., 2003, 3(2), 133-139.
[http://dx.doi.org/10.2174/1568026033392499] [PMID: 12570769]
[53]
Patwardhan, C.A.; Fauq, A.; Peterson, L.B.; Miller, C.; Blagg, B.S.; Chadli, A. Gedunin inactivates the co-chaperone p23 protein causing cancer cell death by apoptosis. J. Biol. Chem., 2013, 288(10), 7313-7325.
[http://dx.doi.org/10.1074/jbc.M112.427328] [PMID: 23355466]
[54]
Ge, Y.H.; Liu, K.X.; Zhang, J.X.; Mu, S.Z.; Hao, X.J. The limonoids and their Antitobacco mosaic Virus (TMV) activities from Munronia unifoliolata Oliv. J. Agric. Food Chem., 2012, 60(17), 4289-4295.
[http://dx.doi.org/10.1021/jf205362d] [PMID: 22500574]
[55]
Hwang, Y.; Rowley, D.; Rhodes, D.; Gertsch, J.; Fenical, W.; Bushman, F. Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product sansalvamide A. Mol. Pharmacol., 1999, 55(6), 1049-1053.
[http://dx.doi.org/10.1124/mol.55.6.1049] [PMID: 10347247]
[56]
Zuehlke, A.D.; Moses, M.A.; Neckers, L. Heat shock protein 90: Its inhibition and function. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2018, 373(1738), 20160527.
[http://dx.doi.org/10.1098/rstb.2016] [PMID: 29203712]
[57]
Suwannasom, N.; Kao, I.; Pruß, A.; Georgieva, R.; Bäumler, H. Riboflavin: The health benefits of a forgotten natural vitamin. Int. J. Mol. Sci., 2020, 21(3), 950.
[http://dx.doi.org/10.3390/ijms21030950] [PMID: 32023913]
[58]
Ragan, I.; Hartson, L.; Pidcoke, H.; Bowen, R.; Goodrich, R. Pathogen reduction of SARS-CoV-2 virus in plasma and whole blood using riboflavin and UV light. PLoS One, 2020, 15(5), e0233947.
[http://dx.doi.org/10.1371/journal.pone.0233947] [PMID: 32470046]
[59]
Lin, C.C.; Liu, W.H.; Wang, Z.H.; Yin, M.C. Vitamins B status and antioxidative defense in patients with chronic hepatitis B or hepatitis C virus infection. Eur. J. Nutr., 2011, 50(7), 499-506.
[http://dx.doi.org/10.1007/s00394-010-0156-1] [PMID: 21184088]
[60]
Li, W.Y.; Ren, J.H.; Tao, N.N.; Ran, L.K.; Chen, X.; Zhou, H.Z.; Liu, B.; Li, X.S.; Huang, A.L.; Chen, J. The SIRT1 inhibitor, nicotinamide, inhibits hepatitis B virus replication in vitro and in vivo. Arch. Virol., 2016, 161(3), 621-630.
[http://dx.doi.org/10.1007/s00705-015-2712-8] [PMID: 26660162]
[61]
Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev., 2016, 10(20), 84-89.
[http://dx.doi.org/10.4103/0973-7847.194044] [PMID: 28082789]
[62]
Gansukh, E.; Muthu, M.; Paul, D.; Ethiraj, G.; Chun, S.; Gopal, J. Nature nominee quercetin’s anti-influenza combat strategy-demonstrations and remonstrations. Rev. Med. Virol., 2017, 27(3), e1930.
[http://dx.doi.org/10.1002/rmv.1930] [PMID: 31211498]
[63]
Wong, G.; He, S.; Siragam, V.; Bi, Y.; Mbikay, M.; Chretien, M.; Qiu, X. Antiviral activity of quercetin-3-β-O-D-glucoside against zika virus infection. Virol. Sin., 2017, 32(6), 545-547.
[http://dx.doi.org/10.1007/s12250-017-4057-9] [PMID: 28884445]
[64]
Mehrbod, P.; Hudy, D.; Shyntum, D.; Markowski, J.; Łos, M.J.; Ghavami, S. Quercetin as a natural therapeutic candidate for the treatment of influenza virus. Biomolecules, 2020, 11(1), 10.
[http://dx.doi.org/10.3390/biom11010010] [PMID: 33374214]
[65]
Derosa, G.; Maffioli, P.; D’Angelo, A.; Di Pierro, F. A role for quercetin in coronavirus disease 2019 (COVID-19). Phytother. Res., 2021, 35(3), 1230-1236.
[http://dx.doi.org/10.1002/ptr.6887] [PMID: 33034398]
[66]
Michio, T.A.K.A.O.K.A. The phenolic substances of white hellebore (Veratrum grandiflorum hoes. Fil). iv. Nippon Kagaku Kaishi, 1940, 61(2), 96-98.
[http://dx.doi.org/10.1246/nikkashi1921.61.96]
[67]
Bostanghadiri, N.; Pormohammad, A.; Chirani, A.S.; Pouriran, R.; Erfanimanesh, S.; Hashemi, A. Comprehensive review on the antimicrobial potency of the plant polyphenol resveratrol. Biomed. Pharmacother., 2017, 95, 1588-1595.
[http://dx.doi.org/10.1016/j.biopha.2017.09.084] [PMID: 28950659]
[68]
Mediouni, S.; Jablonski, J.A.; Tsuda, S.; Barsamian, A.; Kessing, C.; Richard, A.; Biswas, A.; Toledo, F.; Andrade, V.M.; Even, Y.; Stevenson, M.; Tellinghuisen, T.; Choe, H.; Cameron, M.; Bannister, T.D.; Valente, S.T. Oregano oil and its principal component, carvacrol, inhibit HIV-1 fusion into target cells. J. Virol., 2020, 94(15), e00147-e00120.
[http://dx.doi.org/10.1128/JVI.00147-20] [PMID: 32461309]
[69]
Zheng, K.; Wu, S.Z.; Lv, Y.W.; Pang, P.; Deng, L.; Xu, H.C.; Shi, Y.C.; Chen, X.Y. Carvacrol inhibits the excessive immune response induced by influenza virus A via suppressing viral replication and TLR/RLR pattern recognition. J. Ethnopharmacol., 2021, 268, 113555.
[http://dx.doi.org/10.1016/j.jep.2020.113555] [PMID: 33152425]
[70]
Gilling, D.H.; Kitajima, M.; Torrey, J.R.; Bright, K.R. Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. J. Appl. Microbiol., 2014, 116(5), 1149-1163.
[http://dx.doi.org/10.1111/jam.12453] [PMID: 24779581]
[71]
Habtemariam, S.; Nabavi, S.F.; Berindan-Neagoe, I.; Cismaru, C.A.; Izadi, M.; Sureda, A.; Nabavi, S.M. Should we try the anti-inflammatory natural product, celastrol, for COVID-19? Phytother. Res., 2020, 34(6), 1189-1190.
[http://dx.doi.org/10.1002/ptr.6711] [PMID: 32347602]
[72]
Khalili, N.; Karimi, A.; Moradi, M.T.; Shirzad, H. In vitro immunomodulatory activity of celastrol against influenza A virus infection. Immunopharmacol. Immunotoxicol., 2018, 40(3), 250-255.
[http://dx.doi.org/10.1080/08923973.2018.1440591] [PMID: 29493374]
[73]
Yu, J.S.; Tseng, C.K.; Lin, C.K.; Hsu, Y.C.; Wu, Y.H.; Hsieh, C.L.; Lee, J.C. Celastrol inhibits dengue virus replication via up-regulating type I interferon and downstream interferon-stimulated responses. Antiviral Res., 2017, 137, 49-57.
[http://dx.doi.org/10.1016/j.antiviral.2016.11.010] [PMID: 27847245]
[74]
Omran, H.M.; Almaliki, M.S. Influence of NAD+ as an ageing-related immunomodulator on COVID 19 infection: A hypothesis. J. Infect. Public Health, 2020, 13(9), 1196-1201.
[http://dx.doi.org/10.1016/j.jiph.2020.06.004] [PMID: 32534944]
[75]
Steinmann, J.; Buer, J.; Pietschmann, T.; Steinmann, E. Anti-infective properties of Epigallocatechin-3-Gallate (EGCG), a component of green tea. Br. J. Pharmacol., 2013, 168(5), 1059-1073.
[http://dx.doi.org/10.1111/bph.12009] [PMID: 23072320]
[76]
Checconi, P.; Limongi, D.; Baldelli, S.; Ciriolo, M.R.; Nencioni, L.; Palamara, A.T. Role of glutathionylation in infection and inflammation. Nutrients, 2019, 11(8), 1952.
[http://dx.doi.org/10.3390/nu11081952] [PMID: 31434242]
[77]
Polonikov, A. Endogenous deficiency of glutathione as the most likely cause of serious manifestations and death in COVID-19 patients. ACS Infect. Dis., 2020, 6(7), 1558-1562.
[http://dx.doi.org/10.1021/acsinfecdis.0c00288] [PMID: 32463221]
[78]
Anderson, G.; Maes, M.; Markus, R.P.; Rodriguez, M. Ebola virus: Melatonin as a readily available treatment option. J. Med. Virol., 2015, 87(4), 537-543.
[http://dx.doi.org/10.1002/jmv.24130] [PMID: 25611054]
[79]
Anderson, G.; Reiter, R.J. Melatonin: Roles in influenza, Covid-19, and other viral infections. Rev. Med. Virol., 2020, 30(3), e2109.
[http://dx.doi.org/10.1002/rmv.2109] [PMID: 32314850]
[80]
Badawy, A.A. Immunotherapy of COVID-19 with poly (ADP-ribose) polymerase inhibitors: Starting with nicotinamide. Biosci. Rep., 2020, 40(10), BSR20202856.
[http://dx.doi.org/10.1042/BSR20202856] [PMID: 33063092]
[81]
Benton, M.L.; Abraham, A.; LaBella, A.L.; Abbot, P.; Rokas, A.; Capra, J.A. The influence of evolutionary history on human health and disease. Nat. Rev. Genet., 2021, 22(5), 269-283.
[http://dx.doi.org/10.1038/s41576-020-00305-9] [PMID: 33408383]
[82]
Kemp, S.A.; Collier, D.A.; Datir, R.P.; Ferreira, I.A.T.M.; Gayed, S.; Jahun, A.; Hosmillo, M.; Rees-Spear, C.; Mlcochova, P.; Lumb, I.U.; Roberts, D.J.; Chandra, A.; Temperton, N.; Sharrocks, K.; Blane, E.; Modis, Y.; Leigh, K.E.; Briggs, J.A.G.; van Gils, M.J.; Smith, K.G.C.; Bradley, J.R.; Smith, C.; Doffinger, R.; Ceron-Gutierrez, L.; Barcenas-Morales, G.; Pollock, D.D.; Goldstein, R.A.; Smielewska, A.; Skittrall, J.P.; Gouliouris, T.; Goodfellow, I.G.; Gkrania-Klotsas, E.; Illingworth, C.J.R.; McCoy, L.E.; Gupta, R.K. SARS-CoV-2 evolution during treatment of chronic infection. Nature, 2021, 592(7853), 277-282.
[http://dx.doi.org/10.1038/s41586-021-03291-y] [PMID: 33545711]
[83]
Xia, X. Domains and functions of spike protein in Sars-Cov-2 in the context of vaccine design. Viruses, 2021, 13(1), 109.
[http://dx.doi.org/10.3390/v13010109] [PMID: 33466921]

© 2024 Bentham Science Publishers | Privacy Policy