Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

A Concise Review of Common Plant-derived Compounds as a Potential Therapy for Alzheimer's Disease and Parkinson's Disease: Insight into Structure-Activity-Relationship

Author(s): Suchitra Nishal, Parmita Phaugat, Jyoti Bazaad, Rubal Dhaka, Sarita Khatkar, Anurag Khatkar*, Maryam Khayatkashani, Pooyan Alizadeh, Shima Motavalli Haghighi, Mohammad Mehri and Hamid Reza Khayat Kashani*

Volume 22, Issue 7, 2023

Published on: 23 September, 2022

Page: [1057 - 1069] Pages: 13

DOI: 10.2174/1871527321666220614110616

Price: $65

Abstract

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the two most common neurological illnesses that affect people in their later years. Memory loss is the hallmark of Alzheimer’s disease, while dyskinesia, or loss of mobility, is associated with muscle rigidity and tremors in PD. Both diseases are unrelated, however, they do have a few similarities associated with extrapyramidal abnormalities, particularly stiffness, which has been linked to concomitant PD in many AD patients. Increased levels of IL-1, IL-6, and TNF in the AD and PD patients can be regarded as evidence of systemic inflammation associated with each of these neurodegenerative disorders. One of the primary variables in the progression of neurodegenerative disorders is oxidative stress. Many medicinal plants and their secondary metabolites have been claimed to be able to help people with neurodegenerative disorders like AD and PD. Anti-inflammatory, antioxidant, antiapoptotic, monoamine oxidase inhibition, acetylcholinesterase, and neurotrophic pursuits are among the major mechanisms identified by which phytochemicals exert their neuroprotective effects and potential maintenance of neurological health in old age. In regard to neurodegenerative disorders, numerable plant-based drugs like alkaloids, iridoids, terpenes, and flavones are employed for the treatment. Structure-activity relationships (SAR) and quantitative structure-activity relationships (QSAR) are used to investigate the link between bioactivity and the chemical configuration of substances. The SAR and QSAR of natural plant components employed in AD and PD are discussed in the current review.

Keywords: Alzheimer’s disease, Parkinson’s disease, neurodegenerative, oxidative stress, neuroprotective, cholinesterase inhibitors.

[1]
Chen-Plotkin AS. Unbiased approaches to biomarker discovery in neurodegenerative diseases. Neuron 2014; 84(3): 594-607.
[http://dx.doi.org/10.1016/j.neuron.2014.10.031] [PMID: 25442938]
[2]
Wimo A, Prince M. The global economic impact of dementia. World Alzheimer Report 2010; 2010: 12.
[3]
de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol 2006; 5(6): 525-35.
[http://dx.doi.org/10.1016/S1474-4422(06)70471-9] [PMID: 16713924]
[4]
Berg D. Biomarkers for the early detection of Parkinson’s and Alzheimer’s disease. Neurodegener Dis 2008; 5(3-4): 133-6.
[http://dx.doi.org/10.1159/000113682] [PMID: 18322370]
[5]
Dickmann LJ, Ware JA. Pharmacogenomics in the age of personalized medicine. Drug Discov Today Technol 2016; 21-22: 11-6.
[http://dx.doi.org/10.1016/j.ddtec.2016.11.003] [PMID: 27978982]
[6]
Olson MC, Maciel A, Gariepy JF, et al. Clinical impact of pharmacogenetic-guided treatment for patients exhibiting neuropsychiatric disorders: A randomized controlled trial. Prim Care Companion CNS Disord 2017; 19(2): 19.
[http://dx.doi.org/10.4088/PCC.16m02036] [PMID: 28314093]
[7]
Group BDW, Atkinson AJ Jr, Colburn WA, et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69(3): 89-95.
[http://dx.doi.org/10.1067/mcp.2001.113989] [PMID: 11240971]
[8]
Emamzadeh FN, Surguchov A. Parkinson’s disease: Biomarkers, treatment, and risk factors. Front Neurosci 2018; 12: 612.
[http://dx.doi.org/10.3389/fnins.2018.00612] [PMID: 30214392]
[9]
Jellinger KA. Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 1991; 14(3): 153-97.
[http://dx.doi.org/10.1007/BF03159935] [PMID: 1958262]
[10]
Palmqvist S, Insel PS, Stomrud E, et al. Cerebrospinal fluid and plasma biomarker trajectories with increasing amyloid deposition in Alzheimer’s disease. EMBO Mol Med 2019; 11(12): e11170.
[http://dx.doi.org/10.15252/emmm.201911170] [PMID: 31709776]
[11]
Zetterberg H, Bendlin BB. Biomarkers for Alzheimer’s disease-preparing for a new era of disease-modifying therapies. Mol Psychiatry 2021; 26(1): 296-308.
[http://dx.doi.org/10.1038/s41380-020-0721-9] [PMID: 32251378]
[12]
Houghton PJ, Howes M-J. Natural products and related compounds of realized and potential use in treating neurodegenerative disease.In: The Chemistry Of Natural Products. World Scientific 2008; p. 377.
[13]
Houghton PJ, Howes M-J. Natural products and derivatives affecting neurotransmission relevant to Alzheimer’s and Parkinson’s disease. Neurosignals 2005; 14(1-2): 6-22.
[http://dx.doi.org/10.1159/000085382] [PMID: 15956811]
[14]
Khatoon SS, Rehman M, Rahman A. The role of natural products in Alzheimer’s and Parkinson’s disease.In: Studies in natural products chemistry. Elsevier 2018; Vol. 56: pp. 69-127.
[15]
Retinasamy T, Shaikh MF, Kumari Y, Abidin SAZ, Othman I. Orthosiphon stamineus standardized extract reverses streptozotocin-induced Alzheimer’s disease-like condition in a rat model. Biomedicines 2020; 8(5): 104.
[http://dx.doi.org/10.3390/biomedicines8050104] [PMID: 32365983]
[16]
Reddy VP, Aryal P, Robinson S, Rafiu R, Obrenovich M, Perry G. Polyphenols in Alzheimer’s disease and in the gut-brain axis. Microorganisms 2020; 8(2): 199.
[http://dx.doi.org/10.3390/microorganisms8020199] [PMID: 32023969]
[17]
Xie A, Gao J, Xu L, Meng D. Shared mechanisms of neurodegeneration in Alzheimer’s disease and Parkinson’s disease. BioMed Res Int 2014; 2014: 648740.
[http://dx.doi.org/10.1155/2014/648740] [PMID: 24900975]
[18]
Wingo TS, Rosen A, Cutler DJ, Lah JJ, Levey AI. Paraoxonase-1 polymorphisms in Alzheimer’s disease, Parkinson’s disease, and AD-PD spectrum diseases. Neurobiol Aging 2012; 33(1): 204.e13-5.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.08.010] [PMID: 20947215]
[19]
Klimkowicz-Mrowiec A, Marona M, Wolkow P, et al. Paraoxonase gene polymorphism and the risk for Alzheimer’s disease in the polish population. Dement Geriatr Cogn Disord 2011; 31(6): 417-23.
[http://dx.doi.org/10.1159/000329571] [PMID: 21757906]
[20]
Clarimon J, Eerola J, Hellström O, Tienari PJ, Singleton A. Paraoxonase 1 (PON1) gene polymorphisms and Parkinson’s disease in a Finnish population. Neurosci Lett 2004; 367(2): 168-70.
[http://dx.doi.org/10.1016/j.neulet.2004.05.108] [PMID: 15331145]
[21]
Chapuis J, Moisan F, Mellick G, et al. Association study of the NEDD9 gene with the risk of developing Alzheimer’s and Parkinson’s disease. Hum Mol Genet 2008; 17(18): 2863-7.
[http://dx.doi.org/10.1093/hmg/ddn183] [PMID: 18579580]
[22]
Dasappa JK, Nagendra H. Preferential selectivity of inhibitors with human tau protein kinase gsk3β elucidates their potential roles for off-target Alzheimer’s therapy. Int J Alzheimers Dis 2013; 2013: 809386.
[http://dx.doi.org/10.1155/2013/809386] [PMID: 24222885]
[23]
Zimmer ER, Leuzy A, Bhat V, Gauthier S, Rosa-Neto P. In vivo tracking of tau pathology using positron emission tomography (PET) molecular imaging in small animals. Transl Neurodegener 2014; 3(1): 6.
[http://dx.doi.org/10.1186/2047-9158-3-6] [PMID: 24628994]
[24]
Schilling LP, Leuzy A, Zimmer ER, Gauthier S, Rosa-Neto P. Nonamyloid PET biomarkers and Alzheimer’s disease: Current and future perspectives. Future Neurol 2014; 9(6): 597-613.
[http://dx.doi.org/10.2217/fnl.14.40]
[25]
Lei P, Ayton S, Finkelstein DI, Adlard PA, Masters CL, Bush AI. Tau protein: Relevance to Parkinson’s disease. Int J Biochem Cell Biol 2010; 42(11): 1775-8.
[http://dx.doi.org/10.1016/j.biocel.2010.07.016] [PMID: 20678581]
[26]
Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease. Nat Med 1998; 4(11): 1318-20.
[http://dx.doi.org/10.1038/3311] [PMID: 9809558]
[27]
De Vos KJ, Grierson AJ, Ackerley S, Miller CC. Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci 2008; 31(1): 151-73.
[http://dx.doi.org/10.1146/annurev.neuro.31.061307.090711] [PMID: 18558852]
[28]
Herbert MK, Eeftens JM, Aerts MB, et al. CSF levels of DJ-1 and tau distinguish MSA patients from PD patients and controls. Parkinsonism Relat Disord 2014; 20(1): 112-5.
[http://dx.doi.org/10.1016/j.parkreldis.2013.09.003] [PMID: 24075122]
[29]
Kim S, Seo J-H, Suh Y-H. α-synuclein, Parkinson’s disease, and Alzheimer’s disease. Parkinsonism Relat Disord 2004; 10 (Suppl. 1): S9-S13.
[http://dx.doi.org/10.1016/j.parkreldis.2003.11.005] [PMID: 15109581]
[30]
Attems J, Quass M, Jellinger KA. Tau and α-synuclein brainstem pathology in Alzheimer disease: Relation with extrapyramidal signs. Acta Neuropathol 2007; 113(1): 53-62.
[http://dx.doi.org/10.1007/s00401-006-0146-9] [PMID: 17031655]
[31]
Rivera-Mancía S, Pérez-Neri I, Ríos C, Tristán-López L, Rivera-Espinosa L, Montes S. The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 2010; 186(2): 184-99.
[http://dx.doi.org/10.1016/j.cbi.2010.04.010] [PMID: 20399203]
[32]
Sayre LM, Perry G, Harris PL, Liu Y, Schubert KA, Smith MA. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: A central role for bound transition metals. J Neurochem 2000; 74(1): 270-9.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0740270.x] [PMID: 10617129]
[33]
Benarroch EE. The locus ceruleus norepinephrine system: Functional organization and potential clinical significance. Neurology 2009; 73(20): 1699-704.
[http://dx.doi.org/10.1212/WNL.0b013e3181c2937c] [PMID: 19917994]
[34]
Arredondo M, Núñez MT. Iron and copper metabolism. Mol Aspects Med 2005; 26(4-5): 313-27.
[http://dx.doi.org/10.1016/j.mam.2005.07.010] [PMID: 16112186]
[35]
Gesi M, Soldani P, Giorgi FS, Santinami A, Bonaccorsi I, Fornai F. The role of the locus coeruleus in the development of Parkinson’s disease. Neurosci Biobehav Rev 2000; 24(6): 655-68.
[http://dx.doi.org/10.1016/S0149-7634(00)00028-2] [PMID: 10940440]
[36]
Posadas I, López-Hernández B, Ceña V. Nicotinic receptors in neurodegeneration. Curr Neuropharmacol 2013; 11(3): 298-314.
[http://dx.doi.org/10.2174/1570159X11311030005] [PMID: 24179465]
[37]
Perez XA, Bordia T, McIntosh JM, Quik M. α6ß2* and α4ß2* nicotinic receptors both regulate dopamine signaling with increased nigrostriatal damage: Relevance to Parkinson’s disease. Mol Pharmacol 2010; 78(5): 971-80.
[http://dx.doi.org/10.1124/mol.110.067561] [PMID: 20732972]
[38]
Jiang T, Sun Q, Chen S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog Neurobiol 2016; 147: 1-19.
[http://dx.doi.org/10.1016/j.pneurobio.2016.07.005] [PMID: 27769868]
[39]
Agnihotri A, Aruoma OI. Alzheimer’s disease and Parkinson’s disease: A nutritional toxicology perspective of the impact of oxidative stress, mitochondrial dysfunction, nutrigenomics and environmental chemicals. J Am Coll Nutr 2020; 39(1): 16-27.
[http://dx.doi.org/10.1080/07315724.2019.1683379] [PMID: 31829802]
[40]
Tohda C, Kuboyama T, Komatsu K. Search for natural products related to regeneration of the neuronal network. Neurosignals 2005; 14(1-2): 34-45.
[http://dx.doi.org/10.1159/000085384] [PMID: 15956813]
[41]
Kaur G, Kataria H, Mishra R. Medicinal plants as novel promising therapeutics for neuroprotection and neuroregeneration.In: New Age Herbals. Springer 2018; pp. 437-53.
[http://dx.doi.org/10.1007/978-981-10-8291-7_20]
[42]
Zahiruddin S, Basist P, Parveen A, et al. Ashwagandha in brain disorders: A review of recent developments. J Ethnopharmacol 2020; 257: 112876.
[http://dx.doi.org/10.1016/j.jep.2020.112876] [PMID: 32305638]
[43]
Zhao J, Nakamura N, Hattori M, Kuboyama T, Tohda C, Komatsu K. Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull (Tokyo) 2002; 50(6): 760-5.
[http://dx.doi.org/10.1248/cpb.50.760] [PMID: 12045329]
[44]
Kuboyama T, Tohda C, Komatsu K. Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br J Pharmacol 2005; 144(7): 961-71.
[http://dx.doi.org/10.1038/sj.bjp.0706122] [PMID: 15711595]
[45]
Baitharu I, Jain V, Deep SN, et al. Withanolide A prevents neurodegeneration by modulating hippocampal glutathione biosynthesis during hypoxia. PLoS One 2014; 9(10): e105311.
[http://dx.doi.org/10.1371/journal.pone.0105311] [PMID: 25310001]
[46]
Pandey A, Bani S, Dutt P, Kumar Satti N, Avtar Suri K, Nabi Qazi G. Multifunctional neuroprotective effect of Withanone, a compound from Withania somnifera roots in alleviating cognitive dysfunction. Cytokine 2018; 102: 211-21.
[http://dx.doi.org/10.1016/j.cyto.2017.10.019] [PMID: 29108796]
[47]
Grover A, Shandilya A, Agrawal V, Bisaria VS, Sundar D. Computational evidence to inhibition of human acetyl cholinesterase by withanolide a for Alzheimer treatment. J Biomol Struct Dyn 2012; 29(4): 651-62.
[http://dx.doi.org/10.1080/07391102.2012.10507408] [PMID: 22208270]
[48]
Sehgal N, Gupta A, Valli RK, et al. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci USA 2012; 109(9): 3510-5.
[http://dx.doi.org/10.1073/pnas.1112209109] [PMID: 22308347]
[49]
Sankar SR, Manivasagam T, Krishnamurti A, Ramanathan M. The neuroprotective effect of Withania somnifera root extract in MPTP-intoxicated mice: An analysis of behavioral and biochemical variables. Cell Mol Biol Lett 2007; 12(4): 473-81.
[http://dx.doi.org/10.2478/s11658-007-0015-0] [PMID: 17415533]
[50]
Rajasankar S, Manivasagam T, Surendran S. Ashwagandha leaf extract: A potential agent in treating oxidative damage and physiological abnormalities seen in a mouse model of Parkinson’s disease. Neurosci Lett 2009; 454(1): 11-5.
[http://dx.doi.org/10.1016/j.neulet.2009.02.044] [PMID: 19429045]
[51]
RajaSankar S, Manivasagam T, Sankar V, et al. Withania somnifera root extract improves catecholamines and physiological abnormalities seen in a Parkinson’s disease model mouse. J Ethnopharmacol 2009; 125(3): 369-73.
[http://dx.doi.org/10.1016/j.jep.2009.08.003]
[52]
Jagota A, Kowshik K. Therapeutic effects of Ashwagandha in brain aging and clock dysfunction.In: Science of Ashwagandha: Preventive and Therapeutic Potentials. Springer 2017; pp. 437-56.
[http://dx.doi.org/10.1007/978-3-319-59192-6_21]
[53]
Hu S, Han R, Mak S, Han Y. Protection against 1-methyl-4-phenylpyridinium ion (MPP+)-induced apoptosis by water extract of ginseng (Panax ginseng C.A. Meyer) in SH-SY5Y cells. J Ethnopharmacol 2011; 135(1): 34-42.
[http://dx.doi.org/10.1016/j.jep.2011.02.017] [PMID: 21349320]
[54]
Cho I-H. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 2012; 36(4): 342-53.
[http://dx.doi.org/10.5142/jgr.2012.36.4.342] [PMID: 23717136]
[55]
Kim KH, Lee D, Lee HL, Kim C-E, Jung K, Kang KS. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: Past findings and future directions. J Ginseng Res 2018; 42(3): 239-47.
[http://dx.doi.org/10.1016/j.jgr.2017.03.011] [PMID: 29989012]
[56]
González-Burgos E, Fernandez-Moriano C, Gómez-Serranillos MP. Potential neuroprotective activity of Ginseng in Parkinson’s disease: A review. J Neuroimmune Pharmacol 2015; 10(1): 14-29.
[http://dx.doi.org/10.1007/s11481-014-9569-6] [PMID: 25349145]
[57]
Rokot NT, Kairupan TS, Cheng K-C, et al. A role of ginseng and its constituents in the treatment of central nervous system disorders. Evid Based Complement Alternat Med 2016; 2016: 2614742.
[http://dx.doi.org/10.1155/2016/2614742] [PMID: 27630732]
[58]
Van Kampen J, Robertson H, Hagg T, Drobitch R. Neuroprotective actions of the ginseng extract G115 in two rodent models of Parkinson’s disease. Exp Neurol 2003; 184(1): 521-9.
[http://dx.doi.org/10.1016/j.expneurol.2003.08.002] [PMID: 14637121]
[59]
Wang J, Xu H-M, Yang H-D, Du X-X, Jiang H, Xie J-X. Rg1 reduces nigral iron levels of MPTP-treated C57BL6 mice by regulating certain iron transport proteins. Neurochem Int 2009; 54(1): 43-8.
[http://dx.doi.org/10.1016/j.neuint.2008.10.003] [PMID: 19000728]
[60]
Xu H, Jiang H, Wang J, Xie J. Rg1 protects the MPP+-treated MES23.5 cells via attenuating DMT1 up-regulation and cellular iron uptake. Neuropharmacology 2010; 58(2): 488-94.
[http://dx.doi.org/10.1016/j.neuropharm.2009.09.002] [PMID: 19744503]
[61]
Chen F, Eckman EA, Eckman CB, Chen F, Eckman EA, Eckman CB. Reductions in levels of the Alzheimer’s amyloid β peptide after oral administration of ginsenosides. FASEB J 2006; 20(8): 1269-71.
[http://dx.doi.org/10.1096/fj.05-5530fje] [PMID: 16636099]
[62]
Shin SJ, Jeon SG, Kim JI, et al. Red ginseng attenuates Aβ-induced mitochondrial dysfunction and Aβ-mediated pathology in an animal model of Alzheimer’s disease. Int J Mol Sci 2019; 20(12): 3030.
[http://dx.doi.org/10.3390/ijms20123030] [PMID: 31234321]
[63]
Lee S, Youn K, Jun M. Major compounds of red ginseng oil attenuate Aβ25-35-induced neuronal apoptosis and inflammation by modulating MAPK/NF-κB pathway. Food Funct 2018; 9(8): 4122-34.
[http://dx.doi.org/10.1039/C8FO00795K] [PMID: 30014084]
[64]
Song J-Q, Chen X-C, Zhang J, et al. JNK/p38 MAPK involves in ginsenoside Rb1 attenuating beta-amyloid peptide (25-35) -induced tau protein hyperphosphorylation in embryo rat cortical neurons. Yao Xue Xue Bao 2008; 43(1): 29-34.
[PMID: 18357728]
[65]
Zhang Y, Pi Z, Song F, Liu Z. Ginsenosides attenuate d-galactose- and AlCl3-inducedspatial memory impairment by restoring the dysfunction of the neurotransmitter systems in the rat model of Alzheimer’s disease. J Ethnopharmacol 2016; 194: 188-95.
[http://dx.doi.org/10.1016/j.jep.2016.09.007] [PMID: 27612432]
[66]
Tan X, Gu J, Zhao B, et al. Ginseng improves cognitive deficit via the RAGE/NF-κB pathway in advanced glycation end product-induced rats. J Ginseng Res 2015; 39(2): 116-24.
[http://dx.doi.org/10.1016/j.jgr.2014.09.002] [PMID: 26045684]
[67]
Ganesan P, Ko H-M, Kim I-S, Choi D-K. Recent trends of nano bioactive compounds from ginseng for its possible preventive role in chronic disease models. RSC Advances 2015; 5(119): 98634-42.
[http://dx.doi.org/10.1039/C5RA20559J]
[68]
Ahmed T, Gilani AH. Therapeutic potential of turmeric in Alzheimer’s disease: Curcumin or curcuminoids? Phytother Res 2014; 28(4): 517-25.
[http://dx.doi.org/10.1002/ptr.5030] [PMID: 23873854]
[69]
Chin D, Huebbe P, Pallauf K, Rimbach G. Neuroprotective properties of curcumin in Alzheimer’s disease--merits and limitations. Curr Med Chem 2013; 20(32): 3955-85.
[http://dx.doi.org/10.2174/09298673113209990210] [PMID: 23931272]
[70]
Eghbaliferiz S, Farhadi F, Barreto GE, Majeed M, Sahebkar A. Effects of curcumin on neurological diseases: Focus on astrocytes. Pharmacol Rep 2020; 72(4): 769-82.
[http://dx.doi.org/10.1007/s43440-020-00112-3] [PMID: 32458309]
[71]
Mishra S, Palanivelu K. The effect of curcumin (turmeric) on Alzheimer’s disease: An overview. Ann Indian Acad Neurol 2008; 11(1): 13-9.
[http://dx.doi.org/10.4103/0972-2327.40220] [PMID: 19966973]
[72]
Jagatha B, Mythri RB, Vali S, Bharath MM. Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: Therapeutic implications for Parkinson’s disease explained via in silico studies. Free Radic Biol Med 2008; 44(5): 907-17.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.11.011] [PMID: 18166164]
[73]
Rajeswari A, Sabesan M. Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson’s disease induced by MPTP neurodegeneration in mice. Inflammopharmacology 2008; 16(2): 96-9.
[http://dx.doi.org/10.1007/s10787-007-1614-0] [PMID: 18408903]
[74]
Mythri RB, Bharath MM. Curcumin: A potential neuroprotective agent in Parkinson’s disease. Curr Pharm Des 2012; 18(1): 91-9.
[http://dx.doi.org/10.2174/138161212798918995] [PMID: 22211691]
[75]
Forouzanfar F, Read MI, Barreto GE, Sahebkar A. Neuroprotective effects of curcumin through autophagy modulation. IUBMB Life 2020; 72(4): 652-64.
[http://dx.doi.org/10.1002/iub.2209] [PMID: 31804772]
[76]
Allred KF, Yackley KM, Vanamala J, Allred CD. Trigonelline is a novel phytoestrogen in coffee beans. J Nutr 2009; 139(10): 1833-8.
[http://dx.doi.org/10.3945/jn.109.108001] [PMID: 19710155]
[77]
Chen J-F, Steyn S, Staal R, et al. 8-(3-Chlorostyryl)caffeine may attenuate MPTP neurotoxicity through dual actions of monoamine oxidase inhibition and A2A receptor antagonism. J Biol Chem 2002; 277(39): 36040-4.
[http://dx.doi.org/10.1074/jbc.M206830200] [PMID: 12130655]
[78]
Hampel H, Mesulam M-M, Cuello AC, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018; 141(7): 1917-33.
[http://dx.doi.org/10.1093/brain/awy132] [PMID: 29850777]
[79]
Bohnen NI, Albin RL. The cholinergic system and Parkinson disease. Behav Brain Res 2011; 221(2): 564-73.
[http://dx.doi.org/10.1016/j.bbr.2009.12.048] [PMID: 20060022]
[80]
Perez-Lloret S, Barrantes FJ. Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease. NPJ Parkinsons Dis 2016; 2: 1.
[http://dx.doi.org/10.1038/npjparkd.2016.1]
[81]
Perez-Lloret S, Peralta MC, Barrantes FJ. Neuropsychiatric symptoms related to cholinergic deficits in Parkinson’s disease.In: Psychiatry and Neuroscience Update-Vol II. Springer 2017; pp. 375-88.
[http://dx.doi.org/10.1007/978-3-319-53126-7_27]
[82]
Birks J, Grimley E, Van Dongen M. Ginkgo biloba for cognitive impairment and dementia (Cochrane Review). Cochrane Database Syst Rev 2002; 4: CD003120.
[83]
Kurz A, Van Baelen B. Ginkgo biloba compared with cholinesterase inhibitors in the treatment of dementia: A review based on meta-analyses by the cochrane collaboration. Dement Geriatr Cogn Disord 2004; 18(2): 217-26.
[http://dx.doi.org/10.1159/000079388] [PMID: 15237280]
[84]
Sloley BD, Urichuk LJ, Morley P, et al. Identification of kaempferol as a monoamine oxidase inhibitor and potential Neuroprotectant in extracts of Ginkgo biloba leaves. J Pharm Pharmacol 2000; 52(4): 451-9.
[http://dx.doi.org/10.1211/0022357001774075] [PMID: 10813558]
[85]
Rojas C, Rojas-Castaneda J, Rojas P. Antioxidant properties of a Ginkgo biloba leaf extract (EGb 761) in animal models of Alzheimer’s and Parkinson’s diseases. Curr Top Nutraceutical Res 2015; 13(3): 105-20.
[86]
Tanaka K, Galduróz RF, Gobbi LT, Galduróz JC. Ginkgo biloba extract in an animal model of Parkinson’s disease: A systematic review. Curr Neuropharmacol 2013; 11(4): 430-5.
[http://dx.doi.org/10.2174/1570159X11311040006] [PMID: 24381532]
[87]
Cao F, Sun S, Tong ET. Experimental study on inhibition of neuronal toxical effect of levodopa by Ginkgo biloba extract on Parkinson disease in rats. J Huazhong Univ Sci Technolog Med Sci 2003; 23(2): 151-3.
[http://dx.doi.org/10.1007/BF02859941] [PMID: 12973934]
[88]
Mazza M, Capuano A, Bria P, Mazza S. Ginkgo biloba and donepezil: A comparison in the treatment of Alzheimer’s dementia in a randomized placebo-controlled double-blind study. Eur J Neurol 2006; 13(9): 981-5.
[http://dx.doi.org/10.1111/j.1468-1331.2006.01409.x] [PMID: 16930364]
[89]
Mohammed NA, Abdou HM, Tass MA, Alfwuaires M, Abdel-Moneim AM, Essawy AE. Oral supplements of Ginkgo biloba extract alleviate neuroinflammation, Oxidative impairments and neurotoxicity in rotenone-induced Parkinsonian rats. Curr Pharm Biotechnol 2020; 21(12): 1259-68.
[http://dx.doi.org/10.2174/1389201021666200320135849] [PMID: 32196446]
[90]
Szwajgier D, Borowiec K, Zapp J. Activity-guided isolation of cholinesterase inhibitors quercetin, rutin and kaempferol from Prunus persica fruit. Z Naturforsch C J Biosci 2020; 75(3-4): 87-96.
[http://dx.doi.org/10.1515/znc-2019-0079] [PMID: 34432967]
[91]
Khan H, Ullah H, Aschner M, Cheang WS, Akkol EK. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules 2019; 10(1): 59.
[http://dx.doi.org/10.3390/biom10010059] [PMID: 31905923]
[92]
Singh S, Jamwal S, Kumar P. Neuroprotective potential of Quercetin in combination with piperine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. Neural Regen Res 2017; 12(7): 1137-44.
[http://dx.doi.org/10.4103/1673-5374.211194] [PMID: 28852397]
[93]
Sharma S, Raj K, Singh S. Neuroprotective effect of quercetin in combination with piperine against rotenone- and iron supplement-induced Parkinson’s disease in experimental rats. Neurotox Res 2020; 37(1): 198-209.
[http://dx.doi.org/10.1007/s12640-019-00120-z] [PMID: 31654381]
[94]
Ahmad S, Zeb A, Ayaz M, Murkovic M. Characterization of phenolic compounds using UPLC–HRMS and HPLC–DAD and anti-cholinesterase and anti-oxidant activities of Trifolium repens L. leaves. Eur Food Res Technol 2020; 246(3): 485-96.
[http://dx.doi.org/10.1007/s00217-019-03416-8]
[95]
Cassano T, Villani R, Pace L, et al. From Cannabis sativa to Cannabidiol: Promising therapeutic candidate for the treatment of neurodegenerative diseases. Front Pharmacol 2020; 11: 124.
[http://dx.doi.org/10.3389/fphar.2020.00124] [PMID: 32210795]
[96]
Nawaz MA, Huang Y, Bie Z, et al. Melatonin: Current status and future perspectives in plant science. Front Plant Sci 2016; 6: 1230.
[http://dx.doi.org/10.3389/fpls.2015.01230] [PMID: 26793210]
[97]
Gunata M, Parlakpinar H, Acet HA. Melatonin: A review of its potential functions and effects on neurological diseases. Rev Neurol (Paris) 2020; 176(3): 148-65.
[http://dx.doi.org/10.1016/j.neurol.2019.07.025] [PMID: 31718830]
[98]
Barakat AZ, Hamed AR, Bassuiny RI, Abdel-Aty AM, Mohamed SA. Date palm and saw palmetto seeds functional properties: Antioxidant, anti-inflammatory and antimicrobial activities. J Food Meas Charact 2020; 14(2): 1-9.
[http://dx.doi.org/10.1007/s11694-019-00356-5]
[99]
Wang S, Xu J, Zheng J, et al. Anti-Inflammatory and antioxidant effects of acetyl-l-carnitine on atherosclerotic rats. Med Sci Monit 2020; 26: e920250-1.
[http://dx.doi.org/10.12659/MSM.920250] [PMID: 31945029]
[100]
Singh B, Pandey S, Rumman M, Mahdi AA. Neuroprotective effects of Bacopa monnieri in Parkinson’s disease model. Metab Brain Dis 2020; 35(3): 517-25.
[http://dx.doi.org/10.1007/s11011-019-00526-w] [PMID: 31834548]
[101]
Dubey T, Chinnathambi S. Brahmi (Bacopa monnieri): An ayurvedic herb against the Alzheimer’s disease. Arch Biochem Biophys 2019; 676: 108153.
[http://dx.doi.org/10.1016/j.abb.2019.108153] [PMID: 31622587]
[102]
Parkhe A, Parekh P, Nalla LV, et al. Protective effect of alpha mangostin on rotenone induced toxicity in rat model of Parkinson’s disease. Neurosci Lett 2020; 716: 134652.
[http://dx.doi.org/10.1016/j.neulet.2019.134652] [PMID: 31778768]
[103]
Moongkarndi P, Srisawat C, Saetun P, et al. Protective effect of mangosteen extract against β-amyloid-induced cytotoxicity, oxidative stress and altered proteome in SK-N-SH cells. J Proteome Res 2010; 9(5): 2076-86.
[http://dx.doi.org/10.1021/pr100049v] [PMID: 20232907]
[104]
Weinreb O, Mandel S, Amit T, Youdim MB. Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem 2004; 15(9): 506-16.
[http://dx.doi.org/10.1016/j.jnutbio.2004.05.002] [PMID: 15350981]
[105]
Li Y, Li L, Hölscher C. Therapeutic potential of genipin in central neurodegenerative diseases. CNS Drugs 2016; 30(10): 889-97.
[http://dx.doi.org/10.1007/s40263-016-0369-9] [PMID: 27395402]
[106]
Shi D, Yang J, Jiang Y, Wen L, Wang Z, Yang B. The antioxidant activity and neuroprotective mechanism of isoliquiritigenin. Free Radic Biol Med 2020; 152: 207-15.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.03.016] [PMID: 32220625]
[107]
Amić D, Davidović-Amić D, Beslo D, Rastija V, Lucić B, Trinajstić N. SAR and QSAR of the antioxidant activity of flavonoids. Curr Med Chem 2007; 14(7): 827-45.
[http://dx.doi.org/10.2174/092986707780090954] [PMID: 17346166]
[108]
Dimitrov S, Dimitrova G, Pavlov T, et al. A stepwise approach for defining the applicability domain of SAR and QSAR models. J Chem Inf Model 2005; 45(4): 839-49.
[http://dx.doi.org/10.1021/ci0500381] [PMID: 16045276]
[109]
Chang H-J, Kim HJ, Chun HS. Quantitative structure-activity relationship (QSAR) for neuroprotective activity of terpenoids. Life Sci 2007; 80(9): 835-41.
[http://dx.doi.org/10.1016/j.lfs.2006.11.009] [PMID: 17166521]
[110]
Quintans JSS, Shanmugam S, Heimfarth L, et al. Monoterpenes modulating cytokines - A review. Food Chem Toxicol 2019; 123: 233-57.
[http://dx.doi.org/10.1016/j.fct.2018.10.058] [PMID: 30389585]
[111]
Perusse D, Smanski MJ. Stereoselective semi-synthesis of the neuroprotective natural product, serofendic acid. MedChemComm 2019; 10(6): 951-60.
[http://dx.doi.org/10.1039/C9MD00145J] [PMID: 31303993]
[112]
Iuvone T, Di Marzo V, Guy G, Wright S, Stott C. Cannabinoids for use in the treatment of neurodegenerative diseases or disorders. US Patent US20140228438A1 2019.
[113]
González-Burgos E, Gómez-Serranillos MP. Terpene compounds in nature: A review of their potential antioxidant activity. Curr Med Chem 2012; 19(31): 5319-41.
[http://dx.doi.org/10.2174/092986712803833335] [PMID: 22963623]
[114]
Li H, Liu Y, Tian D, et al. Overview of cannabidiol (CBD) and its analogues: Structures, biological activities, and neuroprotective mechanisms in epilepsy and Alzheimer’s disease. Eur J Med Chem 2020; 192: 112163.
[http://dx.doi.org/10.1016/j.ejmech.2020.112163] [PMID: 32109623]
[115]
Liu H, Song Z, Liao D, et al. Neuroprotective effects of trans-caryophyllene against kainic acid induced seizure activity and oxidative stress in mice. Neurochem Res 2015; 40(1): 118-23.
[http://dx.doi.org/10.1007/s11064-014-1474-0] [PMID: 25417010]
[116]
Siedle B, García-Piñeres AJ, Murillo R, et al. Quantitative structure-activity relationship of sesquiterpene lactones as inhibitors of the transcription factor NF-kappaB. J Med Chem 2004; 47(24): 6042-54.
[http://dx.doi.org/10.1021/jm049937r] [PMID: 15537359]
[117]
Hu JP, Calomme M, Lasure A, et al. Structure-activity relationship of flavonoids with superoxide scavenging activity. Biol Trace Elem Res 1995; 47(1-3): 327-31.
[http://dx.doi.org/10.1007/BF02790134] [PMID: 7779566]
[118]
Franco JL, Posser T, Missau F, et al. Structure-activity relationship of flavonoids derived from medicinal plants in preventing methylmercury-induced mitochondrial dysfunction. Environ Toxicol Pharmacol 2010; 30(3): 272-8.
[http://dx.doi.org/10.1016/j.etap.2010.07.003] [PMID: 21127717]
[119]
Lu Z, Nie G, Belton PS, Tang H, Zhao B. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem Int 2006; 48(4): 263-74.
[http://dx.doi.org/10.1016/j.neuint.2005.10.010] [PMID: 16343693]
[120]
Echeverry C, Arredondo F, Abin-Carriquiry JA, et al. Pretreatment with natural flavones and neuronal cell survival after oxidative stress: A structure-activity relationship study. J Agric Food Chem 2010; 58(4): 2111-5.
[http://dx.doi.org/10.1021/jf902951v] [PMID: 20095615]
[121]
Zhao Q, Zhao Y, Wang K. Antinociceptive and free radical scavenging activities of alkaloids isolated from Lindera angustifolia Chen. J Ethnopharmacol 2006; 106(3): 408-13.
[http://dx.doi.org/10.1016/j.jep.2006.01.019] [PMID: 16513307]
[122]
Cassels BK, Asencio M, Conget P, Speisky H, Videla LA, Lissi EA. Structure-antioxidative activity relationships in benzylisoquinoline alkaloids. Pharmacol Res 1995; 31(2): 103-7.
[http://dx.doi.org/10.1016/1043-6618(95)80054-9] [PMID: 7596952]
[123]
Huang G, Kling B, Darras FH, Heilmann J, Decker M. Identification of a neuroprotective and selective butyrylcholinesterase inhibitor derived from the natural alkaloid evodiamine. Eur J Med Chem 2014; 81: 15-21.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.002] [PMID: 24819955]
[124]
Peng J, Kudrimoti S, Prasanna S, et al. Structure-activity relationship and mechanism of action studies of manzamine analogues for the control of neuroinflammation and cerebral infections. J Med Chem 2010; 53(1): 61-76.
[http://dx.doi.org/10.1021/jm900672t] [PMID: 20017491]
[125]
Hamann M, Alonso D, Martín-Aparicio E, et al. Glycogen synthase kinase-3 (GSK-3) inhibitory activity and structure-activity relationship (SAR) studies of the manzamine alkaloids. Potential for Alzheimer’s disease. J Nat Prod 2007; 70(9): 1397-405.
[http://dx.doi.org/10.1021/np060092r] [PMID: 17708655]
[126]
Dinda B, Dinda M, Kulsi G, Chakraborty A, Dinda S. Therapeutic potentials of plant iridoids in Alzheimer’s and Parkinson’s diseases: A review. Eur J Med Chem 2019; 169: 185-99.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.009] [PMID: 30877973]
[127]
Tundis R, Loizzo MR, Menichini F, Statti GA, Menichini F. Biological and pharmacological activities of iridoids: Recent developments. Mini Rev Med Chem 2008; 8(4): 399-420.
[http://dx.doi.org/10.2174/138955708783955926] [PMID: 18473930]
[128]
Recio MC, Giner RM, Máñez S, Ríos JL. Structural considerations on the iridoids as anti-inflammatory agents. Planta Med 1994; 60(3): 232-4.
[http://dx.doi.org/10.1055/s-2006-959465] [PMID: 8073089]
[129]
Carrillo-Ocampo D, Bazaldúa-Gómez S, Bonilla-Barbosa JR, Aburto-Amar R, Rodríguez-López V. Anti-inflammatory activity of iridoids and verbascoside isolated from Castilleja tenuiflora. Molecules 2013; 18(10): 12109-18.
[http://dx.doi.org/10.3390/molecules181012109] [PMID: 24084016]
[130]
Es-Safi N-E, Kollmann A, Khlifi S, Ducrot P-H. Antioxidative effect of compounds isolated from Globularia alypum L. structure–activity relationship. Lebensm Wiss Technol 2007; 40(7): 1246-52.
[http://dx.doi.org/10.1016/j.lwt.2006.08.019]
[131]
Nan ZD, Zhao MB, Zeng K-W, et al. Anti-inflammatory iridoids from the stems of Cistanche deserticola cultured in Tarim Desert. Chin J Nat Med 2016; 14(1): 61-5.
[PMID: 26850348]
[132]
Quan LQ, Su LH, Qi SG, et al. Bioactive 3,8-Epoxy iridoids from Valeriana jatamansi. Chem Biodivers 2019; 16(5): e1800474.
[http://dx.doi.org/10.1002/cbdv.201800474] [PMID: 30801931]
[133]
Ji SG, Medvedeva YV, Weiss JH. Zn2+ entry through the mitochondrial calcium uniporter is a critical contributor to mitochondrial dysfunction and neurodegeneration. Exp Neurol 2020; 325: 113161.
[http://dx.doi.org/10.1016/j.expneurol.2019.113161] [PMID: 31881218]
[134]
Zhu T, Zhang L, Ling S, Qian F, Li Y, Xu J-W. Anti-inflammatory activity comparison among Scropoliosides—catalpol derivatives with 6-O-substituted cinnamyl moieties. Molecules 2015; 20(11): 19823-36.
[http://dx.doi.org/10.3390/molecules201119659] [PMID: 26540037]
[135]
Zhang L-Q, Chen K-X, Li Y-M. Bioactivities of natural catalpol derivatives. Curr Med Chem 2019; 26(33): 6149-73.
[http://dx.doi.org/10.2174/0929867326666190620103813] [PMID: 31218947]
[136]
Manoharan S, Guillemin GJ, Abiramasundari RS, Essa MM, Akbar M, Akbar MD. The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: A mini review. Oxid Med Cell Longev 2016; 2016: 8590578.
[http://dx.doi.org/10.1155/2016/8590578] [PMID: 28116038]
[137]
Loffredo L, Ettorre E, Zicari AM, et al. Oxidative stress and gut-derived lipopolysaccharides in neurodegenerative disease: Role of NOX2. Oxid Med Cell Longev 2020; 2020: 8630275.
[http://dx.doi.org/10.1155/2020/8630275] [PMID: 32089785]
[138]
Dasuri K, Zhang L, Keller JN. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med 2013; 62: 170-85.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.09.016] [PMID: 23000246]
[139]
Ross CA, Poirier MA. Opinion: What is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol 2005; 6(11): 891-8.
[http://dx.doi.org/10.1038/nrm1742] [PMID: 16167052]
[140]
Xu F, Na L, Li Y, Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 2020; 10(1): 54.
[http://dx.doi.org/10.1186/s13578-020-00416-0] [PMID: 32266056]
[141]
Hor SL, Teoh SL, Lim WL. Plant Polyphenols as neuroprotective agents in Parkinson’s disease targeting oxidative stress. Curr Drug Targets 2020; 21(5): 458-76.
[http://dx.doi.org/10.2174/1389450120666191017120505] [PMID: 31625473]
[142]
Zobel R, Levesque MF. Generation of dopaminergic neurons from human nervous system stem cells. Stem Cell Res Ther 2019; 10: 195.
[143]
Bhattacharya SK, Bhattacharya A, Kumar A, Ghosal S. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phytother Res 2000; 14(3): 174-9.
[http://dx.doi.org/10.1002/(SICI)1099-1573(200005)14:3<174:AID-PTR624>3.0.CO;2-O] [PMID: 10815010]
[144]
Karunaweera N, Raju R, Gyengesi E, Münch G. Plant polyphenols as inhibitors of NF-κB induced cytokine production-a potential anti-inflammatory treatment for Alzheimer’s disease? Front Mol Neurosci 2015; 8: 24.
[http://dx.doi.org/10.3389/fnmol.2015.00024] [PMID: 26136655]
[145]
Mahomoodally F, Abdallah HH, Suroowan S, Jugreet S, Zhang Y, Hu X. In silico exploration of bioactive phytochemicals against neurodegenerative diseases via inhibition of cholinesterases. Curr Pharm Des 2020; 26(33): 4151-62.
[http://dx.doi.org/10.2174/1381612826666200316125517] [PMID: 32178608]
[146]
Lane S, Viand F, Bolduc K, Ehlting J, Walter PB. The potential of plant-based compounds as iron chelators. Blood 2018; 132 (Suppl. 1): 3631-1.
[http://dx.doi.org/10.1182/blood-2018-99-117528]
[147]
Treml J, Šmejkal K. Flavonoids as potent scavengers of hydroxyl radicals. Compr Rev Food Sci Food Saf 2016; 15(4): 720-38.
[http://dx.doi.org/10.1111/1541-4337.12204] [PMID: 33401843]
[148]
Ciccone L, Tonali N, Nencetti S, Orlandini E. Natural compounds as inhibitors of transthyretin amyloidosis and neuroprotective agents: Analysis of structural data for future drug design. J Enzyme Inhib Med Chem 2020; 35(1): 1145-62.
[http://dx.doi.org/10.1080/14756366.2020.1760262] [PMID: 32419519]
[149]
Baranowska-Wójcik E, Szwajgier D, Winiarska-Mieczan A. Honey as the potential natural source of cholinesterase inhibitors in Alzheimer’s disease. Plant Foods Hum Nutr 2020; 75(1): 30-2.
[http://dx.doi.org/10.1007/s11130-019-00791-1] [PMID: 31925635]
[150]
Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 2014; 4: 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy