Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

A Review on the Recent Multicomponent Synthesis of 4H-Pyran Derivatives

Author(s): Ghada G. El-Bana, Mohammed A. Salem, Mohamed H. Helal, Osama Alharbi and Moustafa A. Gouda*

Volume 21, Issue 1, 2024

Published on: 23 August, 2022

Page: [73 - 91] Pages: 19

DOI: 10.2174/1570193X19666220527163846

Price: $65

Open Access Journals Promotions 2
Abstract

4H-Pyran is a well-known moiety that appears in various natural and synthetic products. These compounds include various biological activities like anti-hepatotoxic, antitumor, antiinflammatory, antioxidant, anti-spasmolytic, diuretic, estrogenic, anticoagulant, antifungal, antiviral, anti-helminthic, antimicrobial, hypothermal, anti-tubercular, anti-HIV, herbicidal, anticonvulsant and analgesic activity. This review has summarized an overview of general strategies that allow the design of 4H-pyran derivatives via catalyzed one-pot multicomponent reactions.

Keywords: 4H-Pyran, multicomponent reactions, organic and inorganic catalysts, biocatalysts, ionic liquid and nanoparticle catalysts.

« Previous
Graphical Abstract
[1]
Gonzalez, R.; Martin, N.; Seoane, C.; Marco, J.L.; Albert, A.; Cano, F.H. The first asymmetric synthesis of polyfunctionalized 4H-pyrans via Michael addition of malononitrile to 2-acyl acrylates. Tetrahedron Lett., 1992, 33(26), 3809-3812.
[http://dx.doi.org/10.1016/0040-4039(92)80031-E]
[2]
Wang, J.; Liu, D.; Zhang, Z.; Shan, S.; Han, X.; Srinivasula, S.M.; Croce, C.M.; Alnemri, E.S.; Huang, Z.W. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA, 2000, 97(13), 7124-7129.
[http://dx.doi.org/10.1073/pnas.97.13.7124]
[3]
Zamocka, J.; Misikova, E. Preparation, Structure Elucidation and Activity of Some (5-Hydroxy-4-oxo-4H-Pyran-2-yl) Methyl-2-and (5-Methoxy-4-oxo-4H-pyran-2-yl) Methyl-2-Alkoxycarbanilates. Dur. Pharm, 1991, 46(8), 610-610.
[4]
Babu, N.S.; Pasha, N.; Rao, K.T.V.; Prasad, P.S.S.; Lingaiah, N. A heterogeneous strong basic Mg/La mixed oxide catalyst for efficient synthesis of polyfunctionalized pyrans. Tetrahedron Lett., 2008, 49(17), 2730-2733.
[http://dx.doi.org/10.1016/j.tetlet.2008.02.154]
[5]
Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H. Discovery of 4-aryl-4 H-chromenes as a new series of apoptosis inducers using a cell-and caspase-based high throughput screening assay. 4. Structure–activity relationships of N-alkyl substituted pyrrole fused at the 7, 8-positions. J. Med. Chem., 2008, 51(3), 417-423.
[http://dx.doi.org/10.1021/jm7010657]
[6]
Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Zhao, J.; Crogan, G.C.; Xu, L.; Lamothe, S.; Gourdeau, H.; Denis, R.; Tseng, B.; Kasibhatla, S.; Cai, S. Discovery of 4-Aryl-4 H-chromenes as a new series of apoptosis inducers using a cell-and caspase-based high-throughput screening assay. 3. Structure-activity relationships of fused rings at the 7, 8-positions. J. Med. Chem., 2007, 50(12), 2858-2864.
[http://dx.doi.org/10.1021/jm070216c]
[7]
Balalaie, S.; Bararjanian, M.; Sheikh-Ahmadi, M.; Hekmat, S.; Salehi, P. Diammonium hydrogen phosphate: An efficient and versatile catalyst for the one‐pot synthesis of tetrahydrobenzo [b] pyran derivatives in aqueous media. Synth. Commun., 2007, 37, 1097-1108.
[http://dx.doi.org/10.1080/00397910701196579]
[8]
Kumar, D.; Reddy, V.B.; Sharad, S.; Dube, U.; Kapur, S. A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes. Eur. J. Med. Chem., 2009, 44(9), 3805-3809.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.017] [PMID: 19419801]
[9]
Zhao, S-L.; Zheng, C-W.; Zhao, G. Enantioselective synthesis of multifunctionalized 4H-pyran derivatives using bifunctional thiourea-tertiary amine catalysts. Tetrahedron Asymmetry, 2009, 20(9), 1046-1051.
[http://dx.doi.org/10.1016/j.tetasy.2009.02.054]
[10]
Zhou, J-F. One-step synthesis of pyridine and 4 H-pyran derivatives from bisarylidenecyclohexanone and malononitrile under microwave irradiation. Synth. Commun., 2003, 33(1), 99-103.
[http://dx.doi.org/10.1081/SCC-120015564]
[11]
Kumar, R.R.; Perumal, S.; Senthilkumar, P.; Yogeeswari, P.; Sriram, D. An atom efficient, solvent-free, green synthesis and antimycobacterial evaluation of 2-amino-6-methyl-4-aryl-8-[(E)-arylmethylidene]-5, 6, 7, 8-tetrahydro-4H-pyrano [3, 2-c] pyridine-3-carbonitriles. Bioorg. Med. Chem. Lett., 2007, 17(23), 6459-6462.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.095]
[12]
Kumar, R.R.; Perumal, S.; Mene’ndez, J.C.; Yogeeswari, P.; Sriram, D. Antimycobacterial activity of novel 1, 2, 4-oxadiazole-pyranopyridine/chromene hybrids generated by chemoselective 1, 3-dipolar cycloadditions of nitrile oxides. Bioorg. Med. Chem., 2011, 19(11), 3444-3450.
[http://dx.doi.org/10.1016/j.bmc.2011.04.033]
[13]
Zhu, J.; Bienaymé, H. Eds.; Multicomponent reactions; John Wiley & Sons, 2006.
[14]
Alizadeh, A.; Zohreh, N.; Rostamnia, S. One-pot synthesis of functionalized furamide derivatives via a three-component reaction between an amine, diketene and dibenzoylacetylene in the presence of riphenylphosphine. Tetrahedron, 2007, 63(34), 8083-8087.
[http://dx.doi.org/10.1016/j.tet.2007.06.021]
[15]
Rostamnia, S. In situ generation and protonation of the isocyanide/acetylene adduct: A powerful catalyst-free strategy for multicomponent synthesis of ketenimines, aza-dienes, and heterocycles. RSC Advances, 2015, 5(117), 97044-97065.
[http://dx.doi.org/10.1039/C5RA20455K]
[16]
Rostamnia, S.; Alamgholiloo, H.; Jafari, M. Ethylene diamine post‐synthesis modification on open metal site Cr‐MOF to access efficient bifunctional catalyst for the Hantzsch condensation reaction. Appl. Organomet. Chem., 2018, 32(8)e4370
[http://dx.doi.org/10.1002/aoc.4370]
[17]
Rostamnia, S.; Doustkhah, E. Increased SBA-15-SO3H catalytic activity through hydrophilic/hydrophobic fluoroalkyl-chained alcohols (RFOH/SBA-15–Pr-SO3H). Synlett, 2015, 26(10), 1345-1347.
[http://dx.doi.org/10.1055/s-0034-1380683]
[18]
Rostamnia, S.; Doustkhah, E. A mesoporous silica/fluorinated alcohol adduct: An efficient metal-free, three-component synthesis of indazolophthalazinetrione heterocycles using a reusable nanoporous/trifluoroethanol adduct (SBA-15/TFE). Tetrahedron Lett., 2014, 55(15), 2508-2512.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.019]
[19]
Rostamnia, S.; Xin, H. Basic isoreticular metal–organic framework (IRMOF‐3) porous nanomaterial as a suitable and green catalyst for selective unsymmetrical Hantzsch coupling reaction. Appl. Organomet. Chem., 2014, 28(5), 359-363.
[http://dx.doi.org/10.1002/aoc.3136]
[20]
Rostamnia, S.; Doustkhah, E.; Nuri, A. Hexafluoroisopropanol dispersed into the nanoporous SBA-15 (HFIP/SBA-15) as a rapid, metal-free, highly reusable and suitable combined catalyst for domino cyclization process in chemoselective preparation of alkyl rhodanines. J. Fluor. Chem., 2013, 153, 1-6.
[http://dx.doi.org/10.1016/j.jfluchem.2013.05.025]
[21]
Alizadeh, A.; Rostamnia, S.; Zhu, L.G. A novel pseudo-seven-component diastereoselective synthesis of λ5-phosphanylidene bis (2, 5-dioxotetrahydro-1H-pyrrole-3-carboxylates) via binucleophilic systems. Tetrahedron Lett., 2010, 51(36), 4750-4754.
[http://dx.doi.org/10.1016/j.tetlet.2010.07.027]
[22]
Alizadeh, A.; Oskueyan, Q.; Rostamnia, S. Synthesis of nicotinamide and isonicotinamide derivatives via multicomponent reaction of alkyl isocyanides and acetylenic compounds in the presence of nicotinic or isonicotinic acid. Synthesis, 2007, 2007(17), 2637-2640.
[http://dx.doi.org/10.1055/s-2007-983814]
[23]
Aghbash, K.O.; Alamgholiloo, H.; Pesyan, N.N.; Khaksar, S.; Rostamnia, S. Gold nanoparticle stabilized dithiocarbamate functionalized magnetite carbon as promise clean nanocatalyst for A3-coupling organic transformation. Mol. Catal., 2021, 499111252
[http://dx.doi.org/10.1016/j.mcat.2020.111252]
[24]
Doustkhah, E.; Rostamnia, S.; Hassankhani, A. The raise of SBA-SO 3 H catalytic activity by inducing ultrasound irradiation in the multicomponent syntheses. J. Porous Mater., 2016, 23(2), 549-556.
[http://dx.doi.org/10.1007/s10934-015-0108-5]
[25]
Rostamnia, S.; Hassankhani, A.; Hossieni, H.G.; Gholipour, B.; Xin, H. Brønsted acidic hydrogensulfate ionic liquid immobilized SBA-15:[MPIm][HSO4]@ SBA-15 as an environmentally friendly, metal-and halogen-free recyclable catalyst for Knoevenagel–Michael-cyclization processes. J. Mol. Catal. Chem., 2014, 395, 463-469.
[http://dx.doi.org/10.1016/j.molcata.2014.09.017]
[26]
Cho, H.Y.; Morken, J.P. Catalytic bismetallative multicomponent coupling reactions: Scope, applications, and mechanisms. Chem. Soc. Rev., 2014, 43(13), 4368-4380.
[http://dx.doi.org/10.1039/C3CS60482A] [PMID: 24736839]
[27]
Ye, Z.; Xu, R.; Shao, X.; Xu, X.; Li, Z. One-pot synthesis of polyfunction-alized4H-pyran derivatives bearing fluorochloro pyridyl moiety. Tetrahedron Lett., 2010, 51(38), 4991-4994.
[http://dx.doi.org/10.1016/j.tetlet.2010.07.065]
[28]
Beheshtiha, S.Y.; Oskooie, H.A.; Pourebrahimi, F.S.; Zadsirjan, V. Hexamethylenetetramine as an efficient catalyst for one pot, three component synthesis of 2-amino-4h-pyran derivatives. Chem. Sci. Trans., 2015, 4(3), 689-693. [Available from http://www.ejournals. in/pdf/V4N3/689-693.pdf
[29]
Redkin, R.; Shemchuk, L.A.; Chernykh, V.P.; Shishkin, O.V.; Shishkina, S.V. Synthesis and molecular structure of spirocyclic 2-oxindole derivatives of 2-amino-4H-pyran condensed with the pyrazolic nucleus. Tetrahedron, 2007, 63(46), 11444-11450.
[http://dx.doi.org/10.1016/j.tet.2007.08.050]
[30]
Shemchuk, L.A.; Lega, D.A.; Redkin, R. An efficient, three-component synthesis and molecular structure of derivatives of 2-amino-3-R-6-ethyl-4, 6-dihydropyrano [3, 2-c][2, 1] benzothiazine-5, 5-dioxide spirocombined with a 2-oxindole nucleus. Tetrahedron, 2014, 70(44), 8348-8353.
[31]
Khandebharad, A. U.; Ru, S.S.M.; Runwal, S.M.; Agrawal, B. R. Triethanolamine as an efficient catalyst for one pot synthesis of 2- amino-3-cyano-4H-pyran derivatives. J. Med. Chem. Drug Disc., 2015, 278-284.
[32]
Kalla, R.M.N.; Kim, M.R.; Kim, I. Dibutylamine-catalysed efficient one-pot synthesis of biologically potent pyrans. Tetrahedron Lett., 2015, 56(5), 717-720.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.079]
[33]
Wang, C.; Jiang, Y.H.; Yan, C.G. Convenient synthesis of spiro [indoline-3, 4′-pyrano [2, 3-c] pyrazole] and spiro [acenaphthyl-3, 4′-pyrano [2, 3-c] pyrazoles] via four-component reaction. Chin. Chem. Lett., 2015, 26(7), 889-893.
[http://dx.doi.org/10.1016/j.cclet.2015.05.018]
[34]
Mohareb, R.M.; Abdo, N.Y.M.; Al-farouk, F.O. Synthesis, cytotoxic and anti-proliferative activity of novel thiophene, thieno [2, 3-b] pyridine and pyran derivatives derived from 4, 5, 6, 7-tetrahydrobenzo [b] thiophene derivative. Acta Chim. Slov., 2017, 64(1), 117-128.
[http://dx.doi.org/10.17344/acsi.2016.2920]
[35]
Nazari, P.; Bazi, A.; Ayatollahi, S.A.; Dolati, H.; Mahdavi, S.M.; Rafighdoost, L.; Amirmostofian, M. Synthesis and evaluation of the antimicrobial activity of spiro-4H-pyran derivatives on some gram positive and gram negative bacteria. Iran. J. Pharm. Res., 2017, 16(3), 943-952.
[http://dx.doi.org/10.17344/acsi.2016.2920] [PMID: 29201085]
[36]
Albadi, J.; Mansournezhad, I. Poly (4-vinylpyridine) efficiently catalyzed one-pot four-component synthesis of pyrano [2, 3-c] pyrazoles. Current Chem. Lett., 2014, 3(4), 221. [Available from http:// growingscience. com/ccl/ Vol3/ccl _2014_ 17.pdf
[37]
Wang, D.C.; Xie, Y.M.; Fan, C.; Yao, S.; Song, H. Efficient and mild cyclization procedures for the synthesis of novel 2-amino-4H-pyran derivatives with potential antitumor activity. Chin. Chem. Lett., 2014, 25(7), 1011-1013.
[http://dx.doi.org/10.1016/j.cclet.2014.04.026]
[38]
Bihani, M.; Bora, P.P.; Bez, Gh. Synthesis of polyfunctionalized 4H-pyrans. J. Chem., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/785930]
[39]
Niknam, K.h.; Borazjani, N.; Rashidian, R.; Jamali, A. Silica-bonded N-propylpiperazine sodium n-propionate as recyclable catalyst for synthesis of 4H-pyran derivatives. Chin. J. Catal., 2013, 34(12), 2245-2254.
[http://dx.doi.org/10.1016/S1872-2067(12)60693-7]
[40]
Al-Kadasi, A.M.A.; Osman, H.A.; Nazeruddin, G.M. Silica ammonium acetate as an efficient and recyclable heterogeneous catalyst for Synthesis of 4H-pyran derivatives under ultrasound irradiation at ambient conditions. Am. Chem. Sci. J., 2014, 4(5), 587-599. [Available from https:// journalbank. org/index. php/CSIJ/article/view/4077
[41]
Zheng, J.; Li, Y.Q. One-pot synthesis of tetrahydrobenzo [b] pyran and dihydropyrano [c] chromene derivatives in aqueous media by using trisodium citrate as a green catalyst. Arch. Appl. Sci. Res., 2011, 3(2), 381-388.
[42]
Bihani, M.; Bora, P.P.; Bez, Gh.; Askari, H. Amberlyst A21: A reusable solid catalyst for green synthesis of pyran annulated heterocycles at room temperature. Comptes. Rend. Chim., 2013, 16, 419-426.
[http://dx.doi.org/10.1016/j.crci.2012.11.018]
[43]
El-Maghraby, A.M. Green chemistry: New synthesis of substituted chromenes and benzochromenes via three-component reaction utilizing rochelle salt as novel green catalyst. Org. Chem. Int., 2014, 2014, 1-6.
[http://dx.doi.org/10.1155/2014/715091]
[44]
Zonouz, A.M.; Moghani, D.; Okhravi, S. A facile and efficient protocol for the synthesis of 2-amino-3-cyano-4H-pyran derivatives at ambient temperature. Curr. Chem. Lett., 2014, 3(2), 71-74.
[http://dx.doi.org/10.5267/j.ccl.2014.2.001]
[45]
Nazeruddin, G.M.; Shaikh, Y.I.; Shaikh, A.A. By using ammonia solution as a catalyst, a multicomponent reaction can be directed to land up to polyfunctional pyridine or pyran derivatives. Res. J. Pharm. Biol. Chem. Sci., 2014, 5(2), 1773-1779.
[46]
Sánchez, A.; Hernández, F.; César Cruz, P.; Alcaraz, Y.; Tamariz, J.; Delgado, F.; Vázquez, M.A. Infrared irradiation-assisted multicomponent synthesis of 2- amino-3-cyano-4H-pyran derivatives. J. Mex. Chem. Soc., 2012, 56, 121-127. [Available from
[47]
Jaberi, Z.K.; Pooladian, B.B. Facile Synthesis of New 2-Amino-4H-pyran-3-carbonitriles by a one-pot reaction of α α-bis(arylidene) cycloalkanones and malononitrile in the presence of K2CO3. Scientif. World J., 2012, 2012, 1-5.
[http://dx.doi.org/10.1100/2012/208796]
[48]
Romdhane, A.; Jannet, H.B. Synthesis of new pyran and pyranoquinoline derivatives. Arab. J. Chem., 2017, 10, S3128-S3134.
[http://dx.doi.org/10.1016/j.arabjc.2013.12.002]
[49]
Xu, X.; Shi, W.; Zhou, Y.; Wang, Y.; Zhang, M.; Song, L.; Deng, H. Convenient one-pot synthesis of monofluorinated functionalized 4-H-pyran derivatives via multi-component reactions. J. Fluor. Chem., 2015, 176, 127-133.
[http://dx.doi.org/10.1016/j.jfluchem.2015.05.008]
[50]
Ramadoss, H.; Kiyani, H.; Mansoor, S.S. Triphenylphosphine Catalysed Facile Multicomponent Synthesis of 2-Amino-3-Cyano-6- Methyl-4-Aryl-4H-Pyrans. Iran. J. Chem. Chem. Eng., 2017, 36(1), 19-26. [Available from www.sid.ir/en/Journal/ViewPaper.aspx?ID=527553
[51]
Zhang, Sh.G.; Yin, Sh.F.; Wei, Yu.D.; Luo, Sh.L.; Au, Ch.T. Novel MgO–SnO2 solid superbase as a high-efficiency catalyst for one-pot solvent-free synthesis of polyfunctionalized 4H-pyran derivatives. Catal. Lett., 2012, 142, 608-614.
[http://dx.doi.org/10.1007/s10562-012-0805-5]
[52]
Wagh, Y.B.; Tayade, Y.A.; Padvi, S.A.; Patil, B.S.; Patil, N.B.; Dalal, D.S. A cesium fluoride promoted efficient and rapid multicomponent synthesis of functionalized 2-amino-3-cyano-4H-pyran and spirooxindole derivatives. Chin. Chem. Lett., 2015, 26(10), 1273-1277.
[http://dx.doi.org/10.1016/j.cclet.2015.06.014]
[53]
Rao, B.M.; Reddy, G.N.; Reddy, T.V.; Devi, B.L.A.P.; Prasad, R.B.N.; Yadav, J.S.; Reddy, B.V.S. Carbon–SO3H: A novel and recyclable solid acid catalyst for the synthesis of spiro. [4H-pyran-3, 3′-oxindoles] Tetrahedron Lett., 2013, 54(20), 2466-2471. [4H-pyran-3, 3′-oxindoles
[http://dx.doi.org/10.1016/j.tetlet.2013.02.089]
[54]
Mansoor, S.S.; Logaiya, K.; Aswin, K.; Sudhan, P.N. An appropriate one-pot synthesis of 3, 4-dihydropyrano [c] chromenes and 6-amino-5-cyano-4-aryl-2-methyl-4 H-pyrans with thiourea dioxide as an efficient, reusable organic catalyst in aqueous medium. J. Taibah Univ. Sci., 2015, 9(2), 213-226.
[http://dx.doi.org/10.1016/j.jtusci.2014.09.008]
[55]
Dabiri, M.; Bahramnejad, M.; Baghbanzadeh, M. Ammonium salt catalyzed multicomponent transformation: Simple route to functionalized spirochromenes and spiroacridines. Tetrahedron, 2009, 65(45), 9443-9447.
[http://dx.doi.org/10.1016/j.tet.2009.08.070]
[56]
Turhan, K.; Ozturkcan, S.A.; Uluer, M.; Turgut, Z. One-pot synthesis of indenonaphthopyrans catalyzed by copper (II) triflate: A comparative study of reflux and ultrasound methods. Acta Chim. Slov., 2014, 61(3), 623-628. [Available from https://www.ncbi.nlm.nih.gov/pubmed/25286219
[57]
Tabassum, S.; Govindaraju, S.; Khan, R.U.; Pasha, M.A. Ultrasound mediated, iodine catalyzed green synthesis of novel 2-amino-3-cyano-4H-pyran derivatives. Ultrason. Sonochem., 2015, 24, 1-7.
[http://dx.doi.org/10.1016/j.ultsonch.2014.12.006] [PMID: 25557792]
[58]
Hussain, A.M.; Mansoor, S.S.; Aswin, K.; Logaiya, K.; Sudhan, S.P.N. Synthesis and in vitro antimicrobial evaluation of 5-amino-7-aryl-6-cyano-4 H-pyrano [3, 2, b] pyrrole derivatives catalyzed by reusable ZrOCl2 8H2O. Bull. Chem. Soc. Ethiop., 2014, 28(1), 91-100.
[http://dx.doi.org/10.4314/bcse.v28i1.11]
[59]
Akbari, A.; Azami-Sardooei, Z.; Hosseini-Nia, A. Synthesis and biological evaluation of 2-Amino-4H-pyran-3, 4, 5-tricarboxylate salt derivatives. J. Korean Chem. Soc., 2013, 57(4), 455-460.
[60]
Moghadam, K.R.; Miri, L.Y. Ambient synthesis of spiro [4H-pyran-oxindole] derivatives under [BMIm] BF4 catalysis. Tetrahedron, 2011, 67(31), 5693-5699.
[http://dx.doi.org/10.1016/j.tet.2011.05.077]
[61]
Shirini, F.; Langarudi, M.S.N.; Daneshvar, N. Preparation of a new DABCO-based ionic liquid [H2-DABCO][H2PO4] 2} and its application in the synthesis of tetrahydrobenzo [b] pyran and pyrano [2, 3-d] pyrimidinone derivatives. J. Mol. Liq., 2017, 234, 268-278.
[http://dx.doi.org/10.1016/j.molliq.2017.03.063]
[62]
Padvi, S.A.; Tayade, Y.A.; Wagh, Y.B.; Dalal, D.S. [bmim] OH: An efficient catalyst for the synthesis of mono and bis spirooxindole derivatives in ethanol at room temperature. Chin. Chem. Lett., 2016, 27(5), 714-720.
[http://dx.doi.org/10.1016/j.cclet.2016.01.016]
[63]
Omar, A.; Ablajan, K.; Hamdulla, M. Cetyltrimethylammonium chloride (CTAC) catalyzed one-pot synthesis of novel coumarin-4H-pyran conjugates in aqueous media. Chin. Chem. Lett., 2017, 28, 976-980.
[http://dx.doi.org/10.1016/j.cclet.2016.12.016]
[64]
Chaudhary, V.; Sharma, S. An overview of ordered mesoporous material SBA-15: Synthesis, functionalization and application in oxidation reactions. J. Porous Mater., 2017, 24(3), 741-749.
[http://dx.doi.org/10.1007/s10934-016-0311-z]
[65]
Zhiani, R.; Sadeghzadeh, S.M.; Emrani, Sh.R.S.C. Synthesis of spiroindenopyridazine-4H-pyran derivatives using Cr-based catalyst complexes supported on KCC-1 in aqueous solution. Adv., 2018, 8, 6259-6266.
[http://dx.doi.org/10.1039/C7RA12871A]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy