Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Applications of Choline Chloride-Based Deep Eutectic Solvents as Sustainable Media and Catalyst in the Synthesis of Heterocyclic Scaffolds

Author(s): Sonia Ratnani, Savita Bargujar, Mihir Khulbe and Abha Kathuria*

Volume 26, Issue 8, 2022

Published on: 28 June, 2022

Page: [745 - 755] Pages: 11

DOI: 10.2174/1385272826666220602105646

Price: $65

Abstract

Deep eutectic solvents (DESs), also referred to as low transition temperature mixtures (LTTMs), have emerged as sustainable and cheap alternatives to conventional organic solvents in organic synthesis. This is attributed to their exceptional characteristics viz. easy preparation with readily available cheap materials, water compatibility, non-flammability, non-toxicity, biocompatibility, biodegradability, etc. All these properties label them as versatile and cost-effective green solvents. The first reported DES, choline chloride urea mixture has appeared as an innocuous solvent and catalyst in many organic transformations. This prospective DES combination has been applied extensively to the synthesis of a wide range of heterocyclic compounds including quinolones, spirooxindoles, etc. The conditions employed are relatively mild and do not require additional acid catalysts or organic solvents. This ecofriendly blend for the synthesis of heterocycles reports excellent yields of products with shorter reaction times and a simple workup procedure. Evaluating these merits, this review focuses on the recent literature published on the use of choline chloride-based DESs in the synthesis of a few important heterocyclic compounds.

Keywords: Deep eutectic solvents, ionic liquids, heterocyclic compounds, choline chloride, organic synthesis, green chemistry.

Graphical Abstract
[1]
Adams, D.J.; Dyson, P.J.; Tanveer, S.J. Chemistry in Alternative Media, 1st ed; Wiley: New York, 2004, p. 272.
[2]
(a) Zainal-Abidin, M.H.; Hayyan, M.; Hayyan, A.; Jayakumar, N.S. New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Anal. Chim. Acta, 2017, 979, 1-23.
(b) Hadj-Kali, M.K. Separation of ethylbenzene and n-octane using deep eutectic solvents. Green Process. & Synt., 2015, 4(2), 117-123.
[3]
Lee, J-S. Deep eutectic solvents as versatile media for the synthesis of noble metal nanomaterials. Nanotechnol. Rev., 2017, 6(3), 271-278.
[http://dx.doi.org/10.1515/ntrev-2016-0106]
[4]
Isaifan, R.J.; Amhamed, A. Review on Carbon Dioxide absorption by Choline Chloride/Urea deep eutectic solvents. Adv. in Chem., 2018, 2018, 1-6.
[http://dx.doi.org/10.1155/2018/2675659]
[5]
(a) Liu, P.; Hao, J. MO, L.; Zhang, Z. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Advances, 2015, 5, 48675-48704.
(b) Alonso, D.A.; Baeza, A.; Chinchilla, R.; Guillena, G.; Pastor, I.M.; Ramón, D.J. Deep Eutectic Solvents: The Organic Reaction Medium of the Century. Eur. J. Org. Chem., 2016, 2016(4), 612-632.
(c) Khandelwal, S.; Tailor, Y.K.; Kumar, M. Deep eutectic solvents (DESs) as eco-friendly and sustainable sol-vent/catalyst systems in organic transformations. J. Mol. Liq., 2016, 215, 345-386.
[6]
Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev., 2014, 114(21), 11060-11082.
[http://dx.doi.org/10.1021/cr300162p] [PMID: 25300631]
[7]
Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev., 2012, 41(21), 7108-7146.
[http://dx.doi.org/10.1039/c2cs35178a] [PMID: 22806597]
[8]
Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. (Camb.), 2003, 1(1), 70-71.
[http://dx.doi.org/10.1039/b210714g] [PMID: 12610970]
[9]
Abdullah, G.H.; Kadhom, M.A. Studying of two choline chloride’s deep eutectic solvents in their aqueous mixtures. Int. J. Eng. Res. & Dev., 2016, 12(9), 73-80.
[10]
Azizi, N.; Dezfooli, S.; Hashemi, M.M. A sustainable approach to the Ugi reaction in deep eutectic solvent., 2013, 16(12), 1098-1102.
[http://dx.doi.org/10.1016/j.crci.2013.05.013]
[11]
Hayyan, M.; Looi, C.Y.; Hayyan, A.; Wong, W.F.; Hashim, M.A. In vitro and in vivo toxicity profiling of ammonium-based deep eutectic solvents. PLoS One, 2015, 10(2), e0117934.
[http://dx.doi.org/10.1371/journal.pone.0117934] [PMID: 25679975]
[12]
Mbous, Y.P.; Hayyan, M.; Wong, W.F.; Looi, C.Y.; Hashim, M.A. Unraveling the cytotoxicity and metabolic pathways of binary natural deep eutectic solvent systems. Sci. Rep., 2017, 7(1), 41257.
[http://dx.doi.org/10.1038/srep41257] [PMID: 28145498]
[13]
Tang, B.; Row, K.H. Recent developments in deep eutectic solvents in chemical sciences. Monatsh. Chem., 2013, 144(10), 1427-1454.
[http://dx.doi.org/10.1007/s00706-013-1050-3]
[14]
(a) Wen, J-X. Chen, Y.-L. Tang, J. Wang, Z. Yang. Deep eutectic solvents: syntheses, properties and applications. Chemosphere, 132, 63. (2015).
(b) Hayyan, M.; Hashim, M.A.; Al-Saadi, M.A.; Hayyan, A.; AlNashef, I.M.; Mirghani, M.E.S. Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents. Chemosphere, 2013, 93(2), 455-459.
(c) Florindo, C.; Oliveira, F.S.; Rebelo, L.P.N.; Fernandes, A.M.; Marrucho, I.M. Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. ACS Sustain. Chem.& Eng., 2014, 2(10), 2416-2425.
[15]
Handy, S.; Lavender, K. Organic synthesis in deep eutectic solvents: Paal–Knorr reactions. Tetrahedron Lett., 2013, 54(33), 4377-4379.
[http://dx.doi.org/10.1016/j.tetlet.2013.05.122]
[16]
Hu, H-C.; Liu, Y-H.; Li, B-L.; Cui, Z-S.; Zhang, Z-S. Deep eutectic solvents based on choline chloride malonic acid as an efficient and reusable catalytic system for one pot synthesis of functionalized pyrroles. RSC Advances, 2015, 5(10), 7720-7728.
[http://dx.doi.org/10.1039/C4RA13577F]
[17]
Gewald, K. Zur Reaktion von α-Oxo-mercaptanen mit Nitrilen. Angew. Chem., 1961, 73(3), 114.
[http://dx.doi.org/10.1002/ange.19610730307]
[18]
Meltzer, H.Y.; Fibiger, H.C. Olanzapine: a new typical antipsychotic drug. Neuropsychopharmacology, 1996, 14(2), 83-85.
[http://dx.doi.org/10.1016/0893-133X(95)00197-L] [PMID: 8822530]
[19]
Shaabani, A.; Hooshmand, S.E.; Afaridoun, H. A green chemical approach: A straightforward one-pot synthesis of 2-aminothiophene derivatives via Gewald reaction in deep eutectic solvents. Monatsh. Chem., 2016, 148(4), 711-716.
[http://dx.doi.org/10.1007/s00706-016-1787-6]
[20]
van Herk, T.; Brussee, J.; van den Nieuwendijk, A.M.; van der Klein, P.A.; IJzerman, A.P.; Stannek, C.; Burmeister, A.; Lorenzen, A. Pyrazole derivatives as partial ago-nists for the nicotinic acid receptor. J. Med. Chem., 2003, 46(18), 3945-3951.
[http://dx.doi.org/10.1021/jm030888c] [PMID: 12930155]
[21]
Krystof, V.; Cankar, P.; Frysová, I.; Slouka, J.; Kontopidis, G.; Dzubák, P.; Hajdúch, M.; Srovnal, J.; de Azevedo, W.F., Jr; Orság, M.; Paprskárová, M.; Rolcík, J.; Látr, A.; Fischer, P.M.; Strnad, M. 4-arylazo-3,5-diamino-1H-pyrazole CDK inhibitors: SAR study, crystal structure in complex with CDK2, selectivity, and cellular effects. J. Med. Chem., 2006, 49(22), 6500-6509.
[http://dx.doi.org/10.1021/jm0605740] [PMID: 17064068]
[22]
Kumar, V.; Kaur, K.; Gupta, G.K.; Sharma, A.K. Pyrazole containing natural products: Synthetic preview and biological significance. Eur. J. Med. Chem., 2013, 69, 735-753.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.053] [PMID: 24099993]
[23]
Abdel-Aziz, M.; Abuo-Rahma, G-D.; Hassan, A.A. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur. J. Med. Chem., 2009, 44(9), 3480-3487.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.032] [PMID: 19268406]
[24]
Gouda, M.A.; Berghot, M.A.; Shoeib, A.I.; Khalil, A.M. Synthesis and antimicrobial of new anthraquinone derivatives incorporating pyrazole moiety. Eur. J. Med. Chem., 2010, 45(5), 1843-1848.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.021] [PMID: 20144494]
[25]
Bendaha, H.; Yu, L.; Touzani, R.; Souane, R.; Giaever, G.; Nislow, C.; Boone, C.; El Kadiri, S.; Brown, G.W.; Bellaoui, M. New azole antifungal agents with novel modes of action: Synthesis and biological studies of new tridentate ligands based on pyrazole and triazole. Eur. J. Med. Chem., 2011, 46(9), 4117-4124.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.012] [PMID: 21723647]
[26]
Reddy, T.S.; Kulhari, H.; Reddy, V.G.; Bansal, V.; Kamal, A.; Shukla, R. Design, synthesis and biological evaluation of 1,3-diphenyl-1H-pyrazole derivatives containing benzimidazole skeleton as potential anticancer and apoptosis inducing agents. Eur. J. Med. Chem., 2015, 101, 790-805.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.031] [PMID: 26231080]
[27]
Kumar, H.; Saini, D.; Jain, S.; Jain, N. Pyrazole scaffold: A remarkable tool in the development of anticancer agents. Eur. J. Med. Chem., 2013, 70, 248-258.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.004] [PMID: 24161702]
[28]
Kamble, S.S.; Shankarling, G.S. A unique blend of water, DES and ultrasound for one pot knorr pyrazole synthesis and knoevenagel michael addition reaction. ChemistrySelect, 2018, 3(7), 2032-2036.
[http://dx.doi.org/10.1002/slct.201702898]
[29]
Singh, B.S.; Lobo, H.R.; Pinjari, D.V.; Jarag, K.J.; Pandit, A.B.; Shankarling, G.S. Ultrasound and deep eutectic solvent (DES): A novel blend of techniques for rapid and energy efficient synthesis of oxazoles. Ultrason. Sonochem., 2013, 20(1), 287-293.
[http://dx.doi.org/10.1016/j.ultsonch.2012.06.003] [PMID: 22784641]
[30]
Annes, S.B.; Vairaprakash, P.; Ramesh, S. TfOH mediated intermolecular electrocyclization for the synthesis of pyrazolines and its application in alkaloid synthesis. RSC Advances, 2018, 8(53), 30071-30075.
[http://dx.doi.org/10.1039/C8RA05702H]
[31]
Kuo, S.C.; Huang, L.J.; Nakamura, H. Studies on heterocyclic compounds. 6. Synthesis and analgesic and antiinflammatory activities of 3,4-dimethylpyrano[2,3-c]pyrazol-6-one derivatives. J. Med. Chem., 1984, 27(4), 539-544.
[http://dx.doi.org/10.1021/jm00370a020] [PMID: 6708056]
[32]
Wang, J.L.; Liu, D.; Zhang, Z.J.; Shan, S.; Han, X.; Srinivasula, S.M.; Croce, C.M.; Alnemri, E.S.; Huang, Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA, 2000, 97(13), 7124-7129.
[http://dx.doi.org/10.1073/pnas.97.13.7124] [PMID: 10860979]
[33]
Zaki, M.E.A.; Soliman, H.A.; Hiekal, O.A.; Rashad, A.E.Z. Pyrazolopyranopyrimidines as a class of anti-inflammatory agents. Z. Naturforsch. C J. Biosci., 2006, 61(1-2), 1-5.
[http://dx.doi.org/10.1515/znc-2006-1-201] [PMID: 16610208]
[34]
Dehbalaei, M.G.; Foroughifar, N.; Pasdar, H.; Khajeh-Amiri, A.; Foroughifar, N.; Alikarami, M. Choline chloride based thiourea catalyzed highly efficient, eco-friendly synthesis and anti-bacterial evaluation of some new 6-amino-4-aryl-2,4-dihydro-3-phenyl pyrano [2,3-c] pyrazole-5-carbonitrile derivatives. Res. Chem. Intermed., 2016, 43(5), 3035-3051.
[http://dx.doi.org/10.1007/s11164-016-2810-6]
[35]
Smith, P.W.; Sollis, S.L.; Howes, P.D.; Cherry, P.C.; Starkey, I.D.; Cobley, K.N.; Weston, H.; Scicinski, J.; Merritt, A.; Whittington, A.; Wyatt, P.; Taylor, N.; Green, D.; Bethell, R.; Madar, S.; Fenton, R.J.; Morley, P.J.; Pateman, T.; Beresford, A. Dihydropyrancarboxamides related to zanamivir: A new series of inhibitors of influenza virus sialidases. 1. Discovery, synthesis, biological activity, and structure-activity relationships of 4-guanidino- and 4-amino-4H-pyran-6-carboxamides. J. Med. Chem., 1998, 41(6), 787-797.
[http://dx.doi.org/10.1021/jm970374b] [PMID: 9526555]
[36]
Bhosle, M.R.; Khillare, L.D.; Dhumal, S.T.; Mane, R.A. A facile synthesis of 6-amino-2H, 4H-pyrano[2,3-c] pyrazole-5-carbonitriles in deep eutectic solvent. Chin. Chem. Lett., 2016, 27(3), 370-374.
[http://dx.doi.org/10.1016/j.cclet.2015.12.005]
[37]
Wagner, C.; Barth, V.C., Jr; de Oliveira, S.D.; Campos, M.M. Effectiveness of the proton pump inhibitor omeprazole associated with calcium hydroxide as intracanal medication: An in vivo study. J. Endod., 2011, 37(9), 1253-1257.
[http://dx.doi.org/10.1016/j.joen.2011.06.011] [PMID: 21846542]
[38]
Wang, X.Q.; Liu, L.X.; Li, Y.; Sun, C.J.; Chen, W.; Li, L.; Zhang, H.B.; Yang, X.D. Design, synthesis and biological evaluation of novel hybrid compounds of imidazole scaffold-based 2-benzylbenzofuran as potent anticancer agents. Eur. J. Med. Chem., 2013, 62, 111-121.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.040] [PMID: 23353748]
[39]
Wang, L.; Zhong, X.; Zhou, M.; Zhou, W.; Chen, Q.; He, M-Y. One-pot synthesis of polysubstituted imidazoles in a Brønsted acidic deep eutectic solvent. J. Chem. Res., 2013, 37(4), 236-238.
[http://dx.doi.org/10.3184/174751913X13636339694414]
[40]
Mobinikhaledi, A.; Amiri, A.K. One-pot synthesis of tri- and tetrasubstituted imidazoles using eutectic salts as ionic liquid catalyst. Res. Chem. Intermed., 2015, 41(4), 2063-2070.
[http://dx.doi.org/10.1007/s11164-013-1331-9]
[41]
Pérez, J.M.; Ramón, D.J. Synthesis of 3,5-Disubstituted isoxazoles and isoxazolines in deep eutectic solvents. ACS Sustain. Chem.& Eng., 2015, 3(9), 2343-2349.
[http://dx.doi.org/10.1021/acssuschemeng.5b00689]
[42]
Leaver, I.H.; Milligan, B. Fluorescent whitening agents - a survey (1974-82). Dyes Pigments, 1984, 5(2), 109-144.
[http://dx.doi.org/10.1016/0143-7208(84)80008-X]
[43]
Wasserman, H.H.; Gamble, R.J. Synthesis of (+)-antimycin A3. Use of the oxazole ring in protecting and activating functions. J. Am. Chem. Soc., 1985, 107(5), 1423-1424.
[http://dx.doi.org/10.1021/ja00291a059]
[44]
Singh, B.S.; Lobo, H.R.; Pinjari, D.V.; Jarag, K.J.; Pandit, A.B.; Shankarling, G.S. Comparative material study and synthesis of 4-(4-nitrophenyl)oxazol-2-amine via sonochemical and thermal method. Ultrason. Sonochem., 2013, 20(2), 633-639.
[http://dx.doi.org/10.1016/j.ultsonch.2012.09.002] [PMID: 23062955]
[45]
Patt, W.C.; Hamilton, H.W.; Taylor, M.D.; Ryan, M.J.; Taylor, D.G., Jr; Connolly, C.J.; Doherty, A.M.; Klutchko, S.R.; Sircar, I.; Steinbaugh, B.A. Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors. J. Med. Chem., 1992, 35(14), 2562-2572.
[http://dx.doi.org/10.1021/jm00092a006] [PMID: 1635057]
[46]
Bell, F.W.; Cantrell, A.S.; Högberg, M.; Jaskunas, S.R.; Johansson, N.G.; Jordan, C.L.; Kinnick, M.D.; Lind, P.; Morin, J.M., Jr; Noréen, R. Phenethylthiazolethiourea (PETT) compounds, a new class of HIV-1 reverse transcriptase inhibitors. 1. Synthesis and basic structure-activity relationship studies of PETT analogs. J. Med. Chem., 1995, 38(25), 4929-4936.
[http://dx.doi.org/10.1021/jm00025a010] [PMID: 8523406]
[47]
Jaen, J.C.; Wise, L.D.; Caprathe, B.W.; Tecle, H.; Bergmeier, S.; Humblet, C.C.; Heffner, T.G.; Meltzer, L.T.; Pugsley, T.A. 4-(1,2,5,6-Tetrahydro-1-alkyl-3-pyridinyl)-2-thiazolamines: A novel class of compounds with central dopamine agonist properties. J. Med. Chem., 1990, 33(1), 311-317.
[http://dx.doi.org/10.1021/jm00163a051] [PMID: 1967314]
[48]
Fink, B.E.; Mortensen, D.S.; Stauffer, S.R.; Aron, Z.D.; Katzenellenbogen, J.A. Novel structural templates for estrogen-receptor ligands and prospects for combinatorial synthesis of estrogens. Chem. Biol., 1999, 6(4), 205-219.
[http://dx.doi.org/10.1016/S1074-5521(99)80037-4] [PMID: 10099132]
[49]
van Muijlwijk-Koezen, J.E.; Timmerman, H.; Vollinga, R.C.; Frijtag von Drabbe Künzel, J.; de Groote, M.; Visser, S.; IJzerman, A.P. Thiazole and thiadiazole analogues as a novel class of adenosine receptor antagonists. J. Med. Chem., 2001, 44(5), 749-762.
[http://dx.doi.org/10.1021/jm0003945] [PMID: 11262085]
[50]
Potewar, T.M.; Ingale, S.; Srinivasan, K. Efficient synthesis of 2,4-disubstituted thiazoles using ionic liquid under ambient conditions: A practical approach towards the synthesis of Fanetizole. Tetrahedron, 2007, 63(45), 11066-11069.
[http://dx.doi.org/10.1016/j.tet.2007.08.036]
[51]
Lobo, H.R.; Singh, B.S.; Shankarling, G.S. Lipase and deep eutectic mixture catalyzed efficient synthesis of thiazoles in water at room temperature. Catal. Lett., 2012, 142(11), 1369-1375.
[http://dx.doi.org/10.1007/s10562-012-0902-5]
[52]
Altaf, A.A.; Shahzad, A.; Gul, Z.; Rasool, N.; Badshah, A.; Lal, B.; Khan, E. A review on the medicinal importance of pyridine derivatives. J. Drug Des. & Med. Chem., 2015, 1(1), 1-11.
[53]
Thapa, P.; Karki, R.; Yun, M.; Kadayat, T.M.; Lee, E.; Kwon, H.B.; Na, Y.; Cho, W.J.; Kim, N.D.; Jeong, B.S.; Kwon, Y.; Lee, E.S. Design, synthesis, and antitumor evalu-ation of 2,4,6-triaryl pyridines containing chlorophenyl and phenolic moiety. Eur. J. Med. Chem., 2012, 52, 123-136.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.010] [PMID: 22503656]
[54]
Kamble, S.S.; Shankarling, G. Amalgamation of CSR and DES: An energy efficient protocol for the one pot synthesis of 2,4,6 triaryl pyridine derivatives. Chem. Select., 2018, 3(37), 10464-10467.
[http://dx.doi.org/10.1002/slct.201801690]
[55]
May, B.C.H.; Zorn, J.A.; Witkop, J.; Sherrill, J.; Wallace, A.C.; Legname, G.; Prusiner, S.B.; Cohen, F.E. Structure-activity relationship study of prion inhibition by 2-aminopyridine-3,5-dicarbonitrile-based compounds: Parallel synthesis, bioactivity, and in vitro pharmacokinetics. J. Med. Chem., 2007, 50(1), 65-73.
[http://dx.doi.org/10.1021/jm061045z] [PMID: 17201410]
[56]
Azizi, N.; Haghayegh, M. Greener and additive free reactions in deep eutectic solvent: One Pot, three component synthesis of highly substituted pyridines. ChemistrySelect, 2017, 2(28), 8870-8873.
[http://dx.doi.org/10.1002/slct.201701682]
[57]
Safak, C.; Simsek, R. Fused 1,4-dihydropyridines as potential calcium modulatory compounds. Mini Rev. Med. Chem., 2006, 6(7), 747-755.
[http://dx.doi.org/10.2174/138955706777698606] [PMID: 16842124]
[58]
Loev, B.; Goodman, M.M.; Snader, M.K.; Tedeschi, R.; Macko, E. “Hantzsch-type” dihydropyridine hypotensive agents. 3. J. Med. Chem., 1974, 17(9), 956-965.
[http://dx.doi.org/10.1021/jm00255a010] [PMID: 4859592]
[59]
Pednekar, S.; Bhalerao, R.; Ghadge, N. One-pot multi-component synthesis of 1,4-dihydropyridine derivatives in biocompatible deep eutectic solvents. J. Chem. Sci., 2013, 125(3), 615-621.
[http://dx.doi.org/10.1007/s12039-013-0399-5]
[60]
Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type--a literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
[61]
Snider, B.B.; Shi, Z. Biomimetic synthesis of (.+-.)-crambines A, B, C1, and C2. Revision of the structure of crambines B and C1. J. Org. Chem., 1993, 58(15), 3828-3839.
[http://dx.doi.org/10.1021/jo00067a014]
[62]
Atwal, K.S.; Moreland, S. Dihydropyrimidine calcium channel blockers 51: Bicyclic dihydropyrimidines as potent mimics of dihydropyridines. Bioorg. Med. Chem. Lett., 1991, 1(6), 291-294.
[http://dx.doi.org/10.1016/S0960-894X(01)80810-6]
[63]
Azizi, N.; Dezfuli, S.; Hahsemi, M.M. Eutectic salt catalyzed environmentally benign and highly efficient Biginelli reaction. ScientificWorldJournal, 2012, 2012, 908702.
[http://dx.doi.org/10.1100/2012/908702] [PMID: 22649326]
[64]
Calderon Morales, R.; Tambyrajah, V.; Jenkins, P.R.; Davies, D.L.; Abbott, A.P. The regiospecific Fischer indole reaction in choline chloride.2ZnCl2 with product isola-tion by direct sublimation from the ionic liquid. Chem. Commun. (Camb.), 2004, 2004(2), 158-159.
[http://dx.doi.org/10.1039/B313655H] [PMID: 14737527]
[65]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[66]
de la Guardia, C.; Stephens, D.E.; Dang, H.T.; Quijada, M.; Larionov, O.V.; Lleonart, R. Antiviral activity of novel quinoline derivatives against dengue virus serotype 2. Molecules, 2018, 23(3), 672.
[http://dx.doi.org/10.3390/molecules23030672] [PMID: 29547522]
[67]
Sharma, V.; Mehta, D.K.; Das, R. Synthetic methods of quinoline derivatives as potent anticancer agents. Mini Rev. Med. Chem., 2017, 17(16), 1557-1572.
[http://dx.doi.org/10.2174/1389557517666170510104954] [PMID: 28494729]
[68]
Mukherjee, S.; Pal, M. Medicinal chemistry of quinolines as emerging anti-inflammatory agents: An overview. Curr. Med. Chem., 2013, 20(35), 4386-4410.
[http://dx.doi.org/10.2174/09298673113209990170] [PMID: 23862618]
[69]
Tumambac, G.E.; Rosencrance, C.M.; Wolf, C. Selective metal ion recognition using a fluorescent 1,8-diquinolylnaphthalene-derived sensor in aqueous solution. Tetrahedron, 2004, 60(49), 11293-11297.
[http://dx.doi.org/10.1016/j.tet.2004.07.053]
[70]
Shahabi, D.; Tavakol, H. One-pot synthesis of quinoline derivatives using choline chloride/tin (II) chloride deep eutectic solvent as a green catalyst. J. Mol. Liq., 2016, 220, 324-328.
[http://dx.doi.org/10.1016/j.molliq.2016.04.094]
[71]
Alafeefy, A.M.; Kadi, A.A.; Al-Deeb, O.A.; El-Tahir, K.E.; Al-Jaber, N.A. Synthesis, analgesic and anti-inflammatory evaluation of some novel quinazoline derivatives. Eur. J. Med. Chem., 2010, 45(11), 4947-4952.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.067] [PMID: 20817329]
[72]
Balakumar, C.; Lamba, P.; Kishore, D.P.; Narayana, B.L.; Rao, K.V.; Rajwinder, K.; Rao, A.R.; Shireesha, B.; Narsaiah, B. Synthesis, anti-inflammatory evaluation and docking studies of some new fluorinated fused quinazolines. Eur. J. Med. Chem., 2010, 45(11), 4904-4913.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.063] [PMID: 20800934]
[73]
Noolvi, M.N.; Patel, H.M.; Bhardwaj, V.; Chauhan, A. Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives: Search for anticancer agent. Eur. J. Med. Chem., 2011, 46(6), 2327-2346.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.015] [PMID: 21458891]
[74]
Lobo, H.R.; Singh, B.S.; Shankarling, G.S. Bio-compatible eutectic mixture for multi-component synthesis: A valuable acidic catalyst for synthesis of novel 2,3-dihydroquinazolin-4(1H)-one derivatives. Catal. Commun., 2012, 27, 179-183.
[http://dx.doi.org/10.1016/j.catcom.2012.07.020]
[75]
Santos, M.M.M. Recent advances in the synthesis of biologically active spirooxindoles. Tetrahedron. 2014, 70, 9735-9757. b. Zheng, Y.; Tice, C.M.; Singh, S.B. The use of spirocyclic scaffolds in drug discovery. Bioorg. Med. Chem. Lett., 2014, 24, 3673-3682.
[76]
Rajawat, A.; Khandelwal, S.; Kumar, M. Deep eutectic solvent promoted efficient and environmentally benign four-component domino protocol for synthesis of spi-rooxindoles. RSC Advances, 2014, 4(10), 5105-5112.
[http://dx.doi.org/10.1039/c3ra44600j]
[77]
Devi, T.J.; Singh, T.P.; Singh, O.M. The one-pot four-component eco-friendly synthesis of spirooxindoles in deep eutectic solvent. J. Chem. Sci., 2020, 132(1), 28.
[http://dx.doi.org/10.1007/s12039-019-1730-6]
[78]
Khandelwal, S.; Rajawat, A.; Tailor, Y.K.; Kumar, M. A simple, efficient and environmentally benign synthetic protocol for the synthesis of spirooxindoles using cho-line chloride-oxalic acid eutectic mixture as catalyst/solvent system. Comb. Chem. High Throughput Screen., 2014, 17(9), 763-769.
[http://dx.doi.org/10.2174/1386207317666141016125218] [PMID: 25329839]
[79]
Azizi, N.; Dezfooli, S.; Hashemi, M.M. Greener synthesis of spirooxindole in deep eutectic solvent. J. Mol. Liq., 2014, 194, 62-67.
[http://dx.doi.org/10.1016/j.molliq.2014.01.009]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy