Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Role of DPP4 and DPP4i in Glucose Homeostasis and Cardiorenal Syndrome

Author(s): Siva Prasad Panda*

Volume 23, Issue 2, 2023

Published on: 05 September, 2022

Page: [179 - 187] Pages: 9

DOI: 10.2174/1871530322666220531123116

Price: $65

Abstract

The objective of the review led to the pursuit of adopting dipeptidyl peptidase-4 inhibitors (DPP4i) as a novel pharmacotherapy in diabetes mellitus (DM) and cardiorenal syndrome (CRS). The CRS is defined as the co-existence of myocardial ischemia with renal failure. At present, the commercially available drugs enhance insulin secretion or action. However, most of the drugs are associated with adverse effects, such as weight gain or hypoglycemia. As a result, newer therapies with better safety and efficacy profiles are being explored. The DPP4 protease enzyme is involved in cardiovascular and renal diseases in association with over-expressed cytokines. The novel characteristic of DPP4i is to control the elevated blood glucose levels in response to nutrient ingestion without causing hypoglycemia. Also, DPP4i are indirectly involved in reducing myocardial ischemia by promoting cardioprotective peptides. They protect the glucagon-like peptide 1 (GLP-1) from the deteriorating effect of the DPP4 enzyme. The GLP-1 receptors (GLP-1R) are abundantly expressed in renal and cardiovascular tissue. The overexpression of GLP-1R will confer protection of the heart and kidney during CRS. DPP4i were found to significantly clear plasma glucose by the simultaneously activating natural thrombolytic system and increasing insulin levels. They can be used in the early stages of the disease, including pre-diabetes or obesity combined with impaired incretin response, while the combination of DPP4i with metformin or thiazolidinediones as insulin sensitizers offers an additional improvement in the treatment of DM. With its positive attributes in a host of associated parameters of interest, DPP4i are studied extensively in the present review.

Keywords: Diabetes mellitus, cardiorenal syndrome, DPP4, DPP4i, GLP-1R, insulin levels.

Graphical Abstract
[1]
Shakya, A.; Chaudary, S.K.; Garabadu, D.; Bhat, H.R.; Kakoti, B.B.; Ghosh, S.K. A comprehensive review on preclinical dia-betic models. Curr. Diabetes Rev., 2020, 16(2), 104-116.
[http://dx.doi.org/10.2174/1573399815666190510112035] [PMID: 31074371]
[2]
Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; Sasapu, A.; Beebe, A.; Patil, N.; Musham, C.K.; Lohani, G.P.; Mirza, W. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front. Endocrinol. (Lausanne), 2017, 8, 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[3]
Fraser, S.D.; Blakeman, T. Chronic kidney disease: Identifica-tion and management in primary care. Pragmat. Obs. Res., 2016, 7, 21-32.
[http://dx.doi.org/10.2147/POR.S97310] [PMID: 27822135]
[4]
Wang, N.; Yang, T.; Li, J.; Zhang, X. Dipeptidyl peptidase-4 inhibitors as add-on therapy to insulin in patients with type 2 diabetes mellitus: A meta-analysis of randomized controlled tri-als. Diabetes Metab. Syndr. Obes., 2019, 12, 1513-1526.
[http://dx.doi.org/10.2147/DMSO.S202024] [PMID: 31692532]
[5]
Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 diabetes mellitus: A review of current trends. Oman Med. J., 2012, 27(4), 269-273.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[6]
Polonsky, W.H.; Henry, R.R. Poor medication adherence in type 2 diabetes: Recognizing the scope of the problem and its key contributors. Patient Prefer. Adherence, 2016, 10, 1299-1307.
[http://dx.doi.org/10.2147/PPA.S106821] [PMID: 27524885]
[7]
Sola, D.; Rossi, L.; Schianca, G.P.C.; Maffioli, P.; Bigliocca, M.; Mella, R.; Corlianò, F.; Fra, G.P.; Bartoli, E.; Derosa, G. Sul-fonylureas and their use in clinical practice. Arch. Med. Sci., 2015, 11(4), 840-848.
[http://dx.doi.org/10.5114/aoms.2015.53304] [PMID: 26322096]
[8]
Nanjan, M.J.; Mohammed, M.; Prashantha Kumar, B.R.; Chandrasekar, M.J.N. Thiazolidinediones as antidiabetic agents: A critical review. Bioorg. Chem., 2018, 77, 548-567.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.009] [PMID: 29475164]
[9]
Lenhard, J.M.; Gottschalk, W.K. Preclinical developments in type 2 diabetes. Adv. Drug Deliv. Rev., 2002, 54(9), 1199-1212.
[http://dx.doi.org/10.1016/S0169-409X(02)00092-3] [PMID: 12393301]
[10]
Gilbert, M.P.; Pratley, R.E. GLP-1 analogs and DPP-4 inhibitors in type 2 diabetes therapy: Review of head-to-head clinical tri-als. Front. Endocrinol. (Lausanne), 2020, 11, 178.
[http://dx.doi.org/10.3389/fendo.2020.00178] [PMID: 32308645]
[11]
Drucker, D.J.; Nauck, M.A. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibi-tors in type 2 diabetes. Lancet, 2006, 368(9548), 1696-1705.
[http://dx.doi.org/10.1016/S0140-6736(06)69705-5] [PMID: 17098089]
[12]
Lippl, F.; Kircher, F.; Erdmann, J.; Allescher, H-D.; Schusdziar-ra, V. Effect of GIP, GLP-1, insulin and gastrin on ghrelin re-lease in the isolated rat stomach. Regul. Pept., 2004, 119(1-2), 93-98.
[http://dx.doi.org/10.1016/j.regpep.2004.01.003] [PMID: 15093702]
[13]
Schmid, R.; Schusdziarra, V.; Aulehner, R.; Weigert, N.; Clas-sen, M. Comparison of GLP-1 (7-36amide) and GIP on release of somatostatin-like immunoreactivity and insulin from the iso-lated rat pancreas. Z. Gastroenterol., 1990, 28(6), 280-284.
[PMID: 2238756]
[14]
Drucker, D.J. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care, 2003, 26(10), 2929-2940.
[http://dx.doi.org/10.2337/diacare.26.10.2929] [PMID: 14514604]
[15]
Dupré, J.; Beck, J.C. Stimulation of release of insulin by an extract of intestinal mucosa. Diabetes, 1966, 15(8), 555-559.
[http://dx.doi.org/10.2337/diab.15.8.555] [PMID: 5912065]
[16]
Reimer, M.K.; Holst, J.J.; Ahrén, B. Long-term inhibition of dipeptidyl peptidase IV improves glucose tolerance and pre-serves islet function in mice. Eur. J. Endocrinol., 2002, 146(5), 717-727.
[http://dx.doi.org/10.1530/eje.0.1460717] [PMID: 11980629]
[17]
Fehmann, H.C.; Göke, R.; Göke, B. Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucose-dependent insulin releasing polypeptide. Endocr. Rev., 1995, 16(3), 390-410.
[http://dx.doi.org/10.1210/edrv-16-3-390] [PMID: 7671853]
[18]
McIntosh, C.H.S.; Demuth, H.U.; Pospisilik, J.A.; Pederson, R. Dipeptidyl peptidase IV inhibitors: How do they work as new antidiabetic agents? Regul. Pept., 2005, 128(2), 159-165.
[http://dx.doi.org/10.1016/j.regpep.2004.06.001] [PMID: 15780435]
[19]
Meier, J.J.; Gallwitz, B.; Nauck, M.A. Glucagon-like peptide 1 and gastric inhibitory polypeptide: Potential applications in type 2 diabetes mellitus. BioDrugs, 2003, 17(2), 93-102.
[http://dx.doi.org/10.2165/00063030-200317020-00002] [PMID: 12641488]
[20]
Imeryüz, N. Yeğen, B.Ç.; Bozkurt, A.; Coşkun, T.; Villanueva-Peñacarrillo, M.L.; Ulusoy, N.B. Glucagon-like peptide-1 inhib-its gastric emptying via vagal afferent-mediated central mecha-nisms. Am. J. Physiol., 1997, 273(4), G920-G927.
[PMID: 9357836]
[21]
Hui, H.; Farilla, L.; Merkel, P.; Perfetti, R. The short half-life of glucagon-like peptide-1 in plasma does not reflect its long-lasting beneficial effects. Eur. J. Endocrinol., 2002, 146(6), 863-869.
[http://dx.doi.org/10.1530/eje.0.1460863] [PMID: 12039708]
[22]
Ahrén, B.; Schmitz, O. GLP-1 receptor agonists and DPP-4 inhibitors in the treatment of type 2 diabetes. Horm. Metab. Res., 2004, 36(11-12), 867-876.
[http://dx.doi.org/10.1055/s-2004-826178] [PMID: 15655721]
[23]
Zander, M.; Madsbad, S.; Deacon, C.F.; Holst, J.J. The metabo-lite generated by dipeptidyl-peptidase 4 metabolism of gluca-gon-like peptide-1 has no influence on plasma glucose levels in patients with type 2 diabetes. Diabetologia, 2006, 49(2), 369-374.
[http://dx.doi.org/10.1007/s00125-005-0098-y] [PMID: 16385384]
[24]
Meyerholz, D.K.; Lambertz, A.M.; McCray, P.B. Jr Dipeptidyl peptidase 4 distribution in the human respiratory tract: Implica-tions for the middle east respiratory syndrome. Am. J. Pathol., 2016, 186(1), 78-86.
[http://dx.doi.org/10.1016/j.ajpath.2015.09.014] [PMID: 26597880]
[25]
Fuchs, H.; Tillement, J-P.; Urien, S.; Greischel, A.; Roth, W. Concentration-dependent plasma protein binding of the novel dipeptidyl peptidase 4 inhibitor BI 1356 due to saturable bind-ing to its target in plasma of mice, rats and humans. J. Pharm. Pharmacol., 2009, 61(1), 55-62.
[http://dx.doi.org/10.1211/jpp.61.01.0008] [PMID: 19126297]
[26]
Mentlein, R.; Dipeptidyl-Peptidase, I.V. Dipeptidyl-peptidase IV (CD26)--role in the inactivation of regulatory peptides. Regul. Pept., 1999, 85(1), 9-24.
[http://dx.doi.org/10.1016/S0167-0115(99)00089-0] [PMID: 10588446]
[27]
Shao, S.; Xu, Q.; Yu, X.; Pan, R.; Chen, Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol. Ther., 2020, 209, 107503.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107503] [PMID: 32061923]
[28]
Musoev, A.; Numonov, S.; You, Z.; Gao, H. Discovery of novel DPPIV inhibitors as potential candidates for the treatment of type 2 diabetes mellitus predicted by 3D QSAR pharmacophore models, molecular docking and de novo evolution. Molecules, 2019, 24(16), 2870.
[http://dx.doi.org/10.3390/molecules24162870] [PMID: 31394858]
[29]
Matteucci, E.; Giampietro, O. Dipeptidyl peptidase-4 (CD26): Knowing the function before inhibiting the enzyme. Curr. Med. Chem., 2009, 16(23), 2943-2951.
[http://dx.doi.org/10.2174/092986709788803114] [PMID: 19689275]
[30]
Janardhan, S.; Sastry, G.N. Dipeptidyl peptidase IV inhibitors: A new paradigm in type 2 diabetes treatment. Curr. Drug Targets, 2014, 15(6), 600-621.
[http://dx.doi.org/10.2174/1389450115666140311102638] [PMID: 24611684]
[31]
Rasmussen, H.B.; Branner, S.; Wiberg, F.C.; Wagtmann, N. Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat. Struct. Biol., 2003, 10(1), 19-25.
[http://dx.doi.org/10.1038/nsb882] [PMID: 12483204]
[32]
Soisson, S.M.; Patel, S.B.; Abeywickrema, P.D.; Byrne, N.J.; Diehl, R.E.; Hall, D.L.; Ford, R.E.; Reid, J.C.; Rickert, K.W.; Shipman, J.M.; Sharma, S.; Lumb, K.J. Structural definition and substrate specificity of the S28 protease family: The crystal structure of human prolylcarboxypeptidase. BMC Struct. Biol., 2010, 10(1), 16.
[http://dx.doi.org/10.1186/1472-6807-10-16] [PMID: 20540760]
[33]
Green, B.D.; Flatt, P.R.; Bailey, C.J. Dipeptidyl peptidase IV (DPP IV) inhibitors: A newly emerging drug class for the treatment of type 2 diabetes. Diab. Vasc. Dis. Res., 2006, 3(3), 159-165.
[http://dx.doi.org/10.3132/dvdr.2006.024] [PMID: 17160910]
[34]
Huan, Y.; Jiang, Q.; Liu, J.L.; Shen, Z.F. Establishment of a dipeptidyl peptidases (DPP) 8/9 expressing cell model for evaluating the selectivity of DPP4 inhibitors. J. Pharmacol. Toxicol. Methods, 2015, 71, 8-12.
[http://dx.doi.org/10.1016/j.vascn.2014.11.002] [PMID: 25464020]
[35]
Gotoh, H.; Hagihara, M.; Nagatsu, T.; Iwata, H.; Miura, T. Activity of dipeptidyl peptidase IV and postproline cleaving enzyme in sera from osteoporotic patients. Clin. Chem., 1988, 34(12), 2499-2501.
[http://dx.doi.org/10.1093/clinchem/34.12.2499] [PMID: 2904308]
[36]
Ahrén, B. DPP-4 inhibitors. Best Pract. Res. Clin. Endocrinol. Metab., 2007, 21(4), 517-533.
[http://dx.doi.org/10.1016/j.beem.2007.07.005] [PMID: 18054733]
[37]
Ahrén, B.; Holst, J.J.; Mårtensson, H.; Balkan, B. Improved glucose tolerance and insulin secretion by inhibition of dipep-tidyl peptidase IV in mice. Eur. J. Pharmacol., 2000, 404(1-2), 239-245.
[http://dx.doi.org/10.1016/S0014-2999(00)00600-2] [PMID: 10980284]
[38]
Balkan, B.; Kwasnik, L.; Miserendino, R.; Holst, J.J.; Li, X. Inhibition of dipeptidyl peptidase IV with NVP-DPP728 in-creases plasma GLP-1 (7-36 amide) concentrations and im-proves oral glucose tolerance in obese Zucker rats. Diabetologia, 1999, 42(11), 1324-1331.
[http://dx.doi.org/10.1007/s001250051445] [PMID: 10550416]
[39]
Hansotia, T.; Baggio, L.L.; Delmeire, D.; Hinke, S.A.; Yamada, Y.; Tsukiyama, K.; Seino, Y.; Holst, J.J.; Schuit, F.; Drucker, D.J. Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glu-coregulatory actions of DPP-IV inhibitors. Diabetes, 2004, 53(5), 1326-1335.
[http://dx.doi.org/10.2337/diabetes.53.5.1326] [PMID: 15111503]
[40]
Nuñez-Rodriguez, N. Introduction to organic chemistry. In: Ball, D.W.; Hill, J.W.; Scott, R.J.; Eds.; The Basics of General, Organic, and Biological Chemistry. Saylor Foundation; , 2011, p. 120.
[41]
Mulvihill, E.E.; Drucker, D.J. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr. Rev., 2014, 35(6), 992-1019.
[http://dx.doi.org/10.1210/er.2014-1035] [PMID: 25216328]
[42]
Collins, L.; Costello, R.A. Glucagon-like Peptide-1 Receptor Agonists; StatPearls Publishing: Treasure Island, FL, 2022.
[43]
Inoue, K.; Maeda, N.; Fujishima, Y.; Fukuda, S.; Nagao, H.; Yamaoka, M.; Hirata, A.; Nishizawa, H.; Funahashi, T.; Shimomura, I. Long-term impact of liraglutide, a Glucagon-Like Peptide-1 (GLP-1) analogue, on body weight and glycemic control in Japanese type 2 diabetes: An observational study. Diabetol. Metab. Syndr., 2014, 6(1), 95.
[http://dx.doi.org/10.1186/1758-5996-6-95] [PMID: 25237400]
[44]
Zhang, X.; Li, W.; Li, P.; Chang, M.; Huang, X.; Li, Q.; Cui, C. Intraportal infusion of ghrelin could inhibit glucose-stimulated GLP-1 secretion by enteric neural net in Wistar rat. BioMed Res. Int., 2014, 2014, 923564.
[http://dx.doi.org/10.1155/2014/923564] [PMID: 25247193]
[45]
Yoon, H.; Sung, J.H.; Song, M.J. Effects of the antidiabetic drugs evogliptin and sitagliptin on the immune function of CD26/DPP4 in Th1 cells. Biomol. Ther. (Seoul), 2021, 29(2), 154-165.
[http://dx.doi.org/10.4062/biomolther.2020.150] [PMID: 33148870]
[46]
Hutch, C.R.; Roelofs, K.; Haller, A.; Sorrell, J.; Leix, K.; D’Alessio, D.D.; Augustin, R.; Seeley, R.J.; Klein, T.; Sandoval, D.A. The role of GIP and pancreatic GLP-1 in the glucoregula-tory effect of DPP-4 inhibition in mice. Diabetologia, 2019, 62(10), 1928-1937.
[http://dx.doi.org/10.1007/s00125-019-4963-5] [PMID: 31414143]
[47]
Röhrborn, D.; Wronkowitz, N.; Eckel, J. DPP4 in Diabetes. Front. Immunol., 2015, 6, 386.
[http://dx.doi.org/10.3389/fimmu.2015.00386] [PMID: 26284071]
[48]
Wang, Y.; Landheer, S.; van Gilst, W.H.; van Amerongen, A.; Hammes, H-P.; Henning, R.H.; Deelman, L.E.; Buikema, H. Attenuation of renovascular damage in Zucker diabetic fatty rat by NWT-03, an egg protein hydrolysate with ACE- and DPP4-inhibitory activity. PLoS One, 2012, 7(10), e46781.
[http://dx.doi.org/10.1371/journal.pone.0046781] [PMID: 23071636]
[49]
Graaf, C.; Donnelly, D.; Wootten, D.; Lau, J.; Sexton, P.M.; Miller, L.J.; Ahn, J-M.; Liao, J.; Fletcher, M.M.; Yang, D.; Brown, A.J.H.; Zhou, C.; Deng, J.; Wang, M-W. Glucagon-like peptide-1 and its class B G protein-coupled receptors: A long march to therapeutic successes. Pharmacol. Rev., 2016, 68(4), 954-1013.
[http://dx.doi.org/10.1124/pr.115.011395] [PMID: 27630114]
[50]
Koole, C.; Wootten, D.; Simms, J.; Miller, L.J.; Christopoulos, A.; Sexton, P.M. Second extracellular loop of human Glucagon-Like Peptide-1 Receptor (GLP-1R) has a critical role in GLP-1 peptide binding and receptor activation. J. Biol. Chem., 2012, 287(6), 3642-3658.
[http://dx.doi.org/10.1074/jbc.M111.309328] [PMID: 22147710]
[51]
Marzook, A.; Tomas, A.; Jones, B. The interplay of glucagon-like peptide-1 receptor trafficking and signalling in pancreatic beta cells. Front. Endocrinol. (Lausanne), 2021, 12, 678055.
[http://dx.doi.org/10.3389/fendo.2021.678055] [PMID: 34040588]
[52]
Ronco, C.; Bellasi, A.; Di Lullo, L. Cardiorenal syndrome: An overview. Adv. Chronic Kidney Dis., 2018, 25(5), 382-390.
[http://dx.doi.org/10.1053/j.ackd.2018.08.004] [PMID: 30309455]
[53]
Wronkowitz, N.; Görgens, S.W.; Romacho, T.; Villalobos, L.A.; Sánchez-Ferrer, C.F.; Peiró, C.; Sell, H.; Eckel, J. Soluble DPP4 induces inflammation and proliferation of human smooth mus-cle cells via protease-activated receptor 2. Biochim. Biophys. Acta, 2014, 1842(9), 1613-1621.
[http://dx.doi.org/10.1016/j.bbadis.2014.06.004] [PMID: 24928308]
[54]
Ma, X.; Liu, Z.; Ilyas, I.; Little, P.J.; Kamato, D.; Sahebka, A.; Chen, Z.; Luo, S.; Zheng, X.; Weng, J.; Xu, S. GLP-1 receptor agonists (GLP-1RAs): Cardiovascular actions and therapeutic potential. Int. J. Biol. Sci., 2021, 17(8), 2050-2068.
[http://dx.doi.org/10.7150/ijbs.59965] [PMID: 34131405]
[55]
Seino, Y.; Fukushima, M.; Yabe, D. GIP and GLP-1, the two incretin hormones: Similarities and differences. J. Diabetes Investig., 2010, 1(1-2), 8-23.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00022.x] [PMID: 24843404]
[56]
Al-Awar, A.; Almási, N.; Szabó, R.; Takacs, I.; Murlasits, Z. Szűcs, G.; Török, S.; Pósa, A.; Varga, C.; Kupai, K. Novel po-tentials of the DPP-4 inhibitor sitagliptin against Ischemia-Reperfusion (I/R) injury in rat ex-vivo heart model. Int. J. Mol. Sci., 2018, 19(10), 3226.
[http://dx.doi.org/10.3390/ijms19103226] [PMID: 30340421]
[57]
Brain, S.D.; Tippins, J.R.; Morris, H.R.; MacIntyre, I.; Williams, T.J. Potent vasodilator activity of calcitonin gene-related peptide in human skin. J. Invest. Dermatol., 1986, 87(4), 533-536.
[http://dx.doi.org/10.1111/1523-1747.ep12455620] [PMID: 2428885]
[58]
MacCarthy, P.A.; Shah, A.M. Impaired endothelium-dependent regulation of ventricular relaxation in pressure-overload cardiac hypertrophy. Circulation, 2000, 101(15), 1854-1860.
[http://dx.doi.org/10.1161/01.CIR.101.15.1854] [PMID: 10769288]
[59]
Kinugawa, S.; Huang, H.; Wang, Z.; Kaminski, P.M.; Wolin, M.S.; Hintze, T.H. A defect of neuronal nitric oxide synthase increases xanthine oxidase-derived superoxide anion and attenuates the control of myocardial oxygen consumption by nitric oxide derived from endothelial nitric oxide synthase. Circ. Res., 2005, 96(3), 355-362.
[http://dx.doi.org/10.1161/01.RES.0000155331.09458.A7] [PMID: 15637297]
[60]
Lorenzo-González, C.; Atienza-Sánchez, E.; Reyes-Umpierrez, D.; Vellanki, P.; Davis, G.M.; Pasquel, F.J.; Cardona, S.; Fay-fman, M.; Peng, L.; Umpierrez, G.E. Safety and efficacy of Dpp-4 inhibitors for the management of hospitalized general medicine and surgery patients with type 2 diabetes. Endocr. Pract., 2020, 26(7), 722-728.
[http://dx.doi.org/10.4158/EP-2019-0481] [PMID: 33471640]
[61]
Ristic, S.; Byiers, S.; Foley, J.; Holmes, D. Improved glycaemic control with dipeptidyl peptidase-4 inhibition in patients with type 2 diabetes: Vildagliptin (LAF237) dose response. Diabetes Obes. Metab., 2005, 7(6), 692-698.
[http://dx.doi.org/10.1111/j.1463-1326.2005.00539.x] [PMID: 16219012]
[62]
Zhao, Y.; Yang, L.; Wang, X.; Zhou, Z. The new insights from DPP-4 inhibitors: Their potential immune modulatory function in autoimmune diabetes. Diabetes Metab. Res. Rev., 2014, 30(8), 646-653.
[http://dx.doi.org/10.1002/dmrr.2530] [PMID: 24446278]
[63]
Garg, R.; Schuman, B.; Hurwitz, S.; Metzger, C.; Bhandari, S. Safety and efficacy of saxagliptin for glycemic control in non-critically ill hospitalized patients. BMJ Open Diabetes Res. Care, 2017, 5(1), e000394.
[http://dx.doi.org/10.1136/bmjdrc-2017-000394] [PMID: 28405346]
[64]
Sakura, H.; Hashimoto, N.; Sasamoto, K.; Ohashi, H.; Hasumi, S.; Ujihara, N.; Kasahara, T.; Tomonaga, O.; Nunome, H.; Hon-da, M.; Iwamoto, Y. Effect of sitagliptin on blood glucose con-trol in patients with type 2 diabetes mellitus who are treatment naive or poorly responsive to existing antidiabetic drugs: The JAMP study. BMC Endocr. Disord., 2016, 16(1), 70.
[http://dx.doi.org/10.1186/s12902-016-0149-z] [PMID: 27905912]
[65]
Tang, Y-Z.; Wang, G.; Jiang, Z-H.; Yan, T-T.; Chen, Y-J.; Yang, M.; Meng, L-L.; Zhu, Y-J.; Li, C-G.; Li, Z.; Yu, P.; Ni, C-L. Efficacy and safety of vildagliptin, sitagliptin, and linagliptin as add-on therapy in Chinese patients with T2DM in-adequately controlled with dual combination of insulin and tra-ditional oral hypoglycemic agent. Diabetol. Metab. Syndr., 2015, 7(1), 91.
[http://dx.doi.org/10.1186/s13098-015-0087-3] [PMID: 26500706]
[66]
Scheen, A.J. Pharmacokinetics and clinical evaluation of the alogliptin plus pioglitazone combination for type 2 diabetes. Expert Opin. Drug Metab. Toxicol., 2015, 11(6), 1005-1020.
[http://dx.doi.org/10.1517/17425255.2015.1041499] [PMID: 25936384]
[67]
Mathieu, C.; Degrande, E. Vildagliptin: A new oral treatment for type 2 diabetes mellitus. Vasc. Health Risk Manag., 2008, 4(6), 1349-1360.
[http://dx.doi.org/10.2147/VHRM.S3005] [PMID: 19337548]
[68]
Greenhill, C. IBD - a potential adverse effect of DDP4 inhibi-tors in T2DM. Nat. Rev. Endocrinol., 2018, 14(6), 323-323.
[http://dx.doi.org/10.1038/s41574-018-0007-3] [PMID: 29626203]
[69]
Wu, S.; Chai, S.; Yang, J.; Cai, T.; Xu, Y.; Yang, Z.; Zhang, Y.; Ji, L.; Sun, F.; Zhan, S. Gastrointestinal adverse events of dipeptidyl peptidase 4 inhibitors in type 2 diabetes: A systematic review and network meta-analysis. Clin. Ther., 2017, 39(9), 1780-1789.e33.
[http://dx.doi.org/10.1016/j.clinthera.2017.07.036] [PMID: 28827024]
[70]
Deacon, C.F. Therapeutic strategies based on glucagon-like peptide 1. Diabetes, 2004, 53(9), 2181-2189.
[http://dx.doi.org/10.2337/diabetes.53.9.2181] [PMID: 15331525]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy