Review Article

Current Debates on Etiopathogenesis and Treatment Strategies for Vitiligo

Author(s): Ankit Chaudhary, Mayank Patel and Shamsher Singh*

Volume 23, Issue 13, 2022

Published on: 04 August, 2022

Page: [1219 - 1238] Pages: 20

DOI: 10.2174/1389450123666220406125645

Price: $65

Abstract

Vitiligo is an acquired, chronic, and progressive depigmentation or hypopigmentation characterized by the destruction of melanocytes and the occurrence of white patches or macules in the skin, mucosal surface of eyes, and ears. Melanocytes are the melanin pigment-producing cells of the skin which are destroyed in pathological conditions called vitiligo. Approximately 0.5 - 2.0% of the population is suffering from vitiligo, and a higher prevalence rate of up to 8.8% has been reported in India. It is caused by various pathogenic factors like genetic predisposition, hyperimmune activation, increased oxidative stress, and alteration in neuropeptides level. Genetic research has revealed a multi- genetic inheritance that exhibits an overlap with other autoimmune disorders. However, melanocytes specific genes are also affected (such as DDR1, XBP1, NLRP1, PTPN22, COMT, FOXP3, ACE, APE, GSTP1, TLR, SOD, and CTLA-4). A number of therapeutic options are employed for the treatment of vitiligo. The topical corticosteroids and immunomodulators are currently in practice for the management of vitiligo. Phototherapies alone and in combinations with other approaches are used in those patients who do not respond to the topical treatment. The main focus of this review is on the etiopathological factors, pharmacological management (phototherapy, topical, systemic, and surgical therapy), and herbal drugs used to treat vitiligo.

Keywords: Depigmentation, melanocytes, melanin, vitiligo, autoimmune, oxidative stress, neuropeptides.

Graphical Abstract
[1]
Akay BN, Bozkir M, Anadolu Y, Gullu S. Epidemiology of vitiligo, associated autoimmune diseases and audiological abnormalities: Ankara study of 80 patients in Turkey. J Eur Acad Dermatol Venereol 2010; 24(10): 1144-50.
[http://dx.doi.org/10.1111/j.1468-3083.2010.03605.x] [PMID: 20202047]
[2]
Al-Mutairi N, Al-Sebeih KH. Late onset vitiligo and audiological abnormalities: is there any association? Indian J Dermatol Venereol Leprol 2011; 77(5): 571-6.
[http://dx.doi.org/10.4103/0378-6323.84059] [PMID: 21860155]
[3]
Nair BK. Vitiligo-a retrospect. Int J Dermatol 1978; 17(9): 755-7.
[http://dx.doi.org/10.1111/ijd.1978.17.9.755] [PMID: 365814]
[4]
Kostopoulou P, Jouary T, Quintard B, et al. Objective vs. subjective factors in the psychological impact of vitiligo: The experience from a French referral centre. Br J Dermatol 2009; 161(1): 128-33.
[http://dx.doi.org/10.1111/j.1365-2133.2009.09077.x] [PMID: 19298280]
[5]
Boniface K, Seneschal J, Picardo M, Taïeb A. Vitiligo: focus on clinical aspects, immunopathogenesis, and therapy. Clin Rev Allergy Immunol 2018; 54(1): 52-67.
[http://dx.doi.org/10.1007/s12016-017-8622-7] [PMID: 28685247]
[6]
Sandoval-Cruz M, García-Carrasco M, Sánchez-Porras R, et al. Immunopathogenesis of vitiligo. Autoimmun Rev 2011; 10(12): 762-5.
[http://dx.doi.org/10.1016/j.autrev.2011.02.004] [PMID: 21334464]
[7]
Richmond JM, Frisoli ML, Harris JE. Innate immune mechanisms in vitiligo: Danger from within. Curr Opin Immunol 2013; 25(6): 676-82.
[http://dx.doi.org/10.1016/j.coi.2013.10.010] [PMID: 24238922]
[8]
van den Wijngaard R, Wankowicz-Kalinska A, Le Poole C, Tigges B, Westerhof W, Das P. Local immune response in skin of generalized vitiligo patients. Destruction of melanocytes is associated with the prominent presence of CLA+ T cells at the perilesional site. Lab Invest 2000; 80(8): 1299-309.
[http://dx.doi.org/10.1038/labinvest.3780138] [PMID: 10950121]
[9]
Ogg GS, Rod Dunbar P, Romero P, Chen JL, Cerundolo V. High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. J Exp Med 1998; 188(6): 1203-8.
[http://dx.doi.org/10.1084/jem.188.6.1203] [PMID: 9743539]
[10]
Le Poole IC, van den Wijngaard RM, Westerhof W, Das PK. Presence of T cells and macrophages in inflammatory vitiligo skin parallels melanocyte disappearance. Am J Pathol 1996; 148(4): 1219-28.
[PMID: 8644862]
[11]
Yee C, Thompson JA, Roche P, et al. Melanocyte destruction after antigen-specific immunotherapy of melanoma: Direct evidence of t cell-mediated vitiligo. J Exp Med 2000; 192(11): 1637-44.
[http://dx.doi.org/10.1084/jem.192.11.1637] [PMID: 11104805]
[12]
Yu HS, Chang KL, Yu CL, et al. Alterations in IL-6, IL-8, GM-CSF, TNF-α and IFN-γ release by peripheral mononuclear cells in patients with active vitiligo. J Invest Dermatol 1997; 108(4): 527-9.
[http://dx.doi.org/10.1111/1523-1747.ep12289743] [PMID: 9077486]
[13]
Karaca N, Ozturk G, Gerceker BT, Turkmen M, Berdeli A. TLR2 and TLR4 gene polymorphisms in Turkish vitiligo patients. J Eur Acad Dermatol Venereol 2013; 27(1): e85-90.
[http://dx.doi.org/10.1111/j.1468-3083.2012.04514.x] [PMID: 22429552]
[14]
Song P, Wang XW, Li HX, et al. Association between FOXP3 polymorphisms and vitiligo in a Han Chinese population. Br J Dermatol 2013; 169(3): 571-8.
[http://dx.doi.org/10.1111/bjd.12377] [PMID: 23582052]
[15]
Minashkin MM, Salnikova LE, Lomonosov KM, Korobko IV, Tatarenko AO. Possible contribution of GSTP1 and other xenobiotic metabolizing genes to vitiligo susceptibility. Arch Dermatol Res 2013; 305(3): 233-9.
[http://dx.doi.org/10.1007/s00403-012-1301-x] [PMID: 23179585]
[16]
Singh A, Sharma P, Kar HK, et al. HLA alleles and amino-acid signatures of the peptide-binding pockets of HLA molecules in vitiligo. J Invest Dermatol 2012; 132(1): 124-34.
[http://dx.doi.org/10.1038/jid.2011.240] [PMID: 21833019]
[17]
Bogeski I, Kilch T, Niemeyer BA. ROS and SOCE: Recent advances and controversies in the regulation of STIM and Orai. J Physiol 2012; 590(17): 4193-200.
[http://dx.doi.org/10.1113/jphysiol.2012.230565] [PMID: 22615429]
[18]
Briganti S, Picardo M. Antioxidant activity, lipid peroxidation and skin diseases. What’s new. J Eur Acad Dermatol Venereol 2003; 17(6): 663-9.
[http://dx.doi.org/10.1046/j.1468-3083.2003.00751.x] [PMID: 14761133]
[19]
Yang F, Sarangarajan R, Le Poole IC, Medrano EE, Boissy RE. The cytotoxicity and apoptosis induced by 4-tertiary butylphenol in human melanocytes are independent of tyrosinase activity. J Invest Dermatol 2000; 114(1): 157-64.
[http://dx.doi.org/10.1046/j.1523-1747.2000.00836.x] [PMID: 10620132]
[20]
Zhang Y, Liu L, Jin L, et al. Oxidative stress-induced calreticulin expression and translocation: new insights into the destruction of melanocytes. J Invest Dermatol 2014; 134(1): 183-91.
[http://dx.doi.org/10.1038/jid.2013.268] [PMID: 23771121]
[21]
Liu PY, Bondesson L, Löntz W, Johansson O. The occurrence of cutaneous nerve endings and neuropeptides in vitiligo vulgaris: A case-control study. Arch Dermatol Res 1996; 288(11): 670-5.
[http://dx.doi.org/10.1007/BF02505276] [PMID: 8931869]
[22]
Al’Abadie MS, Senior HJ, Bleehen SS, Gawkrodger DJ. Neuropeptide and neuronal marker studies in vitiligo. Br J Dermatol 1994; 131(2): 160-5.
[http://dx.doi.org/10.1111/j.1365-2133.1994.tb08486.x] [PMID: 7522512]
[23]
Le Poole IC, Das PK, van den Wijngaard RM, Bos JD, Westerhof W. Review of the etiopathomechanism of vitiligo: A convergence theory. Exp Dermatol 1993; 2(4): 145-53.
[http://dx.doi.org/10.1111/j.1600-0625.1993.tb00023.x] [PMID: 8162332]
[24]
Howitz J, Brodthagen H, Schwartz M, Thomsen K. Prevalence of vitiligo. Epidemiological survey on the Isle of Bornholm, Denmark. Arch Dermatol 1977; 113(1): 47-52.
[http://dx.doi.org/10.1001/archderm.1977.01640010049006] [PMID: 831622]
[25]
McNeely W, Goa KL. 5-Methoxypsoralen. A review of its effects in psoriasis and vitiligo. Drugs 1988; 56: 667-90.
[26]
Behl PN, Bhatia RK. 400 cases of vitiligo. A clinico-therapeutic analysis. Indian J Dermatol 1972; 17(2): 51-6.
[PMID: 5039893]
[27]
Boisseau-Garsaud AM, Garsaud P, Calès-Quist D, Hélénon R, Quénéhervé C, Claire RC. Epidemiology of vitiligo in the French West Indies (Isle of Martinique). Int J Dermatol 2000; 39(1): 18-20.
[http://dx.doi.org/10.1046/j.1365-4362.2000.00880.x] [PMID: 10651958]
[28]
Sehgal VN, Srivastava G. Vitiligo: compendium of clinico-epidemiological features. Indian J Dermatol Venereol Leprol 2007; 73(3): 149-56.
[http://dx.doi.org/10.4103/0378-6323.32708] [PMID: 17558045]
[29]
Szczurko O, Boon HS. A systematic review of natural health product treatment for vitiligo. BMC Dermatol 200(8): 1-2.
[http://dx.doi.org/10.1186/1471-5945-8-2] [PMID: 18498646]
[30]
Tonsi A. Vitiligo and its management update: A review. Pak J Med Sci 2004; 20: 242-7.
[31]
Nicolaidou E, Antoniou C, Miniati A, et al. Childhood- and later-onset vitiligo have diverse epidemiologic and clinical characteristics. J Am Acad Dermatol 2012; 66(6): 954-8.
[http://dx.doi.org/10.1016/j.jaad.2011.07.010] [PMID: 21982634]
[32]
Ezzedine K, Diallo A, Léauté-Labrèze C, et al. Pre- vs. post-pubertal onset of vitiligo: multivariate analysis indicates atopic diathesis association in pre-pubertal onset vitiligo. Br J Dermatol 2012; 167(3): 490-5.
[http://dx.doi.org/10.1111/j.1365-2133.2012.11002.x] [PMID: 22512840]
[33]
Al-Refu K. Vitiligo in children: A clinical-epidemiologic study in Jordan. Pediatr Dermatol 2012; 29(1): 114-5.
[http://dx.doi.org/10.1111/j.1525-1470.2011.01478.x] [PMID: 21854414]
[34]
Krüger C, Schallreuter KU. A review of the worldwide prevalence of vitiligo in children/adolescents and adults. Int J Dermatol 2012; 51(10): 1206-12.
[http://dx.doi.org/10.1111/j.1365-4632.2011.05377.x] [PMID: 22458952]
[35]
Ghafourian A, Ghafourian S, Sadeghifard N, et al. Vitiligo: Symptoms, pathogenesis and treatment. Int J Immunopathol Pharmacol 2014; 27(4): 485-9.
[http://dx.doi.org/10.1177/039463201402700403] [PMID: 25572727]
[36]
Bhatia PS, Mohan L, Pandey ON, Singh KK, Arora SK, Mukhija RD. Genetic nature of vitiligo. J Dermatol Sci 1992; 4(3): 180-4.
[http://dx.doi.org/10.1016/0923-1811(92)90017-6] [PMID: 1286069]
[37]
Cui J, Arita Y, Bystryn JC. Cytolytic antibodies to melanocytes in vitiligo. J Invest Dermatol 1993; 100(6): 812-5.
[http://dx.doi.org/10.1111/1523-1747.ep12476636] [PMID: 8496621]
[38]
Boissy RE, Manga P. On the etiology of contact/occupational vitiligo. Pigment Cell Res 2004; 17(3): 208-14.
[http://dx.doi.org/10.1111/j.1600-0749.2004.00130.x] [PMID: 15140065]
[39]
Tu C, Zhao D, Lin X. Levels of neuropeptide-Y in the plasma and skin tissue fluids of patients with vitiligo. J Dermatol Sci 2001; 27(3): 178-82.
[http://dx.doi.org/10.1016/S0923-1811(01)00134-7] [PMID: 11641057]
[40]
Iannella G, Greco A, Didona D, et al. Vitiligo: Pathogenesis, clinical variants and treatment approaches. Autoimmun Rev 2016; 15(4): 335-43.
[http://dx.doi.org/10.1016/j.autrev.2015.12.006] [PMID: 26724277]
[41]
Spritz RA. The genetics of vitiligo. J Invest Dermatol 2011; 131(E1): E18.
[42]
Turkcu UO, Tekin NS, Edgunlu TG, Karakas SÇ, Oner S. The association of FOXO3A gene polymorphisms with serum FOXO3A levels and oxidative stress markers in vitiligo patients. Gene 2013.
[PMID: 24333267]
[43]
Colucci R, Dragoni F, Moretti S. Oxidative stress and immune system in vitiligo and thyroid diseases. Oxid Med Cell Longev 2015; 2015
[http://dx.doi.org/10.1155/2015/631927]
[44]
Jahan P, Tippisetty S, Komaravalli PL. FOXP3 is a promising and potential candidate gene in generalised vitiligo susceptibility. Front Genet 2015; 6: 249.
[http://dx.doi.org/10.3389/fgene.2015.00249] [PMID: 26257775]
[45]
Birlea SA, Jin Y, Bennett DC, et al. Comprehensive association analysis of candidate genes for generalized vitiligo supports XBP1, FOXP3, and TSLP. J Invest Dermatol 2011; 131(2): 371-81.
[http://dx.doi.org/10.1038/jid.2010.337] [PMID: 21085187]
[46]
Alkhateeb A, Fain PR, Spritz RA. Candidate functional promoter variant in the FOXD3 melanoblast developmental regulator gene in autosomal dominant vitiligo. J Invest Dermatol 2005; 125(2): 388-91.
[http://dx.doi.org/10.1111/j.0022-202X.2005.23822.x] [PMID: 16098053]
[47]
Wei C, Jian Z, Wang L, et al. Genetic variants of the APE1 gene and the risk of vitiligo in a Chinese population: A genotype-phenotype correlation study. Free Radic Biol Med 2013; 58: 64-72.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.01.009] [PMID: 23369758]
[48]
Laddha NC, Dwivedi M, Gani AR, Shajil EM, Begum R. Involvement of superoxide dismutase isoenzymes and their genetic variants in progression of and higher susceptibility to vitiligo. Free Radic Biol Med 2013; 65: 1110-25.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.08.189] [PMID: 24036105]
[49]
Tuna A, Ozturk G, Gerceker TB, et al. Superoxide dismutase 1 and 2 gene polymorphism in Turkish vitiligo patients. Balkan J Med Genet 2017; 20(2): 67-73.
[http://dx.doi.org/10.1515/bjmg-2017-0033] [PMID: 29876235]
[50]
Gattinoni L, Ranganathan A, Surman DR, et al. CTLA-4 dysregulation of self/tumor-reactive CD8+ T-cell function is CD4+ T-cell dependent. Blood 2006; 108(12): 3818-23.
[http://dx.doi.org/10.1182/blood-2006-07-034066] [PMID: 16882704]
[51]
McCoy KD, Le Gros G. The role of CTLA-4 in the regulation of T cell immune responses. Immunol Cell Biol 1999; 77(1): 1-10.
[http://dx.doi.org/10.1046/j.1440-1711.1999.00795.x] [PMID: 10101680]
[52]
Bottini N, Vang T, Cucca F, Mustelin T. Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol 2006; 18(4): 207-13.
[http://dx.doi.org/10.1016/j.smim.2006.03.008] [PMID: 16697661]
[53]
Vang T, Miletic AV, Bottini N, Mustelin T. Protein tyrosine phosphatase PTPN22 in human autoimmunity. Autoimmunity 2007; 40(6): 453-61.
[http://dx.doi.org/10.1080/08916930701464897] [PMID: 17729039]
[54]
Jin Y, Birlea SA, Fain PR, Spritz RA. Genetic variations in NALP1 are associated with generalized vitiligo in a Romanian population. J Invest Dermatol 2007; 127(11): 2558-62.
[http://dx.doi.org/10.1038/sj.jid.5700953] [PMID: 17637824]
[55]
Song YH, Connor E, Li Y, Zorovich B, Balducci P, Maclaren N. The role of tyrosinase in autoimmune vitiligo. Lancet 1994; 344(8929): 1049-52.
[http://dx.doi.org/10.1016/S0140-6736(94)91709-4] [PMID: 7934446]
[56]
Jin Y, Birlea SA, Fain PR, et al. Variant of TYR and autoimmunity susceptibility loci in generalized vitiligo. N Engl J Med 2010; 362(18): 1686-97.
[http://dx.doi.org/10.1056/NEJMoa0908547] [PMID: 20410501]
[57]
Jin Y, Mailloux CM, Gowan K, et al. NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med 2007; 356(12): 1216-25.
[http://dx.doi.org/10.1056/NEJMoa061592] [PMID: 17377159]
[58]
Ren Y, Yang S, Xu S, et al. Genetic variation of promoter sequence modulates XBP1 expression and genetic risk for vitiligo. PLoS Genet 2009; 5(6): e1000523.
[http://dx.doi.org/10.1371/journal.pgen.1000523] [PMID: 19543371]
[59]
Liang Y, Yang S, Zhou Y, et al. Evidence for two susceptibility loci on chromosomes 22q12 and 6p21-p22 in Chinese generalized vitiligo families. J Invest Dermatol 2007; 127(11): 2552-7.
[http://dx.doi.org/10.1038/sj.jid.5700904] [PMID: 17568780]
[60]
Kaser A, Lee AH, Franke A, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 2008; 134(5): 743-56.
[http://dx.doi.org/10.1016/j.cell.2008.07.021] [PMID: 18775308]
[61]
Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 2002; 3(7): 673-80.
[http://dx.doi.org/10.1038/ni805] [PMID: 12055625]
[62]
Dessinioti C, Antoniou C, Katsambas A, Stratigos AJ. Melanocortin 1 receptor variants: functional role and pigmentary associations. Photochem Photobiol 2011; 87(5): 978-87.
[http://dx.doi.org/10.1111/j.1751-1097.2011.00970.x] [PMID: 21749400]
[63]
Namian AM, Shahbaz S, Salmanpoor R, Namazi MR, Dehghani F, Kamali-Sarvestani E. Association of interferon-gamma and tumor necrosis factor alpha polymorphisms with susceptibility to vitiligo in Iranian patients. Arch Dermatol Res 2009; 301(1): 21-5.
[http://dx.doi.org/10.1007/s00403-008-0904-8] [PMID: 18820938]
[64]
Brand OJ, Lowe CE, Heward JM, et al. Association of the interleukin-2 receptor alpha (IL-2Ralpha)/CD25 gene region with Graves’ disease using a multilocus test and tag SNPs. Clin Endocrinol (Oxf) 2007; 66(4): 508-12.
[PMID: 17371467]
[65]
Hinks A, Ke X, Barton A, et al. Association of the IL2RA/CD25 gene with juvenile idiopathic arthritis. Arthritis Rheum 2009; 60(1): 251-7.
[http://dx.doi.org/10.1002/art.24187] [PMID: 19116909]
[66]
Liu JB, Li M, Chen H, et al. Association of vitiligo with HLA-A2: A meta-analysis. J Eur Acad Dermatol Venereol 2007; 21(2): 205-13.
[http://dx.doi.org/10.1111/j.1468-3083.2006.01899.x] [PMID: 17243956]
[67]
Fain PR, Babu SR, Bennett DC, Spritz RA. HLA class II haplotype DRB1*04-DQB1*0301 contributes to risk of familial generalized vitiligo and early disease onset. Pigment Cell Res 2006; 19(1): 51-7.
[http://dx.doi.org/10.1111/j.1600-0749.2005.00279.x] [PMID: 16420246]
[68]
Taştan HB, Akar A, Orkunoğlu FE, Arca E, İnal A. Association of HLA class I antigens and HLA class II alleles with vitiligo in a Turkish population. Pigment Cell Res 2004; 17(2): 181-4.
[http://dx.doi.org/10.1111/j.1600-0749.2004.00141.x] [PMID: 15016308]
[69]
Tazi-Ahnini R, McDonagh AJ, Wengraf DA, et al. The autoimmune regulator gene (AIRE) is strongly associated with vitiligo. Br J Dermatol 2008; 159(3): 591-6.
[http://dx.doi.org/10.1111/j.1365-2133.2008.08718.x] [PMID: 18616774]
[70]
Birlea SA, Gowan K, Fain PR, Spritz RA. Genome-wide association study of generalized vitiligo in an isolated European founder population identifies SMOC2, in close proximity to IDDM8. J Invest Dermatol 2010; 130(3): 798-803.
[http://dx.doi.org/10.1038/jid.2009.347] [PMID: 19890347]
[71]
Alkhateeb A, Fain PR, Thody A, Bennett DC, Spritz RA. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Res 2003; 16(3): 208-14.
[http://dx.doi.org/10.1034/j.1600-0749.2003.00032.x] [PMID: 12753387]
[72]
Birlea SA, Fain PR, Spritz RA. A Romanian population isolate with high frequency of vitiligo and associated autoimmune diseases. Arch Dermatol 2008; 144(3): 310-6.
[http://dx.doi.org/10.1001/archderm.144.3.310] [PMID: 18347286]
[73]
Laberge G, Mailloux CM, Gowan K, et al. Early disease onset and increased risk of other autoimmune diseases in familial generalized vitiligo. Pigment Cell Res 2005; 18(4): 300-5.
[http://dx.doi.org/10.1111/j.1600-0749.2005.00242.x] [PMID: 16029422]
[74]
Tolleson WH. Human melanocyte biology, toxicology, and pathology. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev 2005; 23(2): 105-61.
[http://dx.doi.org/10.1080/10590500500234970] [PMID: 16291526]
[75]
Kemp EH, Gawkrodger DJ, Watson PF, Weetman AP. Immunoprecipitation of melanogenic enzyme autoantigens with vitiligo sera: evidence for cross-reactive autoantibodies to tyrosinase and tyrosinase-related protein-2 (TRP-2). Clin Exp Immunol 1997; 109(3): 495-500.
[http://dx.doi.org/10.1046/j.1365-2249.1997.4781381.x] [PMID: 9328128]
[76]
Kemp EH, Waterman EA, Gawkrodger DJ, Watson PF, Weetman AP. Autoantibodies to tyrosinase-related protein-1 detected in the sera of vitiligo patients using a quantitative radiobinding assay. Br J Dermatol 1998; 139(5): 798-805.
[http://dx.doi.org/10.1046/j.1365-2133.1998.02503.x] [PMID: 9892944]
[77]
Ongenae K, Van Geel N, Naeyaert JM. Evidence for an autoimmune pathogenesis of vitiligo. Pigment Cell Res 2003; 16(2): 90-100.
[http://dx.doi.org/10.1034/j.1600-0749.2003.00023.x] [PMID: 12622785]
[78]
Toosi S, Orlow SJ, Manga P. Vitiligo-inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8. J Invest Dermatol 2012; 132(11): 2601-9.
[http://dx.doi.org/10.1038/jid.2012.181] [PMID: 22696056]
[79]
Xie H, Zhou F, Liu L, et al. Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity? J Dermatol Sci 2016; 81(1): 3-9.
[http://dx.doi.org/10.1016/j.jdermsci.2015.09.003] [PMID: 26387449]
[80]
Passeron T, Ortonne JP. Activation of the unfolded protein response in vitiligo: The missing link? J Invest Dermatol 2012; 132(11): 2502-4.
[http://dx.doi.org/10.1038/jid.2012.328] [PMID: 23069909]
[81]
Rather RA, Bhagat M, Singh SK. Oncogenic BRAF, endoplasmic reticulum stress, and autophagy: Crosstalk and therapeutic targets in cutaneous melanoma. Mutat Res Rev Mutat Res 2020; 785: 108321.
[http://dx.doi.org/10.1016/j.mrrev.2020.108321] [PMID: 32800272]
[82]
Maresca V, Roccella M, Roccella F, et al. Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. J Invest Dermatol 1997; 109(3): 310-3.
[http://dx.doi.org/10.1111/1523-1747.ep12335801] [PMID: 9284096]
[83]
Harris JE. Cellular stress and innate inflammation in organ-specific autoimmunity: lessons learned from vitiligo. Immunol Rev 2016; 269(1): 11-25.
[http://dx.doi.org/10.1111/imr.12369] [PMID: 26683142]
[84]
Li S, Zhu G, Yang Y, et al. Oxidative stress drives CD8+ T-cell skin trafficking in patients with vitiligo through CXCL16 upregulation by activating the unfolded protein response in keratinocytes. J Allergy Clin Immunol 2017; 140(1): 177-189.e9.
[http://dx.doi.org/10.1016/j.jaci.2016.10.013] [PMID: 27826097]
[85]
van den Boorn JG, Konijnenberg D, Dellemijn TA, et al. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients. J Invest Dermatol 2009; 129(9): 2220-32.
[http://dx.doi.org/10.1038/jid.2009.32] [PMID: 19242513]
[86]
Wang Y, Li S, Li C. Perspectives of new advances in the pathogenesis of vitiligo: from oxidative stress to autoimmunity. Med Sci Monit 2019; 25: 1017-23.
[http://dx.doi.org/10.12659/MSM.914898] [PMID: 30723188]
[87]
Khan R, Satyam A, Gupta S, Sharma VK, Sharma A. Circulatory levels of antioxidants and lipid peroxidation in Indian patients with generalized and localized vitiligo. Arch Dermatol Res 2009; 301(10): 731-7.
[http://dx.doi.org/10.1007/s00403-009-0964-4] [PMID: 19488773]
[88]
Bassiouny DA, Shaker O. Role of interleukin-17 in the pathogenesis of vitiligo. Clin Exp Dermatol 2011; 36(3): 292-7.
[http://dx.doi.org/10.1111/j.1365-2230.2010.03972.x] [PMID: 21198791]
[89]
Rezk AF, Kemp DM, El-Domyati M, et al. Misbalanced CXCL12 and CCL5 chemotactic signals in vitiligo onset and progression. J Invest Dermatol 2017; 137(5): 1126-34.
[http://dx.doi.org/10.1016/j.jid.2016.12.028] [PMID: 28132854]
[90]
Koshoffer A, Boissy RE. Current understanding of the etiology of vitiligo. Curr Dermatol Rep 2014; 3(1): 1-5.
[http://dx.doi.org/10.1007/s13671-014-0067-0]
[91]
Laddha NC, Dwivedi M, Mansuri MS, et al. Vitiligo: interplay between oxidative stress and immune system. Exp Dermatol 2013; 22(4): 245-50.
[http://dx.doi.org/10.1111/exd.12103] [PMID: 23425123]
[92]
Agrawal D, Shajil EM, Marfatia YS, Begum R. Study on the antioxidant status of vitiligo patients of different age groups in Baroda. Pigment Cell Res 2004; 17(3): 289-94.
[http://dx.doi.org/10.1111/j.1600-0749.2004.00149.x] [PMID: 15140075]
[93]
Yildirim M, Baysal V, Inaloz HS, Can M. The role of oxidants and antioxidants in generalized vitiligo at tissue level. J Eur Acad Dermatol Venereol 2004; 18(6): 683-6.
[http://dx.doi.org/10.1111/j.1468-3083.2004.01080.x] [PMID: 15482295]
[94]
Beyer W, Imlay J, Fridovich I. Superoxide dismutases. Prog Nucleic Acid Res Mol Biol 1991; 40: 221-53.
[http://dx.doi.org/10.1016/S0079-6603(08)60843-0] [PMID: 1851570]
[95]
Sravani PV, Babu NK, Gopal KV, et al. Determination of oxidative stress in vitiligo by measuring superoxide dismutase and catalase levels in vitiliginous and non-vitiliginous skin. Indian J Dermatol Venereol Leprol 2009; 75(3): 268-71.
[http://dx.doi.org/10.4103/0378-6323.48427] [PMID: 19439879]
[96]
Trenam CW, Blake DR, Morris CJ. Skin inflammation: Reactive oxygen species and the role of iron. J Invest Dermatol 1992; 99(6): 675-82.
[http://dx.doi.org/10.1111/1523-1747.ep12613740] [PMID: 1469283]
[97]
Koca R, Armutcu F, Altinyazar HC, Gürel A. Oxidant-antioxidant enzymes and lipid peroxidation in generalized vitiligo. Clin Exp Dermatol 2004; 29(4): 406-9.
[http://dx.doi.org/10.1111/j.1365-2230.2004.01524.x] [PMID: 15245542]
[98]
Schallreuter KU, Wood JM, Berger J. Low catalase levels in the epidermis of patients with vitiligo. J Invest Dermatol 1991; 97(6): 1081-5.
[http://dx.doi.org/10.1111/1523-1747.ep12492612] [PMID: 1748819]
[99]
Lerner AB. Vitiligo. Invest Derm 1959; 32: 285-310.
[http://dx.doi.org/10.1038/jid.1959.49]
[100]
Rozengurt E. Convergent signalling in the action of integrins, neuropeptides, growth factors and oncogenes. Cancer Surv 1995; 24: 81-96.
[PMID: 7553664]
[101]
Prod’homme T, Weber MS, Steinman L, Zamvil SS. A neuropeptide in immune-mediated inflammation, Y? Trends Immunol 2006; 27(4): 164-7.
[http://dx.doi.org/10.1016/j.it.2006.02.003] [PMID: 16530483]
[102]
Wheway J, Mackay CR, Newton RA, et al. A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. J Exp Med 2005; 202(11): 1527-38.
[http://dx.doi.org/10.1084/jem.20051971] [PMID: 16330815]
[103]
Bedoui S, von Hörsten S, Gebhardt T. A role for neuropeptide Y (NPY) in phagocytosis: implications for innate and adaptive immunity. Peptides 2007; 28(2): 373-6.
[http://dx.doi.org/10.1016/j.peptides.2006.07.029] [PMID: 17239992]
[104]
Togo T, Akiyama H, Iseki E, et al. Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J Neuroimmunol 2002; 124(1-2): 83-92.
[http://dx.doi.org/10.1016/S0165-5728(01)00496-9] [PMID: 11958825]
[105]
von Hörsten S, Ballof J, Helfritz F, et al. Modulation of innate immune functions by intracerebroventricularly applied neuropeptide Y: dose and time dependent effects. Life Sci 1998; 63(11): 909-22.
[http://dx.doi.org/10.1016/S0024-3205(98)00349-X] [PMID: 9747892]
[106]
Lassègue B, Clempus RE. Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 2003; 285(2): R277-97.
[http://dx.doi.org/10.1152/ajpregu.00758.2002] [PMID: 12855411]
[107]
Schallreuter KU, Elwary SM, Gibbons NC, Rokos H, Wood JM. Activation/deactivation of acetylcholinesterase by H2O2: more evidence for oxidative stress in vitiligo. Biochem Biophys Res Commun 2004; 315(2): 502-8.
[http://dx.doi.org/10.1016/j.bbrc.2004.01.082] [PMID: 14766237]
[108]
Birol A, Kisa U, Kurtipek GS, et al. Increased tumor necrosis factor alpha (TNF-alpha) and interleukin 1 alpha (IL1-alpha) levels in the lesional skin of patients with nonsegmental vitiligo. Int J Dermatol 2006; 45(8): 992-3.
[http://dx.doi.org/10.1111/j.1365-4632.2006.02744.x] [PMID: 16911396]
[109]
Tu CX, Gu JS, Lin XR. Increased interleukin-6 and granulocyte-macrophage colony stimulating factor levels in the sera of patients with non-segmental vitiligo. J Dermatol Sci 2003; 31(1): 73-8.
[http://dx.doi.org/10.1016/S0923-1811(02)00151-2] [PMID: 12615367]
[110]
Vause CV, Durham PL. Calcitonin gene-related peptide differentially regulates gene and protein expression in trigeminal glia cells: Findings from array analysis. Neurosci Lett 2010; 473(3): 163-7.
[http://dx.doi.org/10.1016/j.neulet.2010.01.074] [PMID: 20138125]
[111]
Dallos A, Kiss M, Polyánka H, Dobozy A, Kemény L, Husz S. Effects of the neuropeptides substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide and galanin on the production of nerve growth factor and inflammatory cytokines in cultured human keratinocytes. Neuropeptides 2006; 40(4): 251-63.
[http://dx.doi.org/10.1016/j.npep.2006.06.002] [PMID: 16904178]
[112]
Misery L. Skin, immunity and the nervous system. Br J Dermatol 1997; 137(6): 843-50.
[http://dx.doi.org/10.1111/j.1365-2133.1997.tb01542.x] [PMID: 9470898]
[113]
Levi-Montalcini R, Angeletti PU. Nerve growth factor. Physiol Rev 1968; 48(3): 534-69.
[http://dx.doi.org/10.1152/physrev.1968.48.3.534] [PMID: 4875350]
[114]
Bischoff SC, Dahinden CA. Effect of nerve growth factor on the release of inflammatory mediators by mature human basophils. Blood 1992; 79(10): 2662-9.
[115]
Shin HJ, Park SH, Choi GW. Interleukin-8 and MCP (Monocyte Chemoattractant Protein)-1 expression by the human dental pulps in cultures stimulated with substance P. J Korean Acad Conserv Dent 2005; 30(3): 193-203.
[http://dx.doi.org/10.5395/JKACD.2005.30.3.193]
[116]
Lazarova R, Hristakieva E, Lazarov N, Shani J. Vitiligo-related neuropeptides in nerve fibers of the skin. Arch Physiol Biochem 2000; 108(3): 262-7.
[PMID: 11094379]
[117]
Rateb AA, Azzam OA, Rashed LA, El-Guindy NM, El-Din MS. The role of nerve growth factor in the pathogenesis of vitligo. J Egypt Wom Dermatol Soc 2005; 1: 18-24.
[118]
Balaban Ö, Atagün M, Özgüven H, Özsan HH. Psychiatric morbidity in patients with vitiligo. Dusunen Adam 2011; 24: 306-13.
[http://dx.doi.org/10.5350/DAJPN2011240406]
[119]
Yamamoto Y, Tanioka M, Hayashino Y, et al. Application of a two-question screening instrument to detect depressive symptoms in patients with vitiligo: A pilot study. J Am Acad Dermatol 2011; 64(5): e69-70.
[http://dx.doi.org/10.1016/j.jaad.2010.05.031] [PMID: 21496683]
[120]
Wang G, Qiu D, Yang H, Liu W. The prevalence and odds of depression in patients with vitiligo: a meta‐analysis. J Eur Acad Dermatol Venereol 2018; 32(8): 1343-51.
[http://dx.doi.org/10.1111/jdv.14739] [PMID: 29222958]
[121]
Ramakrishna P, Rajni T. Psychiatric morbidity and quality of life in vitiligo patients. Indian J Psychol Med 2014; 36(3): 302-3.
[http://dx.doi.org/10.4103/0253-7176.135385] [PMID: 25035556]
[122]
Namazi MR. Prescribing cyclic antidepressants for vitiligo patients: Which agents are superior, which are not? Psychother Psychosom 2003; 72(6): 361-2.
[http://dx.doi.org/10.1159/000073036] [PMID: 14526142]
[123]
Theng TS, Tan ES. Phototherapy in Pigmentary Disorders Pigmentary Skin Disorders. Cham: Springer 2018; pp. 235-52.
[http://dx.doi.org/10.1007/978-3-319-70419-7_16]
[124]
Esmat S, Hegazy RA, Shalaby S, Hu SC, Lan CE. Phototherapy and combination therapies for vitiligo. Dermatol Clin 2017; 35(2): 171-92.
[http://dx.doi.org/10.1016/j.det.2016.11.008] [PMID: 28317527]
[125]
On Phototherapy TF. Guidelines of care for phototherapy and photochemotherapy. J Am Acad Dermatol 1994; 31(4): 643-8.
[http://dx.doi.org/10.1016/S0190-9622(08)81729-X] [PMID: 8089291]
[126]
Gupta AK, Anderson TF. Psoralen photochemotherapy. J Am Acad Dermatol 1987; 17(5 Pt 1): 703-34.
[http://dx.doi.org/10.1016/S0190-9622(87)70255-2] [PMID: 3316316]
[127]
Zubair R, Hamzavi IH. Phototherapy for Vitiligo. Dermatol Clin 2019; 38: 55-62.
[PMID: 31753192]
[128]
Njoo MD, Westerhof W. Vitiligo. Pathogenesis and treatment. Am J Clin Dermatol 2001; 2(3): 167-81.
[http://dx.doi.org/10.2165/00128071-200102030-00006] [PMID: 11705094]
[129]
Lo YH, Cheng GS, Huang CC, Chang WY, Wu CS. Efficacy and safety of topical tacrolimus for the treatment of face and neck vitiligo. J Dermatol 2010; 37(2): 125-9.
[http://dx.doi.org/10.1111/j.1346-8138.2009.00774.x] [PMID: 20175845]
[130]
Baltás E, Csoma Z, Ignácz F, Dobozy A, Kemény L. Treatment of vitiligo with the 308-nm xenon chloride excimer laser. Arch Dermatol 2002; 138(12): 1619-20.
[http://dx.doi.org/10.1001/archderm.138.12.1613] [PMID: 12472364]
[131]
Turan IK. Lasers in the treatment of Vitiligo. In: Depigmentation IntechOpen. 2019; p. 7.
[132]
Smith DA, Tofte SJ, Hanifin JM. Repigmentation of vitiligo with topical tacrolimus. Dermatology 2002; 205(3): 301-3.
[http://dx.doi.org/10.1159/000065845] [PMID: 12399684]
[133]
Lepe V, Moncada B, Castanedo-Cazares JP, Torres-Alvarez MB, Ortiz CA, Torres-Rubalcava AB. A double-blind randomized trial of 0.1% tacrolimus vs. 0.05% clobetasol for the treatment of childhood vitiligo. Arch Dermatol 2003; 139(5): 581-5.
[http://dx.doi.org/10.1001/archderm.139.5.581] [PMID: 12756094]
[134]
Schreiber SL, Crabtree GR. The mechanism of action of cyclosporin A and FK506. Immunol Today 1992; 13(4): 136-42.
[http://dx.doi.org/10.1016/0167-5699(92)90111-J] [PMID: 1374612]
[135]
Assmann T, Homey B, Ruzicka T. Topical tacrolimus for the treatment of inflammatory skin diseases. Expert Opin Pharmacother 2001; 2(7): 1167-75.
[http://dx.doi.org/10.1517/14656566.2.7.1167] [PMID: 11583067]
[136]
Stinco G, Piccirillo F, Forcione M, Valent F, Patrone P. An open randomized study to compare narrow band UVB, topical pimecrolimus and topical tacrolimus in the treatment of vitiligo. Eur J Dermatol 2009; 19(6): 588-93.
[http://dx.doi.org/10.1684/ejd.2009.0779] [PMID: 19651562]
[137]
Grimes PE, Soriano T, Dytoc MT. Topical tacrolimus for repigmentation of vitiligo. J Am Acad Dermatol 2002; 47(5): 789-91.
[http://dx.doi.org/10.1067/mjd.2002.126250] [PMID: 12399778]
[138]
Karagaiah P, Valle Y, Sigova J, et al. Emerging drugs for the treatment of vitiligo. Expert Opin Emerg Drugs 2020; 25(1): 7-24.
[http://dx.doi.org/10.1080/14728214.2020.1712358] [PMID: 31958256]
[139]
Radakovic S, Breier-Maly J, Konschitzky R, et al. Response of vitiligo to once- vs. twice-daily topical tacrolimus: A controlled prospective, randomized, observer-blinded trial. J Eur Acad Dermatol Venereol 2009; 23(8): 951-3.
[http://dx.doi.org/10.1111/j.1468-3083.2009.03138.x] [PMID: 19496898]
[140]
Coskun B, Saral Y, Turgut D. Topical 0.05% clobetasol propionate versus 1% pimecrolimus ointment in vitiligo. Eur J Dermatol 2005; 15(2): 88-91.
[PMID: 15757818]
[141]
Fabroni C, Lotti T. Pimecrolimus in dermatology. Giornale italiano di dermatologia e venereologia: organo ufficiale, Societa italiana di dermatologia e sifilografia 2009; 3: 321-5.
[142]
Mayoral FA, Gonzalez C, Shah NS, Arciniegas C. Repigmentation of vitiligo with pimecrolimus cream. A Case Rep Dermatol 2003; 207(3): 322-3.
[http://dx.doi.org/10.1159/000073099] [PMID: 14571079]
[143]
Mayoral FA, Vega JM, Stavisky H, McCormick CL, Parneix-Spake A. Retrospective analysis of pimecrolimus cream 1% for treatment of facial vitiligo. J Drugs Dermatol 2007; 6(5): 517-21.
[PMID: 17679186]
[144]
Koo JY, Fleischer AB Jr, Abramovits W, et al. Tacrolimus ointment is safe and effective in the treatment of atopic dermatitis: results in 8000 patients. J Am Acad Dermatol 2005; 53(2)(Suppl. 2): S195-205.
[http://dx.doi.org/10.1016/j.jaad.2005.04.063] [PMID: 16021175]
[145]
Lips P. Vitamin D physiology. Prog Biophys Mol Biol 2006; 92(1): 4-8.
[http://dx.doi.org/10.1016/j.pbiomolbio.2006.02.016] [PMID: 16563471]
[146]
AlGhamdi K, Kumar A, Moussa N. The role of vitamin D in melanogenesis with an emphasis on vitiligo. Indian J Dermatol Venereol Leprol 2013; 79(6): 750-8.
[http://dx.doi.org/10.4103/0378-6323.120720] [PMID: 24177606]
[147]
Oikawa A, Nakayasu M. Stimulation of melanogenesis in cultured melanoma cells by calciferols. FEBS Lett 1974; 42(1): 32-5.
[http://dx.doi.org/10.1016/0014-5793(74)80272-3] [PMID: 4369215]
[148]
Anbar TS, El-Ammawi TS, Abdel-Rahman AT, Hanna MR. The effect of latanoprost on vitiligo: A preliminary comparative study. Int J Dermatol 2015; 54(5): 587-93.
[http://dx.doi.org/10.1111/ijd.12631] [PMID: 25545321]
[149]
Whitton M, Pinart M, Batchelor JM, et al. Evidence-based management of vitiligo: summary of a Cochrane systematic review. Br J Dermatol 2016; 174(5): 962-9.
[http://dx.doi.org/10.1111/bjd.14356] [PMID: 26686510]
[150]
Daniel BS, Wittal R. Vitiligo treatment update. Australas J Dermatol 2015; 56(2): 85-92.
[http://dx.doi.org/10.1111/ajd.12256] [PMID: 25495880]
[151]
Sassi F, Cazzaniga S, Tessari G, et al. Randomized controlled trial comparing the effectiveness of 308-nm excimer laser alone or in combination with topical hydrocortisone 17-butyrate cream in the treatment of vitiligo of the face and neck. Br J Dermatol 2008; 159(5): 1186-91.
[http://dx.doi.org/10.1111/j.1365-2133.2008.08793.x] [PMID: 18717675]
[152]
Agarwal K, Podder I, Kassir M, et al. Therapeutic options in vitiligo with special emphasis on immunomodulators: A comprehensive update with review of literature. Dermatol Ther 2020; 33(2): e13215.
[http://dx.doi.org/10.1111/dth.13215] [PMID: 31891450]
[153]
Rashighi M, Harris JE. Interfering with the IFN-γ/CXCL10 pathway to develop new targeted treatments for vitiligo. Ann Transl Med 2015; 3(21): 343.
[PMID: 26734651]
[154]
Schwartz DM, Bonelli M, Gadina M, O’Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol 2016; 12(1): 25-36.
[http://dx.doi.org/10.1038/nrrheum.2015.167] [PMID: 26633291]
[155]
Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O’Shea JJ. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov 2017; 16(12): 843-62.
[http://dx.doi.org/10.1038/nrd.2017.201] [PMID: 29104284]
[156]
Craiglow BG, King BA. Tofacitinib citrate for the treatment of vitiligo: A pathogenesis-directed therapy. JAMA Dermatol 2015; 151(10): 1110-2.
[http://dx.doi.org/10.1001/jamadermatol.2015.1520] [PMID: 26107994]
[157]
Liu LY, Craiglow BG, Dai F, King BA. Tofacitinib for the treatment of severe alopecia areata and variants: a study of 90 patients. J Am Acad Dermatol 2017; 76(1): 22-8.
[http://dx.doi.org/10.1016/j.jaad.2016.09.007] [PMID: 27816293]
[158]
Scott G, Leopardi S, Printup S, Malhi N, Seiberg M, Lapoint R. Proteinase-activated receptor-2 stimulates prostaglandin production in keratinocytes: Analysis of prostaglandin receptors on human melanocytes and effects of PGE2 and PGF2α on melanocyte dendricity. J Invest Dermatol 2004; 122(5): 1214-24.
[http://dx.doi.org/10.1111/j.0022-202X.2004.22516.x] [PMID: 15140225]
[159]
Naini FF, Shooshtari AV, Ebrahimi B, Molaei R. The effect of pseudocatalase/superoxide dismutase in the treatment of vitiligo: A pilot study. J Res Pharm Pract 2012; 1(2): 77-80.
[http://dx.doi.org/10.4103/2279-042X.108375] [PMID: 24991594]
[160]
Schallreuter KU, Krüger C, Würfel BA, Panske A, Wood JM. From basic research to the bedside: efficacy of topical treatment with pseudocatalase PC-KUS in 71 children with vitiligo. Int J Dermatol 2008; 47(7): 743-53.
[http://dx.doi.org/10.1111/j.1365-4632.2008.03660.x] [PMID: 18613887]
[161]
Tsuji T, Hamada T. Topically administered fluorouracil in vitiligo. Arch Dermatol 1983; 119(9): 722-7.
[http://dx.doi.org/10.1001/archderm.1983.01650330014006] [PMID: 6614958]
[162]
Imamura S, Tagami H. Treatment of vitiligo with oral corticosteroids. Dermatologica 1976; 153(3): 179-85.
[http://dx.doi.org/10.1159/000251114] [PMID: 1017528]
[163]
Kim SM, Lee HS, Hann SK. The efficacy of low-dose oral corticosteroids in the treatment of vitiligo patients. Int J Dermatol 1999; 38(7): 546-50.
[http://dx.doi.org/10.1046/j.1365-4362.1999.00623.x] [PMID: 10440289]
[164]
Seiter S, Ugurel S, Tilgen W, Reinhold U. Use of high-dose methylprednisolone pulse therapy in patients with progressive and stable vitiligo. Int J Dermatol 2000; 39(8): 624-7.
[http://dx.doi.org/10.1046/j.1365-4362.2000.00006.x] [PMID: 10971735]
[165]
Pasricha JS, Khaitan BK. Oral mini-pulse therapy with betamethasone in vitiligo patients having extensive or fast-spreading disease. Int J Dermatol 1993; 32(10): 753-7.
[http://dx.doi.org/10.1111/j.1365-4362.1993.tb02754.x] [PMID: 8225724]
[166]
Radakovic-Fijan S, Fürnsinn-Friedl AM, Hönigsmann H, Tanew A. Oral dexamethasone pulse treatment for vitiligo. J Am Acad Dermatol 2001; 44(5): 814-7.
[http://dx.doi.org/10.1067/mjd.2001.113475] [PMID: 11312430]
[167]
Scheinfeld N, Rosenberg JD, Weinberg JM. Levamisole in dermatology: A review. Am J Clin Dermatol 2004; 5(2): 97-104.
[http://dx.doi.org/10.2165/00128071-200405020-00004] [PMID: 15109274]
[168]
Roy R, Kalla G, Singhi MK. Levamisole in vitiligo of eyelids. Indian J Dermatol Venereol Leprol 1996; 62(3): 199-200.
[PMID: 20948046]
[169]
Parsad D, Kanwar A. Oral minocycline in the treatment of vitiligo--a preliminary study. Dermatol Ther 2010; 23(3): 305-7.
[http://dx.doi.org/10.1111/j.1529-8019.2010.01328.x] [PMID: 20597950]
[170]
Taneja A, Kumari A, Vyas K, Khare AK, Gupta LK, Mittal AK. Cyclosporine in treatment of progressive vitiligo: An open-label, single-arm interventional study. Indian J Dermatol Venereol Leprol 2019; 85(5): 528-31.
[http://dx.doi.org/10.4103/ijdvl.IJDVL_656_18] [PMID: 31389371]
[171]
Lim HW, Grimes PE, Agbai O, et al. Afamelanotide and narrowband UV-B phototherapy for the treatment of vitiligo: A randomized multicenter trial. JAMA Dermatol 2015; 151(1): 42-50.
[http://dx.doi.org/10.1001/jamadermatol.2014.1875] [PMID: 25230094]
[172]
Passeron T. Indications and limitations of afamelanotide for treating vitiligo. JAMA Dermatol 2015; 151(3): 349-50.
[http://dx.doi.org/10.1001/jamadermatol.2014.4848] [PMID: 25607635]
[173]
Gupta S, Olsson MJ, Parsad D, Lim HW, van Geel N, Pandya AG, Eds. Vitiligo: medical and surgical management. John Wiley & Sons 2018.
[http://dx.doi.org/10.1002/9781118937303]
[174]
Khunger N, Kathuria SD, Ramesh V. Tissue grafts in vitiligo surgery - past, present, and future. Indian J Dermatol 2009; 54(2): 150-8.
[http://dx.doi.org/10.4103/0019-5154.53196] [PMID: 20101311]
[175]
Parsad D, Gupta S. Standard guidelines of care for vitiligo surgery. Indian J Dermatol Venereol Leprol 2008; 74(Suppl.): S37-45.
[PMID: 18688102]
[176]
van Geel N, Speeckaert R, Taieb A, et al. Koebner’s phenomenon in vitiligo: European position paper. Pigment Cell Melanoma Res 2011; 24(3): 564-73.
[http://dx.doi.org/10.1111/j.1755-148X.2011.00838.x] [PMID: 21324101]
[177]
Lim YJ, Teoh LC, Lee EH. Reconstruction of syndactyly and polysyndactyly of the toes with a dorsal pentagonal island flap: A technique that allows primary skin closure without the use of skin grafting. J Foot Ankle Surg 2007; 46(2): 86-92.
[http://dx.doi.org/10.1053/j.jfas.2006.11.008] [PMID: 17331867]
[178]
Majid I. Grafting in vitiligo: how to get better results and how to avoid complications. J Cutan Aesthet Surg 2013; 6(2): 83-9.
[http://dx.doi.org/10.4103/0974-2077.112668] [PMID: 24023429]
[179]
Sameem F, Sultan SJ, Ahmad QM. Split thickness skin grafting in patients with stable vitiligo. J Cutan Aesthet Surg 2011; 4(1): 38-40.
[http://dx.doi.org/10.4103/0974-2077.79189] [PMID: 21572680]
[180]
Lotti TM, Berti SF, Hercogova J, et al. Vitiligo: recent insights and new therapeutic approaches. Giornale italiano di dermatologia e venereologia: organo ufficiale Societa italiana di dermatologia e sifilografia 2012; 147: 637-47.
[181]
O’Connor N, Mulliken J, Banks-Schlegel S, Kehinde O, Green H. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet 1981; 1(8211): 75-8.
[http://dx.doi.org/10.1016/S0140-6736(81)90006-4] [PMID: 6109123]
[182]
Leone G, Pacifico A, Iacovelli P, Paro Vidolin A, Picardo M. Tacalcitol and narrow-band phototherapy in patients with vitiligo. Clin Exp Dermatol 2006; 31(2): 200-5.
[http://dx.doi.org/10.1111/j.1365-2230.2005.02037.x] [PMID: 16487090]
[183]
Guerra L, Primavera G, Raskovic D, et al. Erbium: YAG laser and cultured epidermis in the surgical therapy of stable vitiligo. Arch Dermatol 2003; 139(10): 1303-10.
[http://dx.doi.org/10.1001/archderm.139.10.1303] [PMID: 14568835]
[184]
Tegta GR, Parsad D, Majumdar S, Kumar B. Efficacy of autologous transplantation of noncultured epidermal suspension in two different dilutions in the treatment of vitiligo. Int J Dermatol 2006; 45(2): 106-10.
[http://dx.doi.org/10.1111/j.1365-4632.2004.02403.x] [PMID: 16445497]
[185]
Kumar A, Mohanty S, Sahni K, Kumar R, Gupta S. Extracted hair follicle outer root sheath cell suspension for pigment cell restoration in vitiligo. J Cutan Aesthet Surg 2013; 6(2): 121-5.
[http://dx.doi.org/10.4103/0974-2077.112679] [PMID: 24023440]
[186]
Cohen BE, Elbuluk N, Mu EW, Orlow SJ. Alternative systemic treatments for vitiligo: A review. Am J Clin Dermatol 2015; 16(6): 463-74.
[http://dx.doi.org/10.1007/s40257-015-0153-5] [PMID: 26329814]
[187]
Szczurko O, Shear N, Taddio A, Boon H. Ginkgo biloba for the treatment of vitilgo vulgaris: An open label pilot clinical trial. BMC Complement Altern Med 2011; 11(1): 21.
[http://dx.doi.org/10.1186/1472-6882-11-21] [PMID: 21406109]
[188]
Colucci R, Dragoni F, Conti R, Pisaneschi L, Lazzeri L, Moretti S. Evaluation of an oral supplement containing Phyllanthus emblica fruit extracts, vitamin E, and carotenoids in vitiligo treatment. Dermatol Ther 2015; 28(1): 17-21.
[http://dx.doi.org/10.1111/dth.12172] [PMID: 25285994]
[189]
Lin Z, Hoult JR, Bennett DC, Raman A. Stimulation of mouse melanocyte proliferation by Piper nigrum fruit extract and its main alkaloid, piperine. Planta Med 1999; 65(7): 600-3.
[http://dx.doi.org/10.1055/s-1999-14031] [PMID: 10575373]
[190]
Shafiee A, Hoormand M, Shahidi-Dadras M, Abadi A. The effect of topical piperine combined with narrowband UVB on vitiligo treatment: A clinical trial study. Phytother Res 2018; 32(9): 1812-7.
[http://dx.doi.org/10.1002/ptr.6116] [PMID: 29781089]
[191]
Wu D, Wang J, Pae M, Meydani SN. Green tea EGCG, T cells, and T cell-mediated autoimmune diseases. Mol Aspects Med 2012; 33(1): 107-18.
[http://dx.doi.org/10.1016/j.mam.2011.10.001] [PMID: 22020144]
[192]
Zhu Y, Wang S, Lin F, Li Q, Xu A. The therapeutic effects of EGCG on vitiligo. Fitoterapia 2014; 99: 243-51.
[http://dx.doi.org/10.1016/j.fitote.2014.08.007] [PMID: 25128425]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy