Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

In Vitro Metabolite Identification Studies for the New Psychoactive Substances Furanylfentanyl, TFMPP, and 5-MeO-DALT in Human Liver Microsomes

Author(s): Tian Zheng*, Liang Wu, Guoping Wu, Yifan Chen and Shuhan Zhou

Volume 18, Issue 9, 2022

Published on: 01 September, 2022

Page: [1003 - 1016] Pages: 14

DOI: 10.2174/1573411018666220603100033

Price: $65

conference banner
Abstract

Aims: Understand the metabolic behavior of new psychoactive substances, furanyl fentanyl, TFMPP, and 5-MeO-DALT.

Background: New psychoactive substances (NPS) are associated with several health and social harms on both the individual and societal levels. Many are not regulated and have become increasingly popular among drug users worldwide. The lack of clinical studies on the effects and toxicity of these drugs has made the interpretation of their toxicological symptoms difficult.

Objective: Perform an in vitro metabolism study of new psychoactive substances furanyl fentanyl, TFMPP, and 5-MeO-DALT, revealing their possible metabolites and metabolic pathways in the human liver microsome.

Methods: A regular human liver microsomal system was used to investigate the potential biotransformation of furanyl fentanyl, TFMPP, and 5-MeO-DALT in vitro, and high-resolution mass spectrometry (LC-Q/TOF-MS) was used to perform metabolite detection and identification.

Results: The three components were substantially metabolized in 4 hours with varied metabolic pathways, and most of the metabolites were generated through phase I metabolic reactions. Furanyl fentanyl underwent the metabolic pathways of epoxidation and hydration, furanyl ring-opening and oxidation, hydroxylation, hydrolysis of the amide group, and N-dealkylation; TFMPP underwent the metabolic pathways of hydroxylation, and the successive piperazidine ring scission; while 5-MeO-DALT underwent the metabolic pathways of O-demethylation and glucuronidation, dihydroxylation, hydroxylation, oxidation, O-demethylation, N-dealkylation and methylation and N-dealkylation.

Conclusion: Our data would contribute to a better understanding of furanyl fentanyl, TFMPP, and 5- MeO-DALT in their in vitro metabolism study, which was beneficial to predicting their metabolic behavior in vivo, and promoting their drug monitoring in both clinically used and socially/illegally abused.

Keywords: New psychoactive substances, metabolite identification, furanyl fentanyl, TFMPP, 5-MeO-DALT, human liver microsomes.

Next »
Graphical Abstract
[1]
Boronat Ena, M.D.M.; Cowan, D.A.; Abbate, V. Ambient ionization mass spectrometry applied to new psychoactive substance analysis. Mass Spectrom. Rev., 2021, mas.21695.
[http://dx.doi.org/10.1002/mas.21695] [PMID: 34036620]
[2]
Caspar, A.T.; Gaab, J.B.; Michely, J.A.; Brandt, S.D.; Meyer, M.R.; Maurer, H.H. Metabolism of the tryptamine-derived new psychoactive substances 5-MeO-2-Me-DALT, 5-MeO-2-Me-ALCHT, and 5-MeO-2-Me-DIPT and their detectability in urine studied by GC-MS, LC-MSn, and LC-HR-MS/MS. Drug Test. Anal., 2018, 10(1), 184-195.
[http://dx.doi.org/10.1002/dta.2197] [PMID: 28342193]
[3]
Antia, U.; Tingle, M.D.; Russell, B.R. Validation of an LC-MS method for the detection and quantification of BZP and TFMPP and their hydroxylated metabolites in human plasma and its application to the pharmacokinetic study of TFMPP in humans. J. Forensic Sci., 2010, 55(5), 1311-1318.
[http://dx.doi.org/10.1111/j.1556-4029.2010.01457.x] [PMID: 20533987]
[4]
Drummer, O.H. Fatalities caused by novel opioids: A review. Forensic Sci. Res., 2018, 4(2), 95-110.
[http://dx.doi.org/10.1080/20961790.2018.1460063] [PMID: 31304441]
[5]
Freni, F.; Pezzella, S.; Vignali, C.; Moretti, M.; Cisini, S.; Rossetti, C.; Ravizza, R.; Motta, M.; Groppi, A.; Morini, L. A case report on potential postmortem redistribution of furanyl fentanyl and 4-ANPP. Forensic Sci. Int., 2019, 304, 109915.
[http://dx.doi.org/10.1016/j.forsciint.2019.109915] [PMID: 31416646]
[6]
Swanson, D.M.; Hair, L.S.; Strauch Rivers, S.R.; Smyth, B.C.; Brogan, S.C.; Ventoso, A.D.; Vaccaro, S.L.; Pearson, J.M. Fatalities Involving Carfentanil and Furanyl Fentanyl: Two Case Reports. J. Anal. Toxicol., 2017, 41(6), 498-502.
[http://dx.doi.org/10.1093/jat/bkx037] [PMID: 28575422]
[7]
Maciów-Głąb, M.; Rojek, S.; Kula, K.; Kłys, M. “New designer drugs” in aspects of forensic toxicology. Arch. Med. Sadowej Kryminol., 2014, 64(1), 20-33.
[http://dx.doi.org/10.5114/amsik.2014.44587] [PMID: 25184424]
[8]
Elliott, S.; Evans, J. A 3-year review of new psychoactive substances in casework. Forensic Sci. Int., 2014, 243, 55-60.
[http://dx.doi.org/10.1016/j.forsciint.2014.04.017] [PMID: 24810679]
[9]
Zwartsen, A.; Hondebrink, L.; Westerink, R.H. Neurotoxicity screening of new psychoactive substances (NPS): Effects on neuronal activity in rat cortical cultures using microelectrode arrays (MEA). Neurotoxicology, 2018, 66, 87-97.
[http://dx.doi.org/10.1016/j.neuro.2018.03.007] [PMID: 29572046]
[10]
Corkery, J.M.; Durkin, E.; Elliott, S.; Schifano, F.; Ghodse, A.H. The recreational tryptamine 5-MeO-DALT (N,N-diallyl-5-methoxytryptamine): A brief review. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012, 39(2), 259-262.
[http://dx.doi.org/10.1016/j.pnpbp.2012.05.022] [PMID: 22683457]
[11]
Jovel, A.; Felthous, A.; Bhattacharyya, A. Delirium due to intoxication from the novel synthetic tryptamine 5-MeO-DALT. J. Forensic Sci., 2014, 59(3), 844-846.
[http://dx.doi.org/10.1111/1556-4029.12367] [PMID: 24329118]
[12]
Arunotayanun, W.; Dalley, J.W.; Huang, X.P.; Setola, V.; Treble, R.; Iversen, L.; Roth, B.L.; Gibbons, S. An analysis of the synthetic tryptamines AMT and 5-MeO-DALT: Emerging ‘Novel Psychoactive Drugs’. Bioorg. Med. Chem. Lett., 2013, 23(11), 3411-3415.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.066] [PMID: 23602445]
[13]
Maher, S.; Elliott, S.P.; George, S. The analytical challenges of cyclopropylfentanyl and crotonylfentanyl: An approach for toxicological analysis. Drug Test. Anal., 2018, 10(9), 1483-1487.
[http://dx.doi.org/10.1002/dta.2417] [PMID: 29803198]
[14]
Mohr, A.L.; Friscia, M.; Papsun, D.; Kacinko, S.L.; Buzby, D.; Logan, B.K. Analysis of Novel Synthetic Opioids U-47700, U-50488 and Furanyl Fentanyl by LC-MS/MS in Postmortem Casework. J. Anal. Toxicol., 2016, 40(9), 709-717.
[http://dx.doi.org/10.1093/jat/bkw086] [PMID: 27590036]
[15]
Shoff, E.N.; Zaney, M.E.; Kahl, J.H.; Hime, G.W.; Boland, D.M. Qualitative Identification of Fentanyl Analogs and Other Opioids in Postmortem Cases by UHPLC-Ion Trap-MSn. J. Anal. Toxicol., 2017, 41(6), 484-492.
[http://dx.doi.org/10.1093/jat/bkx041] [PMID: 28633314]
[16]
Palmquist, K.B.; Swortwood, M.J. Quantification of Furanylfentanyl and its Metabolites in Human and Rat Plasma Using LC-MS-MS. J. Anal. Toxicol., 2020, 44(6), 589-595.
[http://dx.doi.org/10.1093/jat/bkaa013] [PMID: 32064536]
[17]
Freni, F.; Moretti, M.; Radaelli, D.; Carelli, C.; Osculati, A.M.M.; Tronconi, L.; Vignali, C.; Morini, L. Determination of fentanyl and 19 derivatives in hair: Application to an Italian population. J. Pharm. Biomed. Anal., 2020, 189, 113476.
[http://dx.doi.org/10.1016/j.jpba.2020.113476] [PMID: 32693203]
[18]
Martucci, H.F.H.; Ingle, E.A.; Hunter, M.D.; Rodda, L.N. Distribution of furanyl fentanyl and 4-ANPP in an accidental acute death: A case report. Forensic Sci. Int., 2018, 283, e13-e17.
[http://dx.doi.org/10.1016/j.forsciint.2017.12.005] [PMID: 29254806]
[19]
Tatsuyuki Kanamori, Y.O.; Hiroki Segawa, T.Y.; Kenji Kuwayama, K.T.; Togawa-Iwata, Y. Detection and confirmation of the ring-opened carboxylic acid metabolite of a new synthetic opioid furanylfentanyl. Forensic Toxicol., 2021, 39(1), 114-122.
[http://dx.doi.org/10.1007/s11419-020-00546-7]
[20]
Watanabe, S.; Vikingsson, S.; Roman, M.; Green, H.; Kronstrand, R.; Wohlfarth, A. In vitro and in vivo metabolite identification studies for the new synthetic opioids acetylfentanyl, acrylfentanyl, furanylfentanyl, and 4-fluoro-isobutyrylfentanyl. AAPS J., 2017, 19(4), 1102-1122.
[http://dx.doi.org/10.1208/s12248-017-0070-z] [PMID: 28382544]
[21]
Goggin, M.M.; Nguyen, A.; Janis, G.C. Identification of Unique Metabolites of the Designer Opioid Furanyl Fentanyl. J. Anal. Toxicol., 2017, 41(5), 367-375.
[http://dx.doi.org/10.1093/jat/bkx022] [PMID: 28369517]
[22]
DeRuiter, J.; Van Cleave, A.; de Sousa Moura, A.; Abiedalla, Y.; Clark, C.R. Disubstituted piperazine analogues of trifluoromethylphenylpiperazine and methylenedioxybenzylpiperazine: Analytical differentiation and serotonin receptor binding studies. Forensic Sci. Res., 2018, 3(2), 161-169.
[http://dx.doi.org/10.1080/20961790.2018.1445497] [PMID: 30483665]
[23]
Lecompte, Y.; Roussel, O.; Perrin, M. [1-benzylpiperazine (BZP) and 1-(3-trifluorométhylphényl)pipérazine (TFMPP): Emergence of two agents which lead to misuse Ann. Pharm. Fr., 2008, 66(2), 85-91.
[http://dx.doi.org/10.1016/j.pharma.2008.04.001] [PMID: 18570904]
[24]
Vorce, S.P.; Holler, J.M.; Levine, B.; Past, M.R. Detection of 1-benzylpiperazine and 1-(3-trifluoromethylphenyl)-piperazine in urine analysis specimens using GC-MS and LC-ESI-MS. J. Anal. Toxicol., 2008, 32(6), 444-450.
[http://dx.doi.org/10.1093/jat/32.6.444] [PMID: 18652752]
[25]
Tsutsumi, H.; Katagi, M.; Miki, A.; Shima, N.; Kamata, T.; Nishikawa, M.; Nakajima, K.; Tsuchihashi, H. Development of simultaneous gas chromatography-mass spectrometric and liquid chromatography-electrospray ionization mass spectrometric determination method for the new designer drugs, N-benzylpiperazine (BZP), 1-(3-trifluoromethylphenyl)piperazine (TFMPP) and their main metabolites in urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 819(2), 315-322.
[http://dx.doi.org/10.1016/j.jchromb.2005.02.016] [PMID: 15833296]
[26]
Fuse-Nagase, Y.; Nishikawa, T. Prolonged delusional state triggered by repeated ingestion of aromatic liquid in a past 5-methoxy-N, N-diisopropyltryptamine abuser. Addict. Sci. Clin. Pract., 2013, 8(1), 9.
[http://dx.doi.org/10.1186/1940-0640-8-9] [PMID: 23577618]
[27]
A. Shulgin, A.; S., Tihkal The Continuation; Transform Press: Berkley, CA, 1997.
[28]
Kalasho, A.; Vibe Nielsen, S. 5-MeO-DALT; a novel designer drug on the market causing acute delirium and rhabdomyolysis. Acta Anaesthesiol. Scand., 2016, 60(9), 1332-1336.
[http://dx.doi.org/10.1111/aas.12765] [PMID: 27453155]
[29]
Salomone, A.; Di Corcia, D.; Negri, P.; Kolia, M.; Amante, E.; Gerace, E.; Vincenti, M. Targeted and untargeted detection of fentanyl analogues and their metabolites in hair by means of UHPLC-QTOF-HRMS. Anal. Bioanal. Chem., 2021, 413(1), 225-233.
[http://dx.doi.org/10.1007/s00216-020-02994-x] [PMID: 33063167]
[30]
Tsutsumi, H.; Katagi, M.; Miki, A.; Shima, N.; Kamata, T.; Nakajima, K.; Inoue, H.; Kishi, T.; Tsuchihashi, H. Isolation, identification and excretion profile of the principal urinary metabolite of the recently banned designer drug 1-(3-trifluoromethylphenyl)piperazine (TFMPP) in rats. Xenobiotica, 2005, 35(1), 107-116.
[http://dx.doi.org/10.1080/00498250400020335] [PMID: 15788372]
[31]
Staack, R.F.; Fritschi, G.; Maurer, H.H. New designer drug 1-(3-trifluoromethylphenyl) piperazine (TFMPP): Gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry studies on its phase I and II metabolism and on its toxicological detection in rat urine. J. Mass Spectrom., 2003, 38(9), 971-981.
[http://dx.doi.org/10.1002/jms.513] [PMID: 14505325]
[32]
Michely, J.A.; Helfer, A.G.; Brandt, S.D.; Meyer, M.R.; Maurer, H.H. Metabolism of the new psychoactive substances N,N-diallyltryptamine (DALT) and 5-methoxy-DALT and their detectability in urine by GC-MS, LC-MSn, and LC-HR-MS-MS. Anal. Bioanal. Chem., 2015, 407(25), 7831-7842.
[http://dx.doi.org/10.1007/s00216-015-8955-0] [PMID: 26297461]
[33]
Grafinger, K.E.; Wilke, A.; König, S.; Weinmann, W. Investigating the ability of the microbial model Cunninghamella elegans for the metabolism of synthetic tryptamines. Drug Test. Anal., 2019, 11(5), 721-729.
[http://dx.doi.org/10.1002/dta.2544] [PMID: 30462883]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy