Mini-Review Article

Therapeutic Targeting of Overexpressed MiRNAs in Cancer Progression

Author(s): Sau Har Lee* and Brianna Brianna

Volume 23, Issue 13, 2022

Published on: 02 August, 2022

Page: [1212 - 1218] Pages: 7

DOI: 10.2174/1389450123666220613163906

Price: $65

conference banner
Abstract

MicroRNAs (miRNAs) are non-coding RNAs involved in the modulation of various biological processes, and their dysregulation is greatly associated with cancer progression as miRNAs can act as either tumour suppressors or oncogenes, depending on their intended target, mechanism of actions, and expression levels. This review paper aims to shed light on the role of overexpressed miRNAs in cancer progression. Cancer cells are known to upregulate specific miRNAs to inhibit the expression of genes regulating the cell cycle, such as PTEN, FOXO1, SOX7, caspases, KLF4, TRIM8, and ZBTB4. Inhibition of these genes promotes cancer development and survival by inducing cell growth, migration, and invasion while evading apoptosis, which leads to poor cancer survival rates. Therefore, the potential of antisense miRNAs in treating cancer is also explored in this review. Antisense miRNAs are chemically modified oligonucleotides that can reverse the action of overexpressed miRNAs. Currently, the therapeutic potential of antisense miRNAs is being validated in both in vitro and in vivo models. Studies have shown that antisense miRNAs could slow down the progression of cancer while enhancing the action of conventional anticancer drugs. These findings provide hope for future oncologic care as this novel intervention is in the process of clinical translation.

Keywords: Overexpressed miRNAs, miRNA dysregulation, antisense miRNAs, cancer therapeutic, tumor suppressor genes, anticancer.

Graphical Abstract
[1]
Cabarcas SM, Thomas S, Zhang X, et al. The role of upregulated miRNAs and the identification of novel mRNA targets in prostatospheres. Genomics 2012; 99(2): 108-17.
[http://dx.doi.org/10.1016/j.ygeno.2011.11.007] [PMID: 22206861]
[2]
Uzuner E, Ulu GT, Gürler SB, Baran Y. The role of MiRNA in cancer: Pathogenesis, diagnosis, and treatment miRNomics. Springer 2022; pp. 375-422.
[3]
Wang G, Li Y, Wang P, et al. PTEN regulates RPA1 and protects DNA replication forks. Cell Res 2015; 25(11): 1189-204.
[http://dx.doi.org/10.1038/cr.2015.115] [PMID: 26403191]
[4]
Ghafouri-Fard S, Abak A, Shoorei H, et al. Regulatory role of microRNAs on PTEN signaling. Biomed Pharmacother 2021; 133: 110986.
[http://dx.doi.org/10.1016/j.biopha.2020.110986] [PMID: 33166764]
[5]
Xiong X, Ren HZ, Li MH, Mei JH, Wen JF, Zheng CL. Down-regulated miRNA-214 induces a cell cycle G1 arrest in gastric cancer cells by up-regulating the PTEN protein. Pathol Oncol Res 2011; 17(4): 931-7.
[http://dx.doi.org/10.1007/s12253-011-9406-7] [PMID: 21688200]
[6]
Tao YJ, Li YJ, Zheng W, et al. Antisense oligonucleotides against microRNA-21 reduced the proliferation and migration of human colon carcinoma cells. Cancer Cell Int 2015; 15: 77.
[http://dx.doi.org/10.1186/s12935-015-0228-7] [PMID: 26236156]
[7]
Fang H, Xie J, Zhang M, Zhao Z, Wan Y, Yao Y. miRNA-21 promotes proliferation and invasion of triple-negative breast cancer cells through targeting PTEN. Am J Transl Res 2017; 9(3): 953-61.
[PMID: 28386324]
[8]
Zhou Y, He D, Zeng J, et al. The effects of antisense mirna-20a alone or in combination with imatinib on k562 cell proliferation. Front Pharmacol 2017; 8: 127.
[http://dx.doi.org/10.3389/fphar.2017.00127] [PMID: 28367122]
[9]
Hu H, Li H, He Y. MicroRNA-17 downregulates expression of the PTEN gene to promote the occurrence and development of adenomyosis. Exp Ther Med 2017; 14(4): 3805-11.
[http://dx.doi.org/10.3892/etm.2017.5013] [PMID: 29042983]
[10]
Gheghiani L, Shang S, Fu Z. Targeting the PLK1-FOXO1 pathway as a novel therapeutic approach for treating advanced prostate cancer. Sci Rep 2020; 10(1): 12327.
[http://dx.doi.org/10.1038/s41598-020-69338-8] [PMID: 32704044]
[11]
Li F, Liu B, Gao Y, et al. Upregulation of microRNA-107 induces proliferation in human gastric cancer cells by targeting the transcription factor FOXO1. FEBS Lett 2014; 588(4): 538-44.
[http://dx.doi.org/10.1016/j.febslet.2013.12.009] [PMID: 24374340]
[12]
Wu Z, Sun H, Zeng W, He J, Mao X. Upregulation of MircoRNA-370 induces proliferation in human prostate cancer cells by downregulating the transcription factor FOXO1. PLoS One 2012; 7(9): e45825.
[http://dx.doi.org/10.1371/journal.pone.0045825] [PMID: 23029264]
[13]
Guan X, Shi A, Zou Y, et al. EZH2-Mediated microRNA-375 Upregulation promotes progression of breast cancer via the inhibition of foxo1 and the p53 signaling pathway. Front Genet 2021; 12: 633756.
[http://dx.doi.org/10.3389/fgene.2021.633756] [PMID: 33854524]
[14]
Stovall DB, Wan M, Miller LD, et al. The regulation of SOX7 and its tumor suppressive role in breast cancer. Am J Pathol 2013; 183(5): 1645-53.
[http://dx.doi.org/10.1016/j.ajpath.2013.07.025] [PMID: 24012678]
[15]
Han L, Wang W, Ding W, Zhang L. MiR-9 is involved in TGF-β1-induced lung cancer cell invasion and adhesion by targeting SOX7. J Cell Mol Med 2017; 21(9): 2000-8.
[http://dx.doi.org/10.1111/jcmm.13120] [PMID: 28266181]
[16]
Zheng Z, Liu J, Yang Z, et al. MicroRNA-452 promotes stem-like cells of hepatocellular carcinoma by inhibiting Sox7 involving Wnt/β-catenin signaling pathway. Oncotarget 2016; 7(19): 28000-12.
[http://dx.doi.org/10.18632/oncotarget.8584] [PMID: 27058905]
[17]
Zhao X, Li D, Zhao ST, et al. MiRNA-616 aggravates the progression of bladder cancer by regulating cell proliferation, migration and apoptosis through downregulating SOX7. Eur Rev Med Pharmacol Sci 2019; 23(21): 9304-12.
[PMID: 31773697]
[18]
He H, Liao X, Yang Q, et al. MicroRNA-494-3p promotes cell growth, migration, and invasion of nasopharyngeal carcinoma by targeting Sox7. Technol Cancer Res Treat 2018; 17: 1533033818809993.
[http://dx.doi.org/10.1177/1533033818809993] [PMID: 30381030]
[19]
Wallach D, Kang TB, Dillon CP, Green DR. Programmed necrosis in inflammation: Toward identification of the effector molecules. Science 2016; 352(6281): aaf2154.
[http://dx.doi.org/10.1126/science.aaf2154] [PMID: 27034377]
[20]
Boege Y, Malehmir M, Healy ME, et al. A dual role of caspase-8 in triggering and sensing proliferation-associated dna damage, a key determinant of liver cancer development. Cancer Cell 2017; 32(3): 342-359.e10.
[http://dx.doi.org/10.1016/j.ccell.2017.08.010] [PMID: 28898696]
[21]
Cui R, Kim T, Fassan M, et al. MicroRNA-224 is implicated in lung cancer pathogenesis through targeting caspase-3 and caspase-7. Oncotarget 2015; 6(26): 21802-15.
[http://dx.doi.org/10.18632/oncotarget.5224] [PMID: 26307684]
[22]
Ge X, Liu X, Lin F, et al. MicroRNA-421 regulated by HIF-1α promotes metastasis, inhibits apoptosis, and induces cisplatin resistance by targeting E-cadherin and caspase-3 in gastric cancer. Oncotarget 2016; 7(17): 24466-82.
[http://dx.doi.org/10.18632/oncotarget.8228] [PMID: 27016414]
[23]
Wei S, Peng L, Yang J, et al. Exosomal transfer of miR-15b-3p enhances tumorigenesis and malignant transformation through the DYNLT1/Caspase-3/Caspase-9 signaling pathway in gastric cancer. J Exp Clin Cancer Res 2020; 39(1): 32.
[http://dx.doi.org/10.1186/s13046-019-1511-6] [PMID: 32039741]
[24]
Xiong X, Schober M, Tassone E, et al. KLF4, a gene regulating prostate stem cell homeostasis, is a barrier to malignant progression and predictor of good prognosis in prostate cancer. Cell Rep 2018; 25(11): 3006-3020.e7.
[http://dx.doi.org/10.1016/j.celrep.2018.11.065] [PMID: 30540935]
[25]
Xiao H, Li H, Yu G, et al. MicroRNA-10b promotes migration and invasion through KLF4 and HOXD10 in human bladder cancer. Oncol Rep 2014; 31(4): 1832-8.
[http://dx.doi.org/10.3892/or.2014.3048] [PMID: 24573354]
[26]
Meza-Sosa KF, Pérez-García EI, Camacho-Concha N, López-Gutiérrez O, Pedraza-Alva G, Pérez-Martínez L. MiR-7 promotes epithelial cell transformation by targeting the tumor suppressor KLF4. PLoS One 2014; 9(9): e103987.
[http://dx.doi.org/10.1371/journal.pone.0103987] [PMID: 25181544]
[27]
Tang W, Zhu Y, Gao J, et al. MicroRNA-29a promotes colorectal cancer metastasis by regulating matrix metalloproteinase 2 and E-cadherin via KLF4. Br J Cancer 2014; 110(2): 450-8.
[http://dx.doi.org/10.1038/bjc.2013.724] [PMID: 24281002]
[28]
Bhaduri U, Merla G. Rise of trim8: A molecule of duality. Mol Ther Nucleic Acids 2020; 22: 434-44.
[http://dx.doi.org/10.1016/j.omtn.2020.08.034] [PMID: 33230447]
[29]
Chen TJ, Zheng Q, Gao F, et al. MicroRNA-665 facilitates cell proliferation and represses apoptosis through modulating Wnt5a/β-Catenin and Caspase-3 signaling pathways by targeting TRIM8 in LUSC. Cancer Cell Int 2021; 21(1): 215.
[http://dx.doi.org/10.1186/s12935-021-01913-z] [PMID: 33858426]
[30]
Liu Y, Zhang B, Shi T, Qin H. miR-182 promotes tumor growth and increases chemoresistance of human anaplastic thyroid cancer by targeting tripartite motif 8. OncoTargets Ther 2017; 10: 1115-22.
[http://dx.doi.org/10.2147/OTT.S110468] [PMID: 28280352]
[31]
Micale L, Fusco C, Fontana A, et al. TRIM8 downregulation in glioma affects cell proliferation and it is associated with patients survival. BMC Cancer 2015; 15: 470.
[http://dx.doi.org/10.1186/s12885-015-1449-9] [PMID: 26077989]
[32]
Yu Y, Shang R, Chen Y, et al. Tumor suppressive ZBTB4 inhibits cell growth by regulating cell cycle progression and apoptosis in Ewing sarcoma. Biomed Pharmacother 2018; 100: 108-15.
[http://dx.doi.org/10.1016/j.biopha.2018.01.132] [PMID: 29425745]
[33]
Bu W, Wang Y, Min X. MicroRNA-106b promotes the proliferation, migration and invasion of retinoblastoma cells by inhibiting the expression of ZBTB4 protein. Exp Ther Med 2018; 16(6): 4537-45.
[http://dx.doi.org/10.3892/etm.2018.6811] [PMID: 30542402]
[34]
Fan H, Jin X, Liao C, Qiao L, Zhao W. MicroRNA-301b-3p accelerates the growth of gastric cancer cells by targeting zinc finger and BTB domain containing 4. Pathol Res Pract 2019; 215(11): 152667.
[http://dx.doi.org/10.1016/j.prp.2019.152667] [PMID: 31585814]
[35]
Yang WS, Chadalapaka G, Cho SG, et al. The transcriptional repressor ZBTB4 regulates EZH2 through a MicroRNA-ZBTB4-specificity protein signaling axis. Neoplasia 2014; 16(12): 1059-69.
[http://dx.doi.org/10.1016/j.neo.2014.09.011] [PMID: 25499219]
[36]
Lima JF, Cerqueira L, Figueiredo C, Oliveira C, Azevedo NF. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol 2018; 15(3): 338-52.
[http://dx.doi.org/10.1080/15476286.2018.1445959] [PMID: 29570036]
[37]
Wang Z. miRNA Interference Technologies MicroRNA Interference Technologies. Springer 2009; pp. 59-73.
[38]
Wang Z. The guideline of the design and validation of MiRNA mimics. Methods Mol Biol 2011; 676: 211-23.
[http://dx.doi.org/10.1007/978-1-60761-863-8_15] [PMID: 20931400]
[39]
Jin HY, Gonzalez-Martin A, Miletic AV, et al. Transfection of microrna mimics should be used with caution. Front Genet 2015; 6: 340.
[http://dx.doi.org/10.3389/fgene.2015.00340] [PMID: 26697058]
[40]
Dhuri K, Bechtold C, Quijano E, et al. Antisense oligonucleotides: An emerging area in drug discovery and development. J Clin Med 2020; 9(6): 1-24.
[http://dx.doi.org/10.3390/jcm9062004] [PMID: 32604776]
[41]
Wang Z. The principles of miRNA-masking antisense oligonucleotides technology. Methods Mol Biol 2011; 676: 43-9.
[http://dx.doi.org/10.1007/978-1-60761-863-8_3] [PMID: 20931388]
[42]
Wang Z. The concept of multiple-target anti-miRNA antisense oligonucleotide technology. Methods Mol Biol 2011; 676: 51-7.
[http://dx.doi.org/10.1007/978-1-60761-863-8_4] [PMID: 20931389]
[43]
Krützfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005; 438(7068): 685-9.
[44]
Baek J, Kang S, Min H. MicroRNA-targeting therapeutics for hepatitis C. Arch Pharm Res 2014; 37(3): 299-305.
[http://dx.doi.org/10.1007/s12272-013-0318-9] [PMID: 24385319]
[45]
Titze-de-Almeida R, David C, Titze-de-Almeida SS. The race of 10 synthetic rnai-based drugs to the pharmaceutical market. Pharm Res 2017; 34(7): 1339-63.
[http://dx.doi.org/10.1007/s11095-017-2134-2] [PMID: 28389707]
[46]
Zheng SR, Guo GL, Zhai Q, Zou ZY, Zhang W. Effects of miR-155 antisense oligonucleotide on breast carcinoma cell line MDA-MB-157 and implanted tumors. Asian Pac J Cancer Prev 2013; 14(4): 2361-6.
[http://dx.doi.org/10.7314/APJCP.2013.14.4.2361] [PMID: 23725141]
[47]
Shang M, Wu Y, Wang Y, Cai Y, Jin J, Yang Z. Dual antisense oligonucleotide targeting miR-21/miR-155 synergize photodynamic therapy to treat triple-negative breast cancer and inhibit metastasis. Biomed Pharmacother 2022; 146: 112564.
[http://dx.doi.org/10.1016/j.biopha.2021.112564] [PMID: 34954643]
[48]
Li Y, Chen Y, Li J, et al. Co-delivery of microRNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapy. Cancer Sci 2017; 108(7): 1493-503.
[http://dx.doi.org/10.1111/cas.13267] [PMID: 28444967]
[49]
Park JK, Henry JC, Jiang J, et al. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor. Biochem Biophys Res Commun 2011; 406(4): 518-23.
[http://dx.doi.org/10.1016/j.bbrc.2011.02.065] [PMID: 21329664]
[50]
Ding T, Cui P, Zhou Y, et al. Antisense oligonucleotides against mir-21 inhibit the growth and metastasis of colorectal carcinoma via the dusp8 pathway. Mol Ther Nucleic Acids 2018; 13: 244-55.
[http://dx.doi.org/10.1016/j.omtn.2018.09.004] [PMID: 30317164]
[51]
Lv H, Zhang Z, Wang Y, Li C, Gong W, Wang X. MicroRNA-92a promotes colorectal cancer cell growth and migration by inhibiting KLF4. Oncol Res 2016; 23(6): 283-90.
[http://dx.doi.org/10.3727/096504016X14562725373833] [PMID: 27131314]
[52]
Park JK, Kogure T, Nuovo GJ, et al. miR-221 silencing blocks hepatocellular carcinoma and promotes survival. Cancer Res 2011; 71(24): 7608-16.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1144] [PMID: 22009537]
[53]
Song Z, Yu Z, Chen L, Zhou Z, Zou Q, Liu Y. MicroRNA-1181 supports the growth of hepatocellular carcinoma by repressing AXIN1. Biomed Pharmacother 2019; 119: 109397.
[http://dx.doi.org/10.1016/j.biopha.2019.109397] [PMID: 31514071]
[54]
Chen RX, Xia YH, Xue TC, Ye SL. Suppression of microRNA-96 expression inhibits the invasion of hepatocellular carcinoma cells. Mol Med Rep 2012; 5(3): 800-4.
[PMID: 22160187]
[55]
Zhang E, Liu Q, Wang Y, et al. MicroRNA miR-147b promotes tumor growth via targeting UBE2N in hepatocellular carcinoma. Oncotarget 2017; 8(69): 114072-80.
[http://dx.doi.org/10.18632/oncotarget.23120] [PMID: 29371970]
[56]
Xu L, Dai WQ, Xu XF, Wang F, He L, Guo CY. Effects of multiple-target anti-microRNA antisense oligodeoxyribonucleotides on proliferation and migration of gastric cancer cells. Asian Pac J Cancer Prev 2012; 13(7): 3203-7.
[http://dx.doi.org/10.7314/APJCP.2012.13.7.3203] [PMID: 22994734]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy