Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Review Article

Therapeutic Efficacy of Polyherbal Formulation Kabasura kudineer Against Common Viral Fevers - A Perspective Review

Author(s): Shanmugampillai Jeyarajaguru Kabilan*, Selvaraj Kunjiappan, Hemapriya Sundaresan, Subikshaa Mahesh and Gowshiki Srinivasan

Volume 20, Issue 5, 2022

Published on: 29 August, 2022

Article ID: e270522205330 Pages: 18

DOI: 10.2174/2211352520666220527102858

Price: $65

Open Access Journals Promotions 2
Abstract

Background: COVID-19 viral infection is a worldwide pandemic that created a major concern regarding the need for a suitable drug candidate for viral infections. The entire scientific community is putting up their efforts and research to find a proper cure for this. The traditional Indian Siddha system of medicine is one of the oldest forms of medicine, which includes medicine, Varma, alchemy, yoga, and rejuvenation.

Methods: Kabasura kudineer is one of the Siddha herbal preparations that are being recommended by the State government of Tamilnadu, India, for protection against COVID-19. It is recommended due to its claims to have anti-viral properties and other numerous health benefits.

Results: This article thoroughly examines the Kabasura kudineer, a polyherbal formulation comprising 15 powerful ancient Indian herbals that possess various potential phytochemicals providing numerous therapeutic activities. Also, the review highlights the most important therapeutic benefits of this formulation like anti-viral properties along with other activities such as immunomodulatory, bronchodilatory, anti-asthmatic, etc.,

Conclusion: The role of Kabasura kudineer against viral diseases, especially the recent COVID- 19, is tremendous, and there is a need to enhance further research on this powerful formulation to make it more efficient and useful to the entire people community.

Keywords: Antiviral, covid-19, kabasura kudineer, polyherbal formulation, siddha medicine, unani medicine.

Graphical Abstract
[1]
Khan, M.S.; Ahmad, I.; Debprasad, C. Herbal medicine: Current trends and future prospects.In. New Look to phytomedicine; Vol. 1 Elsevier, 2019, pp. 3-13.
[2]
Sen, S.; Chakraborty, R. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future. J. Tradit. Complement. Med., 2016, 7(2), 234-244.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.006] [PMID: 28417092]
[3]
Juneja, K.; Saini, S.S.; Gaid, M.; Beerhues, L.; Sircar, D. Production of life-saving drugs from himalayan herbs. Sustainable Utilization of Natural Resources, 2017, 16, pp. 333-51.
[http://dx.doi.org/10.1201/9781315153292-11]
[4]
Shrivastava, S.R.; Shrivastava, P.S.; Ramasamy, J. Mainstreaming of ayurveda, yoga, naturopathy, unani, siddha, and homeopathy with the health care delivery system in India. J. Tradit. Complement. Med., 2015, 5(2), 116-118.
[http://dx.doi.org/10.1016/j.jtcme.2014.11.002] [PMID: 26151021]
[5]
Lekha, G.S. Patenting of siddha formulations: Scope and issues. STM J. Ayush., 2012, 1(2), 50-62.
[6]
Uthamarayan, C. Siddha maruthuvanga churukkam; Directorate of Indian Medicine & Homeopathy: Chennai-106 , 2006.
[7]
Adhikari, P.P.; Paul, S.B. History of Indian traditional medicine: A medical inheritance. Asian J. Pharm. Clin. Res., 2018, 11(1), 421.
[8]
Murugeba Mudaliar, K.S. Siddha Materia Medica (Part I). Medicinal Plants Division; Directorate of Indian Medicine & Homeopathy: Chennai-106 2013.
[9]
Thas, J.J. Siddha medicine--background and principles and the application for skin diseases. Clin. Dermatol., 2008, 26(1), 62-78.
[http://dx.doi.org/10.1016/j.clindermatol.2007.11.010] [PMID: 18280906]
[10]
Subbarayappa, B.V. Siddha medicine: An overview. Lancet, 1997, 350(9094), 1841-1844.
[http://dx.doi.org/10.1016/S0140-6736(97)04223-2] [PMID: 9428267]
[11]
Sathya, B.; Velpandian, V.; Ramani, M.; Kumar, M.P. A primitive approach on review of Siddha herbs, herbo-mineral formulation exhibiting antiviral activity. Int. J. Pharma Bio Sci., 2014, 5, 138-147.
[12]
Mahadevan, H.; Palraj, V. Literature review on Siddha herbal formulations (Kudineer) available for the management of Dengue. Inter. J. Pharmacol. Clin. Sci., 2016, 5(3), 90-96.
[http://dx.doi.org/10.5530/ijpcs.5.3.5]
[13]
Ponnaiya, V.; Merish, S.; Walter, T.M. A review on antidiabetic activity of polyherbal siddha formulation Maruthampattai Kudineer. Proc. of the International Seminar on Dia Fest, 2014.
[14]
John, A.; Jayachandran, R.; Ethirajulu, S.; Sathiyarajeswaran, P. Analysis of Kabasura kudineer chooranam-A Siddha formulation. Inter. Ayurvedic Med. J., 2015, 3(9), 2915-2920.
[15]
Thanigavelan, V.; Kaliyamurthi, V.; Kumar, M.P.; Elansekaran, S.; Rajamanickam, G.V. An overview of the herbs in a siddha polyherbal decoction-pidangunaari kudineer indicated for hepatomegaly. J. Appl. Pharm. Sci., 2012, 2(07), 8-14.
[http://dx.doi.org/10.7324/JAPS.2012.2702]
[16]
Rajalakshmi, K.; Christian, G.J.; Shanmuga, P.P.; Jeeva, G.R. Validation of anti-diabetic potential of Avirai kudineer a siddha herbal formulation-a review. IOSR J. Dent. Med. Sci., 2015, 14, 07-15.
[17]
Mohd Fauzi, F.; John, C.M.; Karunanidhi, A.; Mussa, H.Y.; Ramasamy, R.; Adam, A.; Bender, A. Understanding the mode-of-action of Cassia auriculataitalic via in silico and in vivo studies towards validating it as a long term therapy for type II diabetes. J. Ethnopharmacol., 2017, 197, 61-72.
[http://dx.doi.org/10.1016/j.jep.2016.07.058] [PMID: 27452659]
[18]
Sanches, J.R.; França, L.M.; Chagas, V.T.; Gaspar, R.S.; Dos Santos, K.A.; Gonçalves, L.M.; Sloboda, D.M.; Holloway, A.C.; Dutra, R.P.; Carneiro, E.M.; Cappelli, A.P.; Paes, A.M. Polyphenol-rich extract of Syzygium cumini leaf dually improves peripheral insulin sensitivity and pancreatic islet function in monosodium L-glutamate-induced obese rats. Front. Pharmacol., 2016, 7, 48.
[http://dx.doi.org/10.3389/fphar.2016.00048] [PMID: 27014062]
[19]
Ruvin Kumara, N.K.; Pathirana, R.N.; Pathirana, C. Hypoglycemic activity of the root and stem of Salacia reticulata. var. β-diandra. in alloxan diabetic rats. Pharm. Biol., 2005, 43(3), 219-225.
[http://dx.doi.org/10.1080/13880200590928780]
[20]
Eliza, J.; Daisy, P.; Ignacimuthu, S. Antioxidant activity of costunolide and eremanthin isolated from Costus speciosus (Koen ex. Retz). Sm. Chem. Biol. Interact., 2010, 188(3), 467-472.
[http://dx.doi.org/10.1016/j.cbi.2010.08.002] [PMID: 20709041]
[21]
Barman, S.; Das, S. Hypoglycemic effect of ethanolic extract of bark of Terminalia arjuna Linn. in normal and alloxan-induced noninsulin-dependent diabetes mellitus albino rats. Inter. J. Green Pharm., 2012, 6(4), [IJGP].
[http://dx.doi.org/10.4103/0973-8258.108207]
[22]
Krishna, S.; Thileepan, T. Pharmacological activity of Nilavembu decoction used in Suram (Fever). J. Res. Trad. Med., 2018, 4(3), 83-87.
[23]
Anbarasu, K.; Manisenthil, K.K.; Ramachandran, S. Antipyretic, anti-inflammatory and analgesic properties of Nilavembu kudineer choornam: A classical preparation used in the treatment of chikungunya fever. Asian Pac. J. Trop. Med., 2011, 4(10), 819-823.
[http://dx.doi.org/10.1016/S1995-7645(11)60201-0] [PMID: 22014740]
[24]
Christian, G.J.; Subramanian, M.; Periyasami, D.; Manickavasakam, K.; Gunasekaran, P.; Sivasubramanian, S.; Nijavizhi, M. Protective effect of polyherbal siddha formulation-Nilavembu Kudineer against common viral fevers including dengue-a case-control approach. Int. J. Pharm. Sci. Res., 2015, 6(4), 1656.
[25]
Kavinilavan, R.; Mekala, P.; Raja, M.J.; Arthanari Eswaran, M.; Thirumalaisamy, G. Exploration of immunomodulatory effect of Nilavembu kudineer chooranam against newcastle disease virus in backyard chicken. J. Pharmacogn. Phytochem., 2017, 6(6), 749-751.
[26]
Jain, J.; Kumar, A.; Narayanan, V.; Ramaswamy, R.S.; Sathiyarajeswaran, P.; Shree Devi, M.S.; Kannan, M.; Sunil, S. Antiviral activity of ethanolic extract of Nilavembu Kudineer against dengue and chikungunya virus through in vitro evaluation. J. Ayurveda Integr. Med., 2020, 11(3), 329-335.
[http://dx.doi.org/10.1016/j.jaim.2018.05.006] [PMID: 30685096]
[27]
Neethu, D. , Anti-inflammatory, antipyretic and antibacterial study of Kabasura kudineer choornam. (Doctoral dissertation, KMCH College of Pharmacy, Coimbatore), 2017.
[28]
Sivaraman, D.; Pradeep, P.S. Revealing anti-viral potential of Bioactive therapeutics targeting SARS-CoV2-polymerase (RdRp) in combating COVID-19. Mol. Invest. Indian Trad. Med., 2020, 2020030450.
[29]
Kumar, N.; Tripathi, N.; Nandave, M. Management of Covid-19 patients with indigenous formulations in home settings-Case reports of two patients. Inter. J. AYUSH Case Reports., 2021, 5(2), 98-106.
[http://dx.doi.org/10.52482/ijacare.v5i2.210]
[30]
Zhuang, X.; Rambhatla, S.B.; Lai, A.G.; McKeating, J.A. Interplay between circadian clock and viral infection. J. Mol. Med. (Berl.), 2017, 95(12), 1283-1289.
[http://dx.doi.org/10.1007/s00109-017-1592-7] [PMID: 28963570]
[31]
Nathanson, N.; Tyler, K.L. Entry, dissemination, shedding, and transmission of viruses Viral Pathog., 1997, 13-33.
[32]
Visentini, M.; Fiorilli, M.; Casato, M. From the pathogenesis to the cure of indolent B-cell lymphoproliferative disorders associated with hepatitis C virus infection: Which role for direct-acting antivirals? Expert Rev. Hematol., 2017, 10(8), 719-727.
[http://dx.doi.org/10.1080/17474086.2017.1349607] [PMID: 28675071]
[33]
Helenius, A. Virus entry: Looking back and moving forward. J. Mol. Biol., 2018, 430(13), 1853-1862.
[http://dx.doi.org/10.1016/j.jmb.2018.03.034] [PMID: 29709571]
[34]
Lodish, H.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; Baltimore, D. Viruses: Structure, function, and usesInMolecular Cell Biology, 4th ed; WH Freeman, 2000.
[35]
Krump, N.A.; You, J. Molecular mechanisms of viral oncogenesis in humans. Nat. Rev. Microbiol., 2018, 16(11), 684-698.
[http://dx.doi.org/10.1038/s41579-018-0064-6] [PMID: 30143749]
[36]
Molenberghs, F.; Bogers, J.J.; De Vos, W.H. Confined no more: Viral mechanisms of nuclear entry and egress. Int. J. Biochem. Cell Biol., 2020, 129, 105875.
[http://dx.doi.org/10.1016/j.biocel.2020.105875] [PMID: 33157236]
[37]
Knights, H.E.; Jorrin, B.; Haskett, T.L.; Poole, P.S. Deciphering bacterial mechanisms of root colonization. Environ. Microbiol. Rep., 2021, 13(4), 428-444.
[http://dx.doi.org/10.1111/1758-2229.12934] [PMID: 33538402]
[38]
Pelczar, M.J.; Chan, E.C.; Krieg, N.R. Text Book of Microbiology, 5th. MC Graw-Hill Publications: New York, 2001, 1193, 504-508.
[39]
Singhal, T. A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr., 2020, 87(4), 281-286.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[40]
Jin, Y.; Yang, H.; Ji, W.; Wu, W.; Chen, S.; Zhang, W.; Duan, G. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses, 2020, 12(4), 372.
[http://dx.doi.org/10.3390/v12040372] [PMID: 32230900]
[41]
Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-an update on the status. Mil. Med. Res., 2020, 7(1), 1-0.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 31928528]
[42]
Khailany, R.A.; Safdar, M.; Ozaslan, M. Genomic characterization of a novel SARS-CoV-2. Gene Rep., 2020, 19, 100682.
[http://dx.doi.org/10.1016/j.genrep.2020.100682] [PMID: 32300673]
[43]
Tortorici, M.A.; Walls, A.C.; Lang, Y.; Wang, C.; Li, Z.; Koerhuis, D.; Boons, G.J.; Bosch, B.J.; Rey, F.A.; de Groot, R.J.; Veesler, D. Structural basis for human coronavirus attachment to sialic acid receptors. Nat. Struct. Mol. Biol., 2019, 26(6), 481-489.
[http://dx.doi.org/10.1038/s41594-019-0233-y] [PMID: 31160783]
[44]
Li, X.; Geng, M.; Peng, Y.; Meng, L.; Lu, S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal., 2020, 10(2), 102-108.
[http://dx.doi.org/10.1016/j.jpha.2020.03.001] [PMID: 32282863]
[45]
Sawicki, S.G.; Sawicki, D.L.; Siddell, S.G. A contemporary view of coronavirus transcription. J. Virol., 2007, 81(1), 20-29.
[http://dx.doi.org/10.1128/JVI.01358-06] [PMID: 16928755]
[46]
Scaglioni, V.; Soriano, E.R. Are superantigens the cause of cytokine storm and viral sepsis in severe COVID-19? Observations and hypothesis. Scand. J. Immunol., 2020, 92(6), e12944.
[http://dx.doi.org/10.1111/sji.12944] [PMID: 32697367]
[47]
Candan, S.A.; Elibol, N.; Abdullahi, A. Consideration of prevention and management of long-term consequences of post-acute respiratory distress syndrome in patients with COVID-19. Physiother. Theory Pract., 2020, 36(6), 663-668.
[http://dx.doi.org/10.1080/09593985.2020.1766181] [PMID: 32419564]
[48]
Kumar, S.S.; Binu, A.; Devan, A.R.; Nath, L.R. Mucus targeting as a plausible approach to improve lung function in COVID-19 patients. Med. Hypotheses, 2021, 156, 110680.
[http://dx.doi.org/10.1016/j.mehy.2021.110680] [PMID: 34592563]
[49]
Wiese, O.J.; Allwood, B.W.; Zemlin, A.E. COVID-19 and the renin-angiotensin system (RAS): A spark that sets the forest alight? Med. Hypotheses, 2020, 144, 110231.
[http://dx.doi.org/10.1016/j.mehy.2020.110231] [PMID: 33254538]
[50]
Singh, S.K.; Patel, J.R.; Dangi, A.; Bachle, D.; Kataria, R.K. A complete over review on Adhatoda vasica a traditional medicinal plants J. Med. Plants Stud., 2017, 5(1), 175-180.
[51]
Shahzad, Q.; Sammi, S.; Mehmood, A.; Naveed, K.; Azeem, K.; Ahmed Ayub, M.H.; Hussain, M.; Ayub, Q.; Shokat, O. 43. Phytochemical analysis and antimicrobial activity of Adhatoda vasica leaves. Pure Appl. Biol., 2020, 9(2), 1654-1661.
[http://dx.doi.org/10.19045/bspab.2020.90174]
[52]
Usmani, A.; Khushtar, M.; Arif, M.; Siddiqui, M.A.; Sing, S.P.; Mujahid, M. Pharmacognostic and phytopharmacology study of Anacyclus pyrethrum: An insight. J. Appl. Pharm. Sci., 2016, 6(03), 144-150.
[http://dx.doi.org/10.7324/JAPS.2016.60325]
[53]
Pandey, S.; Kushwaha, G.R.; Singh, A.; Singh, A. Chemical composition and medicinal uses of Anacyclus pyrethrum. Pharma Sci. Monitor, 2018, 9(1), 551-560.
[54]
Rajasekaran, A.; Arivukkarasu, R.; Mathew, L. A systematic comprehensive review on therapeutic potential of Andrographis paniculata (Burm. f.) Wall. ex Nees. J. Pharmacogn. Phytochem., 2016, 5(5), 189.
[55]
Roy, S.; Rao, K.; Bhuvaneswari, C.H.; Giri, A.; Mangamoori, L.N. Phytochemical analysis of Andrographis paniculata extract and its antimicrobial activity. World J. Microbiol. Biotechnol., 2010, 26(1), 85-91.
[http://dx.doi.org/10.1007/s11274-009-0146-8]
[56]
Singh, A.; Duggal, S.; Singh, J.; Katekhaye, S. An inside preview of ethnopharmacology of Cissampelos pareira Linn. Inter. J. Biol. Technol., 2010, 1(1), 114-120.
[57]
Singh, S.G.; Nishteswar, K.; Patel, B.R. Therapeutic efficacy of Patha (Cissampelos pareira Linn.)-A Review through classical texts of Ayurveda. J. Ayurveda Integr. Med. Sci., 2016, 1(03), 92-110.
[58]
Poornima, B.S.; Hegde, P.L.; Pradeep, H.A. Pharmacological review on Clerodendrum serratum Linn. Moon. J. Pharmacog. Phytochem., 2015, 3(5), 126-130.
[59]
Kumar, P.; Nishteswar, K. Phytochemical and pharmacological profiles of Clerodendrum serratum linn.(bharngi): A review. Int. J. Res. Ayurveda Pharm., 2013, 4(2), 276-278.
[http://dx.doi.org/10.7897/2277-4343.04239]
[60]
Rout, O.P.; Acharya, R.; Mishra, S.K.; Sahoo, R. Pathorchur (Coleus aromaticus): A review of the medicinal evidence for its phytochemistry and pharmacology properties. Int. J. Appl. Biol. Pharm. Technol., 2012, 3(4), 348-355.
[61]
Santhosh Kumar, N.; Nusrath, A.; Ramadas, D. Quantitative analysis of chemical constituents in medicinal plant Coleus aromaticus extracts. Inter. J. Res. Med. Sci., 2018, 6(3), 1002-1005.
[http://dx.doi.org/10.18203/2320-6012.ijrms20180630]
[62]
Sivapalan, S.R. Medicinal uses and pharmacological activities of Cyperus rotundus Linn-A review. Inter. J. Sci. Res. Publ., 2013, 3(5), 1-8.
[63]
Singh, N.; Pandey, B.R.; Verma, P.; Bhalla, M.; Gilca, M. Phytopharmacotherapeutics of Cyperus rotundus Linn (Motha): An overview. Indian J. Nat. Prod. Res., 2013, 3(4)
[64]
Kumar, S.; Saxena, K.; Singh, U.N.; Saxena, R. Anti-inflammatory action of ginger: A critical review in anemia of inflammation and its future aspects. Int. J. Herb. Med., 2013, 1, 16-20.
[65]
Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Beta, T.; Li, H.B. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods, 2019, 8(6), 185.
[http://dx.doi.org/10.3390/foods8060185] [PMID: 31151279]
[66]
Kemper, K.J. Ginger (Zingiber officinale). Longwood Herbal Task Force., 1999, 3, 1-8.
[67]
Hussain, M.S.; Fareed, S.; Ali, M. Hygrophila auriculata (K. Schum) Heine: Ethnobotany, phytochemistry and pharmacology. Asian J. Tradit. Med., 2010, 5(4), 121-131.
[68]
Vijayakumar, M.; Govindarajan, R.; Shirwaikar, A.; Kumar, V.; Rawat, A.K.; Mehrotra, S.; Pushpangadan, P. Free radical scavenging and lipid peroxidation inhibition potential of Hygrophila auriculata. Nat. Prod. Sci., 2005, 11(1), 22-26.
[69]
Sethiya, N.K.; Ahmed, N.M.; Shekh, R.M.; Kumar, V.; Kumar Singh, P.; Kumar, V. Ethnomedicinal, phytochemical and pharmacological updates on Hygrophila auriculata (Schum.) Hiene: An overview. J. Integr. Med., 2018, 16(5), 299-311.
[http://dx.doi.org/10.1016/j.joim.2018.07.002] [PMID: 30007830]
[70]
Madhavi, M.; Mallika, G.; Lokanath, N.; Vishnu, M.N.; Chetty, C.M.; Saleem, T.M. A review on phytochemical and pharmacological aspects of Saussurea lappa. Int. J. Life Sci. Med. Res., 2012, 2, 24-31.
[71]
Madhuri, K.; Elango, K.; Ponnusankar, S. Saussurea lappa (Kuth root): Review of its traditional uses, phytochemistry and pharmacology. Orient. Pharm. Exp. Med., 2012, 12(1), 1-9.
[http://dx.doi.org/10.1007/s13596-011-0043-1]
[72]
Zaveri, M.; Khandhar, A.; Patel, S.; Patel, A. Chemistry and pharmacology of Piper longum L. Int. J. Pharm. Sci. Rev. Res., 2010, 5(1), 67-76.
[73]
Choudhary, N.; Singh, V. Piper longum Linn: A review of its phytochemicals and their network pharmacological evaluation. bioRxiv, 2017, 169763.
[74]
Bhowmik, D.; Kumar, K.S.; Yadav, A.; Srivastava, S.; Paswan, S.; Dutta, A.S. Recent trends in Indian traditional herbs Syzygium aromaticum and its health benefits. J. Pharmacogn. Phytochem., 2012, 1(1), 13-22.
[75]
Mittal, M.; Gupta, N.; Parashar, P.; Mehra, V.; Khatri, M. Phytochemical evaluation and pharmacological activity of Syzygium aromaticum: A comprehensive review. Int. J. Pharm. Pharm. Sci., 2014, 6(8), 67-72.
[76]
Vemuri, P.K.; Dronavalli, L.; Nayakudugari, P.; Kunta, A.; Challagulla, R. Phytochemical analysis and biochemical characterization of Terminalia chebula extracts for its medicinal use. Biomed. Pharmacol. J., 2019, 12(3), 1525-1529.
[http://dx.doi.org/10.13005/bpj/1783]
[77]
Basha, SJ; Code, QR A review on Terminalia chebula IJPR, 2017, 7(10)
[78]
Mittal, J.; Sharma, M.M.; Batra, A. Tinospora cordifolia: A multipurpose medicinal plant-A. Faslnamah-i Giyahan-i Daruyi, 2014, 2(2)
[79]
Sinha, K.; Mishra, N.P.; Singh, J.; Khanuja, S.P. Tinospora cordifolia (Guduchi), a reservoir plant for therapeutic applications: A review. Indian J. Tradit. Knowl., 2004, 3(3), 257-270.
[80]
Dash, G.K.; Subburaju, T.; Khuntia, T.K.; Khuntia, J.; Moharana, S.; Suresh, P. Some pharmacognostical characteristics of Tragia involucrata linn. Roots. Anc. Sci. Life, 2000, 20(1-2), 1-5.
[PMID: 22556989]
[81]
Reddy, B.S.; Rao, N.R.; Vijeepallam, K.; Pandy, V. Phytochemical, pharmacological and biological profiles of Tragia species (family: Euphorbiaceae). Afr. J. Tradit. Complement. Altern. Med., 2017, 14(3), 105-112.
[http://dx.doi.org/10.21010/ajtcam.v14i3.11] [PMID: 28480421]
[82]
Ali, B.H.; Blunden, G.; Tanira, M.O.; Nemmar, A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem. Toxicol., 2008, 46(2), 409-420.
[http://dx.doi.org/10.1016/j.fct.2007.09.085] [PMID: 17950516]
[83]
Yadav, V.; Krishnan, A.; Vohora, D. A systematic review on Piper longum L.: Bridging traditional knowledge and pharmacological evidence for future translational research. J. Ethnopharmacol., 2020, 247, 112255.
[http://dx.doi.org/10.1016/j.jep.2019.112255] [PMID: 31568819]
[84]
Cortés-Rojas, D.F.; de Souza, C.R.; Oliveira, W.P. Clove (Syzygium aromaticum): A precious spice. Asian Pac. J. Trop. Biomed., 2014, 4(2), 90-96.
[http://dx.doi.org/10.1016/S2221-1691(14)60215-X] [PMID: 25182278]
[85]
Gobalakrishnan, R.; Kulandaivelu, M.; Bhuvaneswari, R.; Kandavel, D.; Kannan, L. Screening of wild plant species for antibacterial activity and phytochemical analysis of Tragia involucrata L. J. Pharm. Anal., 2013, 3(6), 460-465.
[http://dx.doi.org/10.1016/j.jpha.2013.07.001] [PMID: 29403856]
[86]
Manouze, H.; Bouchatta, O.; Gadhi, A.C.; Bennis, M.; Sokar, Z.; Ba-M’hamed, S. Anti-inflammatory, antinociceptive, and antioxidant activities of methanol and aqueous extracts of Anacyclus pyrethrum roots. Front. Pharmacol., 2017, 8, 598.
[http://dx.doi.org/10.3389/fphar.2017.00598] [PMID: 28928658]
[87]
Hussain, M.S.; Azam, F.; Ahamed, K.F.; Ravichandiran, V.; Alkskas, I. Anti-endotoxin effects of terpenoids fraction from Hygrophila auriculata in lipopolysaccharide-induced septic shock in rats. Pharm. Biol., 2016, 54(4), 628-636.
[http://dx.doi.org/10.3109/13880209.2015.1070877] [PMID: 26428681]
[88]
Bag, A.; Bhattacharyya, S.K.; Chattopadhyay, R.R. The development of Terminalia chebula Retz. (Combretaceae) in clinical research. Asian Pac. J. Trop. Biomed., 2013, 3(3), 244-252.
[http://dx.doi.org/10.1016/S2221-1691(13)60059-3] [PMID: 23620847]
[89]
Claeson, U.P.; Malmfors, T.; Wikman, G.; Bruhn, J.G. Adhatoda vasica: A critical review of ethnopharmacological and toxicological data. J. Ethnopharmacol., 2000, 72(1-2), 1-20.
[http://dx.doi.org/10.1016/S0378-8741(00)00225-7] [PMID: 10967448]
[90]
Morton, J.F. Country borage (Coleus amboinicus Lour.): A potent flavoring and medicinal plant. J. Herbs Spices Med. Plants, 1992, 1(1-2), 77-90.
[http://dx.doi.org/10.1300/J044v01n01_09]
[91]
Zahara, K.; Tabassum, S.; Sabir, S.; Arshad, M.; Qureshi, R.; Amjad, M.S.; Chaudhari, S.K. A review of therapeutic potential of Saussurea lappa-An endangered plant from Himalaya. Asian Pac. J. Trop. Med., 2014, 7S1, S60-S69.
[http://dx.doi.org/10.1016/S1995-7645(14)60204-2] [PMID: 25312191]
[92]
Panchabhai, T.S.; Kulkarni, U.P.; Rege, N.N. Validation of therapeutic claims of Tinospora cordifolia: A review. Phytother. Res., 2008, 22(4), 425-441.
[http://dx.doi.org/10.1002/ptr.2347] [PMID: 18167043]
[93]
Patel, J.J.; Acharya, S.R.; Acharya, N.S. Clerodendrum serratum (L.) Moon. - a review on traditional uses, phytochemistry and pharmacological activities. J. Ethnopharmacol., 2014, 154(2), 268-285.
[http://dx.doi.org/10.1016/j.jep.2014.03.071] [PMID: 24727551]
[94]
Okhuarobo, A.; Falodun, J.E.; Erharuyi, O.; Imieje, V.; Falodun, A.; Langer, P. Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: A review of its phytochemistry and pharmacology. Asian Pac. J. Trop. Dis., 2014, 4(3), 213-222.
[http://dx.doi.org/10.1016/S2222-1808(14)60509-0]
[95]
Kumari, S. Anmol; Bhatt, V.; Suresh, P.S.; Sharma, U. Cissampelos pareira L.: A review of its traditional uses, phytochemistry, and pharmacology. J. Ethnopharmacol., 2021, 274, 113850.
[http://dx.doi.org/10.1016/j.jep.2021.113850] [PMID: 33485976]
[96]
Srivastava, R.K.; Singh, A.; Shukla, S.V. Chemical investigation and pharmaceutical action of Cyperus rotundus-A review. J. Biological. Active Products Nat., 2013, 3(3), 166-172.
[http://dx.doi.org/10.1080/22311866.2013.833381]
[97]
Rates, S.M. Plants as source of drugs. Toxicon, 2001, 39(5), 603-613.
[http://dx.doi.org/10.1016/S0041-0101(00)00154-9] [PMID: 11072038]
[98]
Ghildiyal, R.; Prakash, V.; Chaudhary, V.K.; Gupta, V.; Gabrani, R. Phytochemicals as antiviral agents: Recent updates.In: Plant-derived Bioactives; Springer: Singapore, 2020, pp. 279-295.
[99]
Shi, Q.; Wang, A.; Lu, Z.; Qin, C.; Hu, J.; Yin, J. Overview on the antiviral activities and mechanisms of marine polysaccharides from seaweeds. Carbohydr. Res., 2017, 453-454, 1-9.
[http://dx.doi.org/10.1016/j.carres.2017.10.020] [PMID: 29102716]
[100]
Álvarez, Á.L.; Habtemariam, S.; Abdel Moneim, A.E.; Melón, S.; Dalton, K.P.; Parra, F. A spiroketal-enol ether derivative from Tanacetum vulgare selectively inhibits HSV-1 and HSV-2 glycoprotein accumulation in Vero cells. Antiviral Res., 2015, 119, 8-18.
[http://dx.doi.org/10.1016/j.antiviral.2015.04.004] [PMID: 25882624]
[101]
Chen, J.X.; Xue, H.J.; Ye, W.C.; Fang, B.H.; Liu, Y.H.; Yuan, S.H.; Yu, P.; Wang, Y.Q. Activity of andrographolide and its derivatives against influenza virus in vivo and in vitro. Biol. Pharm. Bull., 2009, 32(8), 1385-1391.
[http://dx.doi.org/10.1248/bpb.32.1385] [PMID: 19652378]
[102]
Li, Y.L.; Ma, S.C.; Yang, Y.T.; Ye, S.M.; But, P.P. Antiviral activities of flavonoids and organic acid from Trollius chinensis Bunge. J. Ethnopharmacol., 2002, 79(3), 365-368.
[http://dx.doi.org/10.1016/S0378-8741(01)00410-X] [PMID: 11849843]
[103]
Balta, I.; Stef, L.; Pet, I.; Ward, P.; Callaway, T.; Ricke, S.C.; Gundogdu, O.; Corcionivoschi, N. Antiviral activity of a novel mixture of natural antimicrobials, in vitro, and in a chicken infection model in vivo. Sci. Rep., 2020, 10(1), 16631.
[http://dx.doi.org/10.1038/s41598-020-73916-1] [PMID: 33024252]
[104]
Chen, H.C.; Chou, C.K.; Lee, S.D.; Wang, J.C.; Yeh, S.F. Active compounds from Saussurea lappa Clarks that suppress hepatitis B virus surface antigen gene expression in human hepatoma cells. Antiviral Res., 1995, 27(1-2), 99-109.
[http://dx.doi.org/10.1016/0166-3542(94)00083-K] [PMID: 7486962]
[105]
Bhattacharya, R.; Dev, K.; Sourirajan, A. Antiviral activity of bioactive phytocompounds against coronavirus: An update. J. Virol. Methods, 2021, 290, 114070.
[http://dx.doi.org/10.1016/j.jviromet.2021.114070] [PMID: 33497729]
[106]
Yang, H.; Li, X.; Yang, X.; Lu, P.; Wang, Y.; Jiang, Z.; Pan, H.; Zhao, L.; Zhu, Y.; Khan, I.U.; Shen, Y.; Lu, H.; Zhang, T.; Jiang, G.; Ma, Z.; Wu, H.; Zhu, H. Dual effects of the novel ingenol derivatives on the acute and latent HIV-1 infections. Antiviral Res., 2019, 169, 104555.
[http://dx.doi.org/10.1016/j.antiviral.2019.104555] [PMID: 31295520]
[107]
Zakaria, M.Y.; Fayad, E.; Althobaiti, F.; Zaki, I.; Abu Almaaty, A.H. Statistical optimization of bile salt deployed nanovesicles as a potential platform for oral delivery of piperine: Accentuated antiviral and anti-inflammatory activity in MERS-CoV challenged mice. Drug Deliv., 2021, 28(1), 1150-1165.
[http://dx.doi.org/10.1080/10717544.2021.1934190] [PMID: 34121561]
[108]
Xu, T.; Kuang, T.; Du, H.; Li, Q.; Feng, T.; Zhang, Y.; Fan, G. Magnoflorine: A review of its pharmacology, pharmacokinetics and toxicity. Pharmacol. Res., 2020, 152, 104632.
[http://dx.doi.org/10.1016/j.phrs.2020.104632] [PMID: 31911246]
[109]
Sachdeva, M. Analysis of in-vitro antimalarial activity of andrographolide and 5-hydroxy-7, 8-dimethoxyflavone isolated from Andrographis paniculata against Plasmodium berghei parasite. Pharma Sci. Monitor, 2011, 2(4)
[110]
CH. R.; Muralikumar, V.; Seshachalam, C. Inhibitory effect of phytochemicals from Azadirachta indica a juss. and Tinospora cordifolia (thunb.) miers against sars-cov-2 m pro and spike protease-an in silico analysis. scienceopen Preprints, 2020.
[111]
Di, Q.; Zhu, H.; Pu, D.; Zhao, X.; Li, X.; Ma, X.; Xiao, W.; Chen, W. The natural compound Cirsitakaoside enhances antiviral innate responses against vesicular stomatitis virus in vitro and in vivo. Int. Immunopharmacol., 2020, 86, 106783.
[http://dx.doi.org/10.1016/j.intimp.2020.106783] [PMID: 32652505]
[112]
Zannella, C.; Giugliano, R.; Chianese, A.; Buonocore, C.; Vitale, G.A.; Sanna, G.; Sarno, F.; Manzin, A.; Nebbioso, A.; Termolino, P.; Altucci, L.; Galdiero, M.; de Pascale, D.; Franci, G. Antiviral Activity of Vitis vinifera Leaf Extract against SARS-CoV-2 and HSV-1. Viruses, 2021, 13(7), 1263.
[http://dx.doi.org/10.3390/v13071263] [PMID: 34209556]
[113]
Moradi, M.T.; Karimi, A.; Rafieian-Kopaei, M.; Fotouhi, F. In vitro antiviral effects of Peganum harmala seed extract and its total alkaloids against Influenza virus. Microb. Pathog., 2017, 110, 42-49.
[http://dx.doi.org/10.1016/j.micpath.2017.06.014] [PMID: 28629724]
[114]
Sun, Y.; Li, C.; Li, Z.; Shangguan, A.; Jiang, J.; Zeng, W.; Zhang, S.; He, Q. Quercetin as an antiviral agent inhibits the Pseudorabies virus in vitro and in vivo. Virus Res., 2021, 305, 198556.
[http://dx.doi.org/10.1016/j.virusres.2021.198556] [PMID: 34492238]
[115]
Fan, W.; Qian, S.; Qian, P.; Li, X. Antiviral activity of luteolin against Japanese encephalitis virus. Virus Res., 2016, 220, 112-116.
[http://dx.doi.org/10.1016/j.virusres.2016.04.021] [PMID: 27126774]
[116]
Mohanraj, K.; Karthikeyan, B.S.; Vivek-Ananth, R.P.; Chand, R.B.; Aparna, S.R.; Mangalapandi, P.; Samal, A. Imppat: A curated database of Indian Medicinal Plants, Phytochemistry and Therapeutics. Sci. Rep., 2018, 8(1), 1-7.
[http://dx.doi.org/10.1038/s41598-018-22631-z] [PMID: 29311619]
[117]
Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, 581(7807), 221-224.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[118]
Thombre, N.; Ahire, P.S.; Sonali, T.; Kshirsagar, S. Herbals as bronchodilator. Indian J. Drugs., 2019, 7(2), 43-48.
[119]
Khan, M.; Shah, A.J.; Gilani, A.H. Insight into the bronchodilator activity of Vitex negundo. Pharm. Biol., 2015, 53(3), 340-344.
[http://dx.doi.org/10.3109/13880209.2014.919327] [PMID: 25622948]
[120]
Maruthamuthu, V.; Kandasamy, R. Bronchodilatory effect of Myxopyrum serratulum in animal model. Bangladesh J. Pharmacol., 2017, 12(1), 84-90.
[http://dx.doi.org/10.3329/bjp.v12i1.30257]
[121]
Amaral-Machado, L.; Oliveira, W.N.; Moreira-Oliveira, S.S.; Pereira, D.T.; Alencar, E.N.; Tsapis, N.; Egito, E.S.T. Use of natural products in asthma treatment. Evid. Based Complement. Alternat. Med., 2020, 2020, 1021258.
[http://dx.doi.org/10.1155/2020/1021258] [PMID: 32104188]
[122]
Singh, B. Medicinal plants and phytomedicines. In: Herbal Insecticides, Repellents and Biomedicines: Effectiveness and Commercialization; Springer: New Delhi, 2016, pp. 127-145.
[http://dx.doi.org/10.1007/978-81-322-2704-5_8]
[123]
D’Amato, G.; Vitale, C.; Molino, A.; Stanziola, A.; Sanduzzi, A.; Vatrella, A.; Mormile, M.; Lanza, M.; Calabrese, G.; Antonicelli, L.; D’Amato, M. Asthma-related deaths. Multidiscip. Respir. Med., 2016, 11(1), 37.
[http://dx.doi.org/10.1186/s40248-016-0073-0] [PMID: 27752310]
[124]
Mali, R.G.; Dhake, A.S. A review on herbal antiasthmatics. Orient. Pharm. Exp. Med., 2011, 11(2), 77-90.
[http://dx.doi.org/10.1007/s13596-011-0019-1] [PMID: 22207824]
[125]
Taur, D.J.; Patil, R.Y. Some medicinal plants with antiasthmatic potential: A current status. Asian Pac. J. Trop. Biomed., 2011, 1(5), 413-418.
[http://dx.doi.org/10.1016/S2221-1691(11)60091-9] [PMID: 23569804]
[126]
Sulaiman, I.; Lim, J.C.; Soo, H.L.; Stanslas, J. Molecularly targeted therapies for asthma: Current development, challenges and potential clinical translation. Pulm. Pharmacol. Ther., 2016, 40, 52-68.
[http://dx.doi.org/10.1016/j.pupt.2016.07.005] [PMID: 27453494]
[127]
Asumeng Koffuor, G.; Boye, A.; Kyei, S.; Ofori-Amoah, J.; Akomanin Asiamah, E.; Barku, A.; Acheampong, J.; Amegashie, E.; Kumi Awuku, A. Anti-asthmatic property and possible mode of activity of an ethanol leaf extract of Polyscias fruticosa. Pharm. Biol., 2016, 54(8), 1354-1363.
[http://dx.doi.org/10.3109/13880209.2015.1077465] [PMID: 26449896]
[128]
Koffuor, G.A.; Boye, A.; Ofori-Amoah, J.; Kyei, S.; Abokyi, S.; Nyarko, R.A.; Bangfu, R.N. Anti-inflammatory and safety assessment of Polyscias fruticosa (L.) Harms (Araliaceae) leaf extract in ovalbumin-induced asthma. J. Phytopharm., 2014, 3(5), 337-342.
[http://dx.doi.org/10.31254/phyto.2014.3506]
[129]
Hiralal Ghante, M.; Bhusari, K.P.; Duragkar, N.J.; Ghiware, N.B. Pharmacological evaluation for anti-asthmatic and anti-inflammatory potential of Woodfordia fruticosa flower extracts. Pharm. Biol., 2014, 52(7), 804-813.
[http://dx.doi.org/10.3109/13880209.2013.869232] [PMID: 24405177]
[130]
Rayees, S.; Satti, N.K.; Mehra, R.; Nargotra, A.; Rasool, S.; Sharma, A.; Sahu, P.K.; Gupta, V.K.; Nepali, K.; Singh, G. Anti-asthmatic activity of azepino [2, 1-b] quinazolones, synthetic analogues of vasicine, an alkaloid from Adhatoda vasica. Med. Chem. Res., 2014, 23(9), 4269-4279.
[http://dx.doi.org/10.1007/s00044-014-0996-y]
[131]
Sharma, M.L.; Rao, C.S.; Duda, P.L. Immunostimulatory activity of Picrorhiza kurroa leaf extract. J. Ethnopharmacol., 1994, 41(3), 185-192.
[http://dx.doi.org/10.1016/0378-8741(94)90031-0] [PMID: 8176958]
[132]
Kumar, D.; Arya, V.; Kaur, R.; Bhat, Z.A.; Gupta, V.K.; Kumar, V. A review of immunomodulators in the Indian traditional health care system. J. Microbiol. Immunol. Infect., 2012, 45(3), 165-184.
[http://dx.doi.org/10.1016/j.jmii.2011.09.030] [PMID: 22154993]
[133]
Govindarajan, R.; Vijayakumar, M.; Pushpangadan, P. Antioxidant approach to disease management and the role of ‘Rasayana’ herbs of Ayurveda. J. Ethnopharmacol., 2005, 99(2), 165-178.
[http://dx.doi.org/10.1016/j.jep.2005.02.035] [PMID: 15894123]
[134]
Bellinger, D.L.; Lorton, D. Autonomic regulation of cellular immune function. Auton. Neurosci., 2014, 182, 15-41.
[http://dx.doi.org/10.1016/j.autneu.2014.01.006] [PMID: 24685093]
[135]
Jalali, A.; Dabaghian, F.; Akbrialiabad, H.; Foroughinia, F.; Zarshenas, M.M. A pharmacology-based comprehensive review on medicinal plants and phytoactive constituents possibly effective in the management of COVID-19. Phytother. Res., 2021, 35(4), 1925-1938.
[http://dx.doi.org/10.1002/ptr.6936] [PMID: 33159391]
[136]
Zhao, W.; Ye, Q.; Tan, X.; Jiang, H.; Li, X.; Chen, K.; Kinghorn, A.D. Three new sesquiterpene glycosides from Dendrobium nobile with immunomodulatory activity. J. Nat. Prod., 2001, 64(9), 1196-1200.
[http://dx.doi.org/10.1021/np0102612] [PMID: 11575955]
[137]
Salma, U; Kundu, S; Gantait, S Phytochemistry and pharmaceutical significance of Picrorhiza kurroa Royle ex Benth Phytochemistry and pharmacology of medicinal herbs, 2017, 26- 30.
[138]
Zambon, M.; Vincent, J.L. Mortality rates for patients with acute lung injury/ARDS have decreased over time. Chest, 2008, 133(5), 1120-1127.
[http://dx.doi.org/10.1378/chest.07-2134] [PMID: 18263687]
[139]
Horie, S.; McNicholas, B.; Rezoagli, E.; Pham, T.; Curley, G.; McAuley, D.; O’Kane, C.; Nichol, A.; Dos Santos, C.; Rocco, P.R.M.; Bellani, G.; Laffey, J.G. Emerging pharmacological therapies for ARDS: COVID-19 and beyond. Intensive Care Med., 2020, 46(12), 2265-2283.
[http://dx.doi.org/10.1007/s00134-020-06141-z] [PMID: 32654006]
[140]
Grasselli, G.; Cattaneo, E.; Florio, G.; Ippolito, M.; Zanella, A.; Cortegiani, A.; Huang, J.; Pesenti, A.; Einav, S. Mechanical ventilation parameters in critically ill COVID-19 patients: A scoping review. Crit. Care, 2021, 25(1), 115.
[http://dx.doi.org/10.1186/s13054-021-03536-2] [PMID: 33743812]
[141]
Zhang, X.R.; Li, T.N.; Ren, Y.Y.; Zeng, Y.J.; Lv, H.Y.; Wang, J.; Huang, Q.W. The important role of volatile components from a traditional chinese medicine dayuan-yin against the COVID-19 pandemic. Front. Pharmacol., 2020, 11, 583651.
[http://dx.doi.org/10.3389/fphar.2020.583651] [PMID: 33101037]
[142]
Singh, S.; Javed, D.; Mukherjee, S.; Mittal, R.; Chourasia, N.; Agrawal, A.; Kotnis, A. Therapeutic potential of traditional Indian herbal medicine in covid-19: A narrative review. Hosp. Pract. Res., 2021, 6(2), 42-50.
[http://dx.doi.org/10.34172/hpr.2021.09]
[143]
Sun, X.; Wang, T.; Cai, D.; Hu, Z.; Chen, J.; Liao, H.; Zhi, L.; Wei, H.; Zhang, Z.; Qiu, Y.; Wang, J.; Wang, A. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev., 2020, 53, 38-42.
[http://dx.doi.org/10.1016/j.cytogfr.2020.04.002] [PMID: 32360420]
[144]
Hu, B.; Huang, S.; Yin, L. The cytokine storm and COVID-19. J. Med. Virol., 2021, 93(1), 250-256.
[http://dx.doi.org/10.1002/jmv.26232] [PMID: 32592501]
[145]
Ragab, D.; Salah Eldin, H.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 cytokine storm; what we know so far. Front. Immunol., 2020, 11, 1446.
[http://dx.doi.org/10.3389/fimmu.2020.01446] [PMID: 32612617]
[146]
Hajra, A.; Mathai, S.V.; Ball, S.; Bandyopadhyay, D.; Veyseh, M.; Chakraborty, S.; Lavie, C.J.; Aronow, W.S. Management of thrombotic complications in COVID-19: An update. Drugs, 2020, 80(15), 1553-1562.
[http://dx.doi.org/10.1007/s40265-020-01377-x] [PMID: 32803670]
[147]
Shi, W.; Lv, J.; Lin, L. Coagulopathy in COVID-19: Focus on vascular thrombotic events. J. Mol. Cell. Cardiol., 2020, 146, 32-40.
[http://dx.doi.org/10.1016/j.yjmcc.2020.07.003] [PMID: 32681845]
[148]
Jose, S.P. M, R.; S, S.; Rajan, S.; Saji, S.; Narayanan, V.; S, S. Anti-inflammatory effect of Kaba Sura Kudineer (AYUSH approved COVID-19 drug)-A Siddha poly-herbal formulation against lipopolysaccharide induced inflammatory response in RAW-264.7 macrophages cells. J. Ethnopharmacol., 2022, 283, 114738.
[http://dx.doi.org/10.1016/j.jep.2021.114738] [PMID: 34653521]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy