Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Short Communication

Simultaneous Determination of Benzo(a)pyrene, Benzo(a)anthracene, Benzo( b)fluoranthene, and Chrysene in Tocotrienol Concentrates Using Dual Solid-phase Extraction and Gas Chromatography-Mass Spectrometry

Author(s): Jia Yi Hor, Norfarizah Hanim Hassan, Musfirah Zulkarnain, Razam Abd Latip, Mohammad Saiful Nidzam and Yong Foo Wong*

Volume 18, Issue 8, 2022

Published on: 04 August, 2022

Page: [930 - 937] Pages: 8

DOI: 10.2174/1573411018666220603093732

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Polyaromatic hydrocarbons (PAHs) are a class of toxic compounds commonly found in edible vegetable oils as a result of contamination through food processing. Among the wide variety of PAHs existing in edible oils, benzo(a)pyrene (BAP), benzo(a)anthracene (BAA), benzo( b)fluoranthene (BBF), and chrysene (CHR) are commonly monitored due to their toxicity, carcinogenic and teratogenic properties.

Materials and Methods: In this context, we described a combination of liquid-liquid extraction and dual cartridge solid-phase extraction (dSPE) system for the extraction of BAP, BAA, BBF, and CHR in palm oil derived tocotrienol rich fraction (T3RF), followed by their analysis using GC-MS operating in selected ion monitoring mode (SIM).

Results: The separation was effected using a DB-5HT column (30 m × 0.25 mm × 0.25 μm) that can operate at a high temperature limit of 400 °C, which enables the separation of the PAHs in < 28 min. The calibration curves were correlated within the range of 1.5-25 μg/ L, with detection limits (S/N: 3.3) of 0.48-1.35 μg/L, and relative standard deviations of ≤ 0.07% and ≤ 6.85% were achieved for intra-day retention times and peak areas.

Conclusion: The proposed sample preparation and GC-SIM workflow greatly reduces interference caused by tocotrienol homologues and enables the quantitative determination of BAP, BAA, BBF, and CHR in T3RF and palm fatty acid distillates.

Keywords: Polyaromatic hydrocarbon, GC-MS, tocotrienol rich fraction, LLE, dSPE, tocotrienol homologues.

« Previous
Graphical Abstract
[1]
Rascón, A.J.; Azzouz, A.; Ballesteros, E. Multiresidue determination of polycyclic aromatic hydrocarbons in edible oils by liquid-liquid extraction-solid-phase extraction-gas chromatography-mass spectrometry. Food Control, 2018, 94, 268-275.
[http://dx.doi.org/10.1016/j.foodcont.2018.07.015]
[2]
Lawal, A.T. Polycyclic aromatic hydrocarbons. A review. Cogent Environ. Sci., 2017, 3(1), 1339841.
[http://dx.doi.org/10.1080/23311843.2017.1339841]
[3]
Dubois, V.; Breton, S.; Linder, M.; Fanni, J.; Parmentier, M. Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur. J. Lipid Sci. Technol., 2007, 109(7), 710-732.
[http://dx.doi.org/10.1002/ejlt.200700040]
[4]
Sánchez-Arévalo, C.M.; Olmo-García, L.; Fernández-Sánchez, J.F.; Carrasco-Pancorbo, A. Polycyclic aromatic hydrocarbons in edible oils: An overview on sample preparation, determination strategies, and relative abundance of prevalent compounds. Compr. Rev. Food Sci. Food Saf., 2020, 19(6), 3528-3573.
[http://dx.doi.org/10.1111/1541-4337.12637] [PMID: 33337049]
[5]
Domingo, J.L.; Nadal, M. Human dietary exposure to polycyclic aromatic hydrocarbons: A review of the scientific literature. Food Chem. Toxicol., 2015, 86, 144-153.
[http://dx.doi.org/10.1016/j.fct.2015.10.002] [PMID: 26456806]
[6]
List, P.P. CFR Part 423; Appendix, A., Ed.; United States Environmental Protection Agency, 2014.
[7]
Commission Regulation (EU) No 836/2011 of 19 August 2011 amending Regulation (EC) No 333/2007 laying down the methods of sampling and analysis for the official control of the levels of lead, cadmium, mercury, inorganic tin, 3-MCPD and benzo(a)pyrene in food-stuffs. Off. J.-. Euro. Union Legislat., 2011, 54(215), 9-16. Available from Available from: https://www.tib.eu/de/suchen/id/BLSE%3ARN297098596
[8]
Ju, H.; Kim, B.; Kim, J.; Baek, S-Y. Development of candidate reference method for accurate determination of four polycyclic aromatic hydrocarbons in olive oil via gas chromatography/high-resolution mass spectrometry using 13C-labeled internal standards. Food Chem., 2020, 309, 125639.
[http://dx.doi.org/10.1016/j.foodchem.2019.125639] [PMID: 31670126]
[9]
Chung, S.W.; Lau, J.S. Single laboratory validation of an environmentally friendly single extraction and cleanup method for quantitative determination of four priority polycyclic aromatic hydrocarbons in edible oils and fats. Anal. Methods, 2015, 7(18), 7631-7638.
[http://dx.doi.org/10.1039/C5AY01533B]
[10]
Zhou, R-Z.; Jiang, J.; Mao, T.; Zhao, Y-S.; Lu, Y. Multiresidue analysis of environmental pollutants in edible vegetable oils by gas chromatography-tandem mass spectrometry. Food Chem., 2016, 207, 43-50.
[http://dx.doi.org/10.1016/j.foodchem.2016.03.071] [PMID: 27080878]
[11]
Göker, G.; Kıralan, S.; Tekin, A.; Erdoğdu, F. Formation kinetics of polycyclic aromatic hydrocarbons (PAHs) during drying process of olive pomace. Food Chem., 2021, 345, 128856.
[http://dx.doi.org/10.1016/j.foodchem.2020.128856] [PMID: 33601662]
[12]
Altunoğlu, Y.; Yemişçioğlu, F. Determination of polycyclic aromatic hydrocarbons in olives exposed to three different industrial sources and in their respective oils. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2021, 38(3), 439-451.
[http://dx.doi.org/10.1080/19440049.2020.1861340] [PMID: 33455560]
[13]
Kiralan, S.S.; Tekin, A. Reducing polycyclic aromatic hydrocarbons (PAHs) in olive pomace oil using short-path molecular distillation. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2020, 37(3), 401-407.
[http://dx.doi.org/10.1080/19440049.2019.1704444] [PMID: 31917647]
[14]
Aliyar-Zanjani, N.; Piravi-Vanak, Z.; Ghavami, M. Study on the effect of activated carbon with bleaching earth on the reduction of polycy-clic aromatic hydrocarbons (PAHs) in bleached soybean oil. Grasas Aceites, 2019, 70(2), e304-e304.
[http://dx.doi.org/10.3989/gya.0577181]
[15]
Kiralan, S.S.; Toptancı, İ.; Tekin, A. Further evidence on the removal of polycyclic aromatic hydrocarbons (PAHs) during refining of olive pomace oil. Eur. J. Lipid Sci. Technol., 2019, 121(4), 1800381.
[http://dx.doi.org/10.1002/ejlt.201800381]
[16]
Yousefi, M.; Shemshadi, G.; Khorshidian, N.; Ghasemzadeh-Mohammadi, V.; Fakhri, Y.; Hosseini, H.; Mousavi Khaneghah, A. Polycy-clic aromatic hydrocarbons (PAHs) content of edible vegetable oils in Iran: A risk assessment study. Food Chem. Toxicol., 2018, 118, 480-489.
[http://dx.doi.org/10.1016/j.fct.2018.05.063] [PMID: 29857019]
[17]
Hao, X.; Yin, Y.; Feng, S.; Du, X.; Yu, J.; Yao, Z. Characteristics of polycyclic aromatic hydrocarbons in food oils in Beijing catering ser-vices. Environ. Sci. Pollut. Res. Int., 2016, 23(24), 24932-24942.
[http://dx.doi.org/10.1007/s11356-016-7671-4] [PMID: 27665461]
[18]
Veyrand, B.; Brosseaud, A.; Sarcher, L.; Varlet, V.; Monteau, F.; Marchand, P.; Andre, F.; Le Bizec, B. Innovative method for determination of 19 polycyclic aromatic hydrocarbons in food and oil samples using gas chromatography coupled to tandem mass spectrometry based on an isotope dilution approach. J. Chromatogr. A, 2007, 1149(2), 333-344.
[http://dx.doi.org/10.1016/j.chroma.2007.03.043] [PMID: 17395191]
[19]
Jira, W.; Ziegenhals, K.; Speer, K. Gas chromatography-mass spectrometry (GC-MS) method for the determination of 16 European priority polycyclic aromatic hydrocarbons in smoked meat products and edible oils. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2008, 25(6), 704-713.
[http://dx.doi.org/10.1080/02652030701697769] [PMID: 18630343]
[20]
Xu, T.; Tang, H.; Chen, D.; Dong, H.; Li, L. Simultaneous determination of 24 polycyclic aromatic hydrocarbons in edible oil by tandem solid-phase extraction and gas chromatography coupled/tandem mass spectrometry. J. AOAC Int., 2015, 98(2), 529-537.
[http://dx.doi.org/10.5740/jaoacint.14-075] [PMID: 25905761]
[21]
Zheng, H-B.; Ding, J.; Zheng, S-J.; Zhu, G-T.; Yuan, B-F.; Feng, Y-Q. Facile synthesis of magnetic carbon nitride nanosheets and its application in magnetic solid phase extraction for polycyclic aromatic hydrocarbons in edible oil samples. Talanta, 2016, 148, 46-53.
[http://dx.doi.org/10.1016/j.talanta.2015.10.059] [PMID: 26653422]
[22]
Poster, D.L.; Schantz, M.M.; Sander, L.C.; Wise, S.A. Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: A critical review of gas chromatographic (GC) methods. Anal. Bioanal. Chem., 2006, 386(4), 859-881.
[http://dx.doi.org/10.1007/s00216-006-0771-0] [PMID: 17019586]
[23]
Hollosi, L.; Wenzl, T. Development and optimisation of a dopant assisted liquid chromatographic-atmospheric pressure photo ionisation-tandem mass spectrometric method for the determination of 15+1 EU priority PAHs in edible oils. J. Chromatogr. A, 2011, 1218(1), 23-31.
[http://dx.doi.org/10.1016/j.chroma.2010.10.015] [PMID: 21122869]
[24]
Gómez-Ruiz, J.Á.; Wenzl, T. Evaluation of gas chromatography columns for the analysis of the 15 + 1 EU-priority polycyclic aromatic hydrocarbons (PAHs). Anal. Bioanal. Chem., 2009, 393(6-7), 1697-1707.
[http://dx.doi.org/10.1007/s00216-008-2585-8] [PMID: 19132352]
[25]
Li, F.; Tan, W.; Kang, Z.; Wong, C-W. Tocotrienol enriched palm oil prevents atherosclerosis through modulating the activities of peroxisome proliferators-activated receptors. Atherosclerosis, 2010, 211(1), 278-282.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.01.015] [PMID: 20138624]
[26]
Sen, C. K.; Rink, C.; Khanna, S. Palm oil-derived natural vitamin E α-tocotrienol in brain health and disease. J. Amer. Coll. Nutri., 2010, 29(sup3), 314S-323S.
[http://dx.doi.org/10.1080/07315724.2010.10719846]
[27]
Tan, S.M.Q.; Chiew, Y.; Ahmad, B.; Kadir, K.A. Tocotrienol-rich vitamin E from palm oil (tocovid) and its effects in diabetes and diabetic nephropathy: A pilot phase II clinical trial. Nutrients, 2018, 10(9), 1315.
[http://dx.doi.org/10.3390/nu10091315] [PMID: 30227659]
[28]
Hoe, B.C.; Chan, E.S.; Nagasundara Ramanan, R.; Ooi, C.W. Recent development and challenges in extraction of phytonutrients from palm oil. Compr. Rev. Food Sci. Food Saf., 2020, 19(6), 4031-4061.
[http://dx.doi.org/10.1111/1541-4337.12648] [PMID: 33337051]
[29]
Hua, H.; Zhao, X.; Wu, S.; Li, G. Impact of refining on the levels of 4-hydroxy-trans-alkenals, parent and oxygenated polycyclic aromatic hydrocarbons in soybean and rapeseed oils. Food Control, 2016, 67, 82-89.
[http://dx.doi.org/10.1016/j.foodcont.2016.02.028]
[30]
Teixeira, V.H.; Casal, S.; Oliveira, M.B.P. PAHs content in sunflower, soybean and virgin olive oils: Evaluation in commercial samples and during refining process. Food Chem., 2007, 104(1), 106-112.
[http://dx.doi.org/10.1016/j.foodchem.2006.11.007]
[31]
Yebra-Pimentel, I.; Fernández-González, R.; Martínez-Carballo, E.; Simal-Gándara, J. Optimization of purification processes to remove polycyclic aromatic hydrocarbons (PAHs) in polluted raw fish oils. Sci. Total Environ., 2014, 470-471, 917-924.
[http://dx.doi.org/10.1016/j.scitotenv.2013.10.061] [PMID: 24231673]
[32]
Ma, Y.; Shi, L.; Liu, Y.; Lu, Q. Effects of neutralization, decoloration, and deodorization on polycyclic aromatic hydrocarbons during laboratory-scale oil refining process. J. Chem., 2017, 2017
[http://dx.doi.org/10.1155/2017/7824761]
[33]
Determination of Polycyclic Aromatic Hydrocarbons by online DonorAcceptor Complex Chromatography and HPLC with Fluorescence Detection ISO 22959:2009: Animal and Vegetable Fats and Oils 2009.
[34]
Shao, Y. Study of kinetics mechanism of PAHs photodegradation in solution. Procedia Earth Planetary Sci., 2017, 17, 348-351.
[http://dx.doi.org/10.1016/j.proeps.2016.12.088]
[35]
Zhao, L. Determination of 14 Polycyclic Aromatic Hydrocarbon Compounds in Edible Oil Using Captiva EMR-Lipid Cleanup by GC/MS/MS; Agilent Application Note Food Testing and Agriculture, 2019.
[36]
Mohammadi, A. Determination of polycyclic aromatic hydrocarbons in edible oil using fast and sensitive microwave-assisted extraction and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry. Polycycl. Aromat. Compd., 2020, 40(3), 705-713.
[http://dx.doi.org/10.1080/10406638.2018.1481110]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy