Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Novel and Innovative Approach of Nanotechnology with their Applications in the Management of Infectious Disease, Tuberculosis: An Overview

Author(s): Sonia Singh* and Ashima Ahuja

Volume 18, Issue 2, 2024

Published on: 23 August, 2022

Page: [140 - 163] Pages: 24

DOI: 10.2174/1872210516666220523122724

Price: $65

Abstract

Tuberculosis (TB) is considered a significant health problem caused by Mycobacterium tuberculosis. It is one of the second-deadly infectious diseases right after AIDS. Several factors such as poor patient compliance, high dose intake, low drug bioavailability and prolonged treatment of disease are responsible for the prevalence of multi-drug resistance tuberculosis and extensively drug-resistant tuberculosis cases. Therefore, developing such drug-resistant bacterial strains has created a robust and efficient system that can improve the therapeutic effectiveness of anti-tubercular drugs. This review manuscript highlights the therapeutic outcomes of a nanotechnology-based drug delivery system in treating TB. Various novel nanoformulations for anti-mycobacterial drugs have been explored. Such novel approaches would have shown several advantages such as sustained/controlled drug release, reduced dose frequency, and resolved poor patient compliance over many free anti-tubercular drugs. This framework will provide valuable information on various nanoparticle-based technology employed in treating TB infectious disease. Patent data were searched in google patent and nanoformulations outcomes for TB management improves health of patients.

Keywords: Nanotechnology, tuberculosis, sustained-release, controlled release, Mycobacterium tuberculosis, nanoparticles.

Graphical Abstract
[1]
[2]
Debjit B, Debjit B, Chandira RM, Jayakar B, Kumar KPS. Recent trends of drug used treatment of tuberculosis. J Chem Pharm Res 2009; 1(1): 113-33.
[3]
Bagchi T, Chauhan S. Nanotechnology-based approaches for combating tuberculosis: A review. Curr Nanomater 2018; 3(3): 130-9.
[http://dx.doi.org/10.2174/2405461503666181011142949]
[4]
Grotz E, Tateosian N, Amiano N, et al. Nanotechnology in tuberculosis: State of the art and the challenges ahead. Pharm Res 2018; 35(11): 213.
[http://dx.doi.org/10.1007/s11095-018-2497-z] [PMID: 30238168]
[5]
Raj BS, Samraj PI. Zinc oxide nanoparticles: A biological and pharmaceutical review. Nanosci Nanotechnol Asia 2021; 6: e070820184647.
[http://dx.doi.org/10.2174/2210681210999200807150739]
[6]
Yadav J, Verma S, Chaudhary D, Jaiwal PK, Jaiwal R. Tuberculosis: Current status, diagnosis, treatment and development of novel vaccines. Curr Pharm Biotechnol 2019; 20(6): 446-58.
[http://dx.doi.org/10.2174/1389201020666190430114121] [PMID: 31208308]
[7]
Gilani SJ, Zafar AS, Jafar M, Shakil K, Imam SS. Nano-carriers for the treatment of tuberculosis. Recent Patents Anti-Infect Drug Disc 2017; 12(2): 95-106.
[http://dx.doi.org/10.2174/1574891X12666170427120230]
[8]
Gupta M. Shivangi, Meena LS. Multidirectional benefits of nanotechnology in the diagnosis, treatment and prevention of tuberculosis. J Nanotechnol Nanomaterials 2020; 1(2): 46-55.
[9]
Vergne I, Chua J, Singh SB, Deretic V. Cell biology of Mycobacterium tuberculosis phagosome. Annu Rev Cell Dev Biol 2004; 20(1): 367-94.
[http://dx.doi.org/10.1146/annurev.cellbio.20.010403.114015] [PMID: 15473845]
[10]
Sharma AK, Sharma R, Jhorar R, Kumar R. Nanomedicine in therapeutic intervention of tuberculosis meningitis. Curr Nanosci 2015; 11(1): 15-22.
[http://dx.doi.org/10.2174/1573413710666141016000110]
[11]
Garg T, Rath G, Murthy RR, Gupta UD, Vatsala PG, Goyal AK. Current nanotechnological approaches for an effective delivery of bioactive drug molecules to overcome drug resistance tuberculosis. Curr Pharm Biotechnol 2015; 21(22): 3076-89.
[http://dx.doi.org/10.2174/1381612821666150531163254] [PMID: 26027577]
[12]
Mueller P, Pieters J. Modulation of macrophage antimicrobial mechanisms by pathogenic mycobacteria. Immunobiology 2006; 211(6-8): 549-56.
[http://dx.doi.org/10.1016/j.imbio.2006.06.004] [PMID: 16920493]
[13]
Ahmed FB. Tuberculous enteritis. BMJ 1996; 313(7051): 215-7.
[http://dx.doi.org/10.1136/bmj.313.7051.215] [PMID: 8696201]
[14]
Saifullah B, Hussein MZB, Hussein Al Ali SH. Controlled-release approaches towards the chemotherapy of tuberculosis. Int J Nanomedicine 2012; 7: 5451-63.
[http://dx.doi.org/10.2147/IJN.S34996] [PMID: 23091386]
[15]
Meena LS. Rajni. Survival mechanisms of pathogenic Mycobacterium tuberculosis nH37Rv. FEBS J 2010; 277(11): 2416-27.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07666.x] [PMID: 20553485]
[16]
Juma SP, Maro A, Pholwat S, et al. Underestimated pyrazinamide resistance may compromise outcomes of pyrazinamide containing regimens for treatment of drug susceptible and multi-drug-resistant tuberculosis in Tanzania. BMC Infect Dis 2019; 19(1): 129.
[http://dx.doi.org/10.1186/s12879-019-3757-1] [PMID: 30732572]
[17]
Chhabra N, Aseri ML, Dixit R, Gaur S. Pharmacotherapy for multidrug resistant tuberculosis. J Pharmacol Pharmacother 2012; 3(2): 98-104.
[PMID: 22629081]
[18]
Drew RH. Rifamycins (rifampin, rifabutin, rifapentine). Availble form: https://www.uptodate.com/contents/rifamycins-rifampin-rifabutin-rifapentine (Accessed: 2022 Aug 8).
[19]
Gualano G, Capone S, Matteelli A, Palmieri F. New antituberculosis drugs: From clinical trial to programmatic use. Infect Dis Rep 2016; 2: 6569.
[http://dx.doi.org/10.4081/idr.2016.6569]
[20]
Zhang Y, Wade MM, Scorpio A, Zhang H, Sun Z. Mode of action of pyrazinamide: Disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J Antimicrob Chemother 2003; 52(5): 790-5.
[http://dx.doi.org/10.1093/jac/dkg446] [PMID: 14563891]
[21]
[22]
Hotchandani H, Moorani KN, Kazi Y. Anti-tuberculosis therapy induced hepatotoxicity in children. Pak Pediatr J 2013; 37(2): 117-22.
[23]
Schluger NW. Fluoroquinolones in the treatment of tuberculosis: Which is best? Am J Respir Crit Care Med 2013; 188(7): 768-9.
[http://dx.doi.org/10.1164/rccm.201308-1446ED] [PMID: 24083858]
[24]
Ruiz P, Rodríguez-Cano F, Zerolo FJ, Casal M. Investigation of the in vitro activity of streptomycin against Mycobacterium tuberculosis. Microb Drug Resist 2002; 8(2): 147-9.
[http://dx.doi.org/10.1089/107662902760190707] [PMID: 12118520]
[25]
Kanamycin. Tuberculosis (Edinb), 2008; 88(2): 117-8.
[http://dx.doi.org/10.1016/S1472-9792(08)70012-X] [PMID: 18486046]
[26]
NCATS inxight drugs-Capreomycin. [internet]. Availble: https://drugs.ncats.io/drug/232HYX66HC
[27]
Srivastava S, Chapagain M, van Zyl J, Deshpande D, Gumbo T. Potency of vancomycin against Mycobacterium tuberculosis in the hollow fiber system model. J Glob Antimicrob Resist 2021; 24: 403-10.
[http://dx.doi.org/10.1016/j.jgar.2021.01.005] [PMID: 33508482]
[28]
Hoofnagle JH, Serrano J, Knoben JE, Navarro VJ. LiverTox: A website on drug-induced liver injury. Hepatology 2013; 57(3): 873-4.
[http://dx.doi.org/10.1002/hep.26175] [PMID: 23456678]
[29]
Smith M, Accinelli A, Tejada FR, Kharel MK. Drugs used in TB and leprosy. Side Eff Drugs Annu 2017; 38: 283-93.
[http://dx.doi.org/10.1016/bs.seda.2016.08.015]
[30]
Lechartier B, Cole ST. Mode of action of clofazimine and combination therapy with benzothiazinones against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2015; 59(8): 4457-63.
[http://dx.doi.org/10.1128/AAC.00395-15] [PMID: 25987624]
[31]
Farshidpour M, Ebrahimi G, Mirsaeidi M. Multidrug-resistant tuberculosis treatment with linezolid-containing regimen. Int J Mycobacteriol 2013; 2(4): 233-6.
[http://dx.doi.org/10.1016/j.ijmyco.2013.09.002] [PMID: 25110635]
[32]
Pagliotto ADF, Caleffi-Ferracioli KR, Lopes MA, et al. Anti-Mycobacterium tuberculosis activity of antituberculosis drugs and amoxicillin/clavulanate combination. J Microbiol Immunol Infect 2016; 49(6): 980-3.
[http://dx.doi.org/10.1016/j.jmii.2015.08.025] [PMID: 26454420]
[33]
Coxon GD, Craig D, Corrales RM, Vialla E, Gannoun-Zaki L, Kremer L. Synthesis, antitubercular activity and mechanism of resistance of highly effective thiacetazone analogues. PLOS One 2013; 1: e53162.
[http://dx.doi.org/10.1371/journal.pone.0053162]
[34]
Tay CY, Setyawati MI, Xie J, Parak WJ, Leong DT. Back to basics: Exploiting the innate physico-chemical characteristics of nanomaterials for biomedical applications. Adv Funct Mater 2014; 24(38): 5936-55.
[http://dx.doi.org/10.1002/adfm.201401664]
[35]
MacCuspie RI. Characterization of nanomaterials for NanoEHS studies. In: Nanotechnology environmental health and safety. William Andrew Publishing 2014; pp. 55-76.
[36]
Boverhof DR, David RM. Nanomaterial characterization: Considerations and needs for hazard assessment and safety evaluation. Anal Bioanal Chem 2010; 396(3): 953-61.
[http://dx.doi.org/10.1007/s00216-009-3103-3] [PMID: 19756533]
[37]
Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R. Nanoparticle: An overview of preparation and characterization. J Appl Pharm Sci 2011; 01(06): 228-34.
[38]
Joshi M, Bhattacharyya A, Ali SW. Characterization techiniques for nanotechnology applications in textiles. Indian J Fibre Text Res 2008; 33: 304-17.
[39]
Rijn SP, Zuur MA, Anthony R, et al. Evaluation of carbapenems for treatment of multi-and extensively drug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63(2): e01489-18.
[PMID: 30455232]
[40]
Rajput A, Mandlik S, Pokharkar V. Nanocarrier-based approaches for the efficient delivery of anti-tubercular drugs and vaccines for management of tuberculosis. Front Pharmacol 2021; 12: 749945.
[http://dx.doi.org/10.3389/fphar.2021.749945] [PMID: 34992530]
[41]
Gilani SJ, Jafar M, Shakil K, Imam SS. Nano-carriers for the treatment of tuberculosis. Recent Pat Antiinfect Drug Discov 2017; 12(2): 95-106.
[http://dx.doi.org/10.2174/1574891X12666170427120230] [PMID: 28595544]
[42]
Anderson CF, Grimmett ME, Domalewski CJ, Cui H. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020; 1: e1586.
[http://dx.doi.org/10.1002/wnan.1586]
[43]
Patil K, Bagade S, Bonde S, Sharma S, Saraogi G. Recent therapeutic approaches for the management of tuberculosis: Challenges and opportunities. Biomed Pharmacother 2018; 99: 735-45.
[http://dx.doi.org/10.1016/j.biopha.2018.01.115] [PMID: 29710471]
[44]
Hoagland DT, Liu J, Lee RB, Lee RE. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv Drug Deliv Rev 2016; 102(102): 55-72.
[http://dx.doi.org/10.1016/j.addr.2016.04.026] [PMID: 27151308]
[45]
Praphakar RA, Munusamy MA, Rajan M. Development of extended-voyaging anti-oxidant linked amphiphilic polymeric nanomicelles for anti-tuberculosis drug delivery. Int J Pharm 2017; 524(1-2): 168-77.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.089] [PMID: 28377319]
[46]
Tripodo G, Perteghella S, Grisoli P, et al. Drug delivery of rifampicin by natural micelles based on inulin: Physicochemical properties, antibacterial activity and human macrophages uptake. Eur J Pharm Biopharm 2019; 136: 250-8.
[http://dx.doi.org/10.1016/j.ejpb.2019.01.022] [PMID: 30685506]
[47]
Amarnath PR, Sam Ebenezer R, Vignesh S, Shakila H, Rajan M. Versatile pH-responsive chitosan-g-polycaprolactone/maleic anhydride–isoniazid polymeric micelle to improve the bioavailability of tuberculosis multidrugs. ACS Appl Bio Mater 2019; 2(5): 1931-43.
[http://dx.doi.org/10.1021/acsabm.9b00003] [PMID: 35030682]
[48]
Silva M, Ricelli NL, El Seoud O, et al. Potential tuberculostatic agent: Micelle-forming pyrazinamide prodrug. Arch Pharm (Weinheim) 2006; 339(6): 283-90.
[http://dx.doi.org/10.1002/ardp.200500039] [PMID: 16688684]
[49]
Silva M, Ferreira EI, Leite CQF, Sato DN. Preparation of polymeric micelles for use as carriers of tuberculostatic drugs. Trop J Pharm Res 2007; 20076(4): 815-24.
[http://dx.doi.org/10.4314/tjpr.v6i4.14665]
[50]
Moretton MA, Glisoni RJ, Chiappetta DA, Sosnik A. Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles. Colloids Surf B Biointerfaces 2010; 79(2): 467-79.
[http://dx.doi.org/10.1016/j.colsurfb.2010.05.016] [PMID: 20627665]
[51]
Moretton MA, Chiappetta DA, Sosnik A. Cryoprotection-lyophilization and physical stabilization of rifampicin-loaded flower-like polymeric micelles. J R Soc Interface 2012; 9(68): 487-502.
[http://dx.doi.org/10.1098/rsif.2011.0414] [PMID: 21865255]
[52]
Alexandru-Flaviu T, Cornel C. Macrophages targeted drug delivery as a key therapy in infectious disease. Biotechnol. Mol Biol Nanomed 2014; 1: 17-20.
[53]
Tang Y, Zhang H, Lu X, et al. Development and evaluation of a dry powder formulation of liposome-encapsulated oseltamivir phosphate for inhalation. Drug Deliv 2015; 22(5): 608-18.
[http://dx.doi.org/10.3109/10717544.2013.863526] [PMID: 24299495]
[54]
Drulis-Kawa Z, Dorotkiewicz-Jach A. Liposomes as delivery systems for antibiotics. Int J Pharm 2010; 387(1-2): 187-98.
[http://dx.doi.org/10.1016/j.ijpharm.2009.11.033] [PMID: 19969054]
[55]
Lee W-H, Loo CY, Young PM, Traini D, Mason RS, Rohanizadeh R. Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin Drug Deliv 2014; 11(8): 1183-201.
[http://dx.doi.org/10.1517/17425247.2014.916686] [PMID: 24857605]
[56]
Düzgüneş N, Flasher D, Reddy MV, Luna-Herrera J, Gangadharam PR. Treatment of intracellular Mycobacterium avium complex infection by free and liposome-encapsulated sparfloxacin. Antimicrob Agents Chemother 1996; 40(11): 2618-21.
[http://dx.doi.org/10.1128/AAC.40.11.2618] [PMID: 8913475]
[57]
Patil-Gadhe A, Pokharkar V. Single step spray drying method to develop proliposomes for inhalation: A systematic study based on quality by design approach. Pulm Pharmacol Ther 2014; 27(2): 197-207.
[http://dx.doi.org/10.1016/j.pupt.2013.07.006] [PMID: 23916767]
[58]
Liu P, Guo B, Wang S, Ding J, Zhou W. A thermo-responsive and self-healing liposome-in-hydrogel system as an antitubercular drug carrier for localized bone tuberculosis therapy. Int J Pharm 2019; 558: 101-9.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.083] [PMID: 30634030]
[59]
Hamed A, Osman R, Al-Jamal KT, Holayel SM, Geneidi AS. Enhanced antitubercular activity, alveolar deposition and macrophages uptake of mannosylated stable nanoliposomes. J Drug Deliv Sci Technol 2019; 51: 513-23.
[http://dx.doi.org/10.1016/j.jddst.2019.03.032]
[60]
Viswanathan V, Pharande R, Bannalikar A, Gupta P, Gupta U, Mukne A. Inhalable liposomes of Glycyrrhiza glabra extract for use in tuberculosis: Formulation, in vitro characterization, in vivo lung deposition, and in vivo pharmacodynamic studies. Drug Dev Ind Pharm 2019; 45(1): 11-20.
[http://dx.doi.org/10.1080/03639045.2018.1513025] [PMID: 30122088]
[61]
Kaur IP, Singh H. Nanostructured drug delivery for better management of tuberculosis. J Control Release 2014; 184: 36-50.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.009] [PMID: 24732260]
[62]
Tayeb HH, Sainsbury F. Nanoemulsions in drug delivery: Formulation to medical application. Nanomedicine (Lond) 2018; 13(19): 2507-25.
[http://dx.doi.org/10.2217/nnm-2018-0088] [PMID: 30265218]
[63]
Shah K, Chan LW, Wong TW. Critical physicochemical and biological attributes of nanoemulsions for pulmonary delivery of rifampicin by nebulization technique in tuberculosis treatment. Drug Deliv 2017; 24(1): 1631-47.
[http://dx.doi.org/10.1080/10717544.2017.1384298] [PMID: 29063794]
[64]
Halicki PCB, Hädrich G, Boschero R, et al. Alternative pharmaceutical formulation for oral administration of rifampicin. Assay Drug Dev Technol 2018; 16(8): 456-61.
[http://dx.doi.org/10.1089/adt.2018.874] [PMID: 30325673]
[65]
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12(7): 908-31.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[66]
Praphakar RA, Jeyaraj M, Ahmed M, Kumar SS, Rajan M. Silver nanoparticle functionalized CS-g-(CA-MA-PZA) carrier for sustainable anti-tuberculosis drug delivery. Int J Biol Macromol 2018; 118: 1627-38.
[67]
Bachhav SS, Dighe VD, Devarajan PV. Exploring peyer’s patch uptake as a strategy for targeted lung delivery of polymeric rifampicin nanoparticles. Mol Pharm 2018; 15(10): 4434-45.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00382] [PMID: 30106591]
[68]
Tenland E, Pochert A, Krishnan N, et al. Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLOS One 2019; 2: e0212858.
[http://dx.doi.org/10.1371/journal.pone.0212858]
[69]
Saifullah B, Maitra A, Chrzastek A, et al. Nano-formulation of ethambutol with multifunctional graphene oxide and magnetic nanoparticles retains its anti-tubercular activity with prospects of improving chemotherapeutic efficacy. Molecules 2017; 22(10): 10.
[http://dx.doi.org/10.3390/molecules22101697] [PMID: 29023384]
[70]
Rawal T, Parmar R, Tyagi RK, Butani S. Rifampicin loaded chitosan nanoparticle dry powder presents an improved therapeutic approach for alveolar tuberculosis. Colloids Surf B Biointerfaces 2017; 154: 321-30.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.044] [PMID: 28363192]
[71]
Sutradhar KB, Khatun S, Luna IP. Increasing possibilities of nanosuspension. J Nanotechnol 2013; 2013: 1-12.
[http://dx.doi.org/10.1155/2013/346581]
[72]
Kaur M, Garg T, Rath G, Goyal AK. Current nanotechnological strategies for effective delivery of bioactive drug molecules in the treatment of tuberculosis. Crit Rev Ther Drug Carrier Syst 2014; 31(1): 49-88.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2014008285] [PMID: 24579767]
[73]
Bhandari R, Kaur IP. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int J Pharm 2013; 441(1-2): 202-12.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.042] [PMID: 23220081]
[74]
Melo KJC, Henostroza MAB, Löbenberg R, Bou-Chacra NA. Rifampicin nanocrystals: Towards an innovative approach to treat tuberculosis. Mater Sci Eng C 2020; 112110895.
[http://dx.doi.org/10.1016/j.msec.2020.110895] [PMID: 32409052]
[75]
Peters K, Leitzke S, Diederichs JE, et al. Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. J Antimicrob Chemother 2000; 45(1): 77-83.
[http://dx.doi.org/10.1093/jac/45.1.77] [PMID: 10629016]
[76]
Nasiruddin M, Neyaz MK, Das S. Nanotechnology-based approach in tuberculosis treatment. Tuberc Res Treat 2017; 20174920209.
[http://dx.doi.org/10.1155/2017/4920209] [PMID: 28210505]
[77]
Gaspar DP, Faria V, Gonçalves LMD, Taboada P, Remuñán-López C, Almeida AJ. Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: Physicochemical and in vitro studies. Int J Pharm 2016; 497(1-2): 199-209.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.050] [PMID: 26656946]
[78]
Nemati E, Mokhtarzadeh A, Panahi-Azar V, et al. Ethambutol-loaded solid lipid nanoparticles as dry powder inhalable formulation for tuberculosis therapy. AAPS PharmSciTech 2019; 20(3): 120.
[http://dx.doi.org/10.1208/s12249-019-1334-y] [PMID: 30796625]
[79]
Singh M, Guzman-Aranguez A, Hussain A, Srinivas CS, Kaur IP. Solid lipid nanoparticles for ocular delivery of isoniazid: Evaluation, proof of concept and in vivo safety & kinetics. Nanomedicine (Lond) 2019; 14(4): 465-91.
[http://dx.doi.org/10.2217/nnm-2018-0278] [PMID: 30694726]
[80]
Shilpi S, Vimal VD, Soni V. Assessment of lactoferrin-conjugated solid lipid nanoparticles for efficient targeting to the lung. Prog Biomater 2015; 4(1): 55-63.
[http://dx.doi.org/10.1007/s40204-015-0037-z] [PMID: 29470795]
[81]
Kutscher HL, Morse GD, Prasad PN, Reynolds JL. In vitro pharmacokinetic cell culture system that simulates physiologic drug and nanoparticle exposure to macrophages. Pharm Res 2019; 3: 44.
[http://dx.doi.org/10.1007/s11095-019-2576-9]
[82]
Scolari IR, Paez PL, Sanchez-Borzone ME, Granero GE. Promising chitosan-coated alginate-tween 80 nanoparticles as rifampicin coadministered ascorbic acid delivery carrier against Mycobacterium tuberculosis. AAPS PharmSciTech 2019; 2: 67.
[http://dx.doi.org/10.1208/s12249-018-1278-7]
[83]
Horváti K, Gyulai G, Csámpai A, Rohonczy J, Kiss É. Bősze S. Surface layer modification of poly (d, l-lactic-co-glycolic acid) nanoparticles with targeting peptide: A convenient synthetic route for pluronic F127–tuftsin conjugate. Bioconjug Chem 2018; 29(5): 1495-9.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00156] [PMID: 29669198]
[84]
Trousil J, Filippov SK, Hrubý M, et al. System with embedded drug release and nanoparticle degradation sensor showing efficient rifampicin delivery into macrophages. Nanomedicine 2017; 13(1): 307-15.
[http://dx.doi.org/10.1016/j.nano.2016.08.031] [PMID: 27613399]
[85]
Rani S, Gothwal A, Pandey PK, et al. HPMA-PLGA based nanoparticles for effective in vitro delivery of rifampicin. AAPS PharmSciTech 2019; 2: 67.
[http://dx.doi.org/10.1007/s11095-018-2543-x]
[86]
Ge Z, Ma R, Xu G, et al. Development and in vitro release of isoniazid and rifampicin-loaded bovine serum albumin nanoparticles. Med Sci Monit 2018; 24: 473-8.
[http://dx.doi.org/10.12659/MSM.905581] [PMID: 29364864]
[87]
Marcianes P, Negro S, García-García L, Montejo C, Barcia E, Fernández-Carballido A. Surface-modified gatifloxacin nanoparticles with potential for treating central nervous system tuberculosis. Int J Nanomedicine 2017; 12: 1959-68.
[http://dx.doi.org/10.2147/IJN.S130908] [PMID: 28331318]
[88]
Kumarasingam K, Vincent M, Mane SR, Shunmugam R, Sivakumar S, Uma Devi KR. Enhancing antimycobacterial activity of isoniazid and rifampicin incorporated norbornene nanoparticles. Int J Mycobacteriol 2018; 7(1): 84-8.
[http://dx.doi.org/10.4103/ijmy.ijmy_162_17] [PMID: 29516891]
[89]
Kesavan MP, Ayyanaar S, Vijayakumar V, et al. Magnetic iron oxide nanoparticles (MIONs) cross-linked natural polymer-based hybrid gel beads: Controlled nano anti-TB drug delivery application. J Biomed Mater Res A 2018; 106(4): 1039-50.
[http://dx.doi.org/10.1002/jbm.a.36306] [PMID: 29218783]
[90]
Hakkimane SS, Shenoy VP, Gaonkar SL, Bairy I, Guru BR. Antimycobacterial susceptibility evaluation of rifampicin and isoniazid benz-hydrazone in biodegradable polymeric nanoparticles against Mycobacterium tuberculosis H37Rv strain. Int J Nanomedicine 2018; 13: 4303-18.
[http://dx.doi.org/10.2147/IJN.S163925] [PMID: 30087562]
[91]
Churilov L, Korzhikov-Vlakh V, Sinitsyna E, et al. Enhanced delivery of 4-thioureidoiminomethylpyridinium perchlorate in tuberculosis models with IgG functionalized poly (lactic acid)-based particles. Pharmaceutics 2019; 1: 2.
[92]
Ghaderkhani J, Yousefimashouf R, Arabestani M, Roshanaei G, Asl SS, Abbasalipourkabir R. Improved antibacterial function of Rifampicin-loaded solid lipid nanoparticles on Brucella abortus. Artif Cells Nanomed Biotechnol 2019; 47(1): 1181-93.
[http://dx.doi.org/10.1080/21691401.2019.1593858] [PMID: 30942627]
[93]
Chokshi NV, Khatri HN, Patel MM. Formulation, optimization, and characterization of rifampicin-loaded solid lipid nanoparticles for the treatment of tuberculosis. Drug Dev Ind Pharm 2018; 44(12): 1975-89.
[http://dx.doi.org/10.1080/03639045.2018.1506472] [PMID: 30058392]
[94]
Nirbhavane P, Vemuri N, Kumar N, Khuller GK. Lipid nanocarrier-mediated drug delivery system to enhance the oral bioavailability of rifabutin. AAPS PharmSciTech 2017; 18(3): 829-37.
[http://dx.doi.org/10.1208/s12249-016-0559-2] [PMID: 27350276]
[95]
Vieira ACC, Chaves LL, Pinheiro S, et al. Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. Int J Pharm 2018; 536(1): 478-85.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.071] [PMID: 29203137]
[96]
Aboutaleb E, Noori M, Gandomi N, et al. Improved antimycobacterial activity of rifampin using solid lipid nanoparticles. Int Nano Lett 2012; 2(1): 1-8.
[http://dx.doi.org/10.1186/2228-5326-2-33]
[97]
Kumar PV, Agashe H, Dutta T, Jain NK. PEGylated dendritic architecture for development of a prolonged drug delivery system for an antitubercular drug. Curr Drug Deliv 2007; 4(1): 11-9.
[http://dx.doi.org/10.2174/156720107779314794] [PMID: 17269913]
[98]
Bellini RG, Guimarães AP, Pacheco MA, et al. Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J Mol Graph Model 2015; 60: 34-42.
[http://dx.doi.org/10.1016/j.jmgm.2015.05.012] [PMID: 26093506]
[99]
Patil JS, Devi VK, Devi K, Sarasija S. A novel approach for lung delivery of rifampicin-loaded liposomes in dry powder form for the treatment of tuberculosis. Lung India 2015; 32(4): 331-8.
[http://dx.doi.org/10.4103/0970-2113.159559] [PMID: 26180381]
[100]
Nkanga CI, Krause RWM. Encapsulation of isoniazid-conjugated phthalocyanine-in-cyclodextrin-in-liposomes using heating method. Sci Rep 2019; 9(1): 11485.
[http://dx.doi.org/10.1038/s41598-019-47991-y] [PMID: 31391517]
[101]
Adams LB, Sinha I, Franzblau SG, Krahenbuhl JL, Mehta RT. Effective treatment of acute and chronic murine tuberculosis with liposome-encapsulated clofazimine. Antimicrob Agents Chemother 1999; 43(7): 1638-43.
[http://dx.doi.org/10.1128/AAC.43.7.1638] [PMID: 10390215]
[102]
Bhardwaj A, Kumar L, Narang RK, Murthy RSR. Development and characterization of ligand-appended liposomes for multiple drug therapy for pulmonary tuberculosis. Artif Cell Nanomed B 2013; 1: 58-9.
[103]
Nkanga CI, Noundou XS, Walker RB, Krause RWM. Co-encapsulation of rifampicin and isoniazid in crude soybean lecithin liposomes. S Afr J Chem 2019; 72: 80-7.
[http://dx.doi.org/10.17159/0379-4350/2019/v72a11]
[104]
Van-Zyl L, Viljoen JM, Haynes RK, Aucamp M, Ngwane AH, Du Plessis J. Topical delivery of artemisone, clofazimine and decoquinate encapsulated in vesicles and their in vitro efficacy against Mycobacterium tuberculosis. AAPS PharmSciTech 2019; 1: 33.
[http://dx.doi.org/10.1208/s12249-018-1251-5]
[105]
Diogo GR, Hart P, Copland A, et al. Immunization with Mycobacterium tuberculosis antigens encapsulated in phosphatidylserine liposomes improves protection afforded by BCG. Front Immunol 2019; 10: 1349.
[http://dx.doi.org/10.3389/fimmu.2019.01349] [PMID: 31293568]
[106]
Ferraz-Carvalho RS, Pereira MA, Linhares LA, et al. Effects of the encapsulation of usnic acid into liposomes and interactions with antituberculous agents against multidrug-resistant tuberculosis clinical isolates. Mem Inst Oswaldo Cruz 2016; 111(5): 330-4.
[http://dx.doi.org/10.1590/0074-02760150454] [PMID: 27143488]
[107]
Henostroza MA, Melo KJC, Yukuyama MN, Lobenberg R, Bou-Chacra NA. Cationic rifampicin nanoemulsion for the treatment of ocular tuberculosis. Colloids Surf A Physicochem Eng Asp 2020; 597(20): 20-, 597, 124755.
[http://dx.doi.org/10.1016/j.colsurfa.2020.124755]
[108]
Hussain A, Altamimi MA, Alshehri S, Imam SS, Shakeel F, Singh SK. Novel approach for transdermal delivery of rifampicin to induce synergistic antimycobacterial effects against cutaneous and systemic tuberculosis using a cationic nanoemulsion gel. Int J Nanomedicine 2020; 15: 1073-94.
[http://dx.doi.org/10.2147/IJN.S236277] [PMID: 32103956]
[109]
Rojanarat W, Nakpheng T, Thawithong E, Yanyium N, Srichana T. Levofloxacin-proliposomes: Opportunities for use in lung tuberculosis. Pharmaceutics 2012; 4(3): 385-412.
[http://dx.doi.org/10.3390/pharmaceutics4030385] [PMID: 24300299]
[110]
Patil-Gadhe AA, Kyadarkunte AY, Pereira M, et al. Rifapentine-proliposomes for inhalation: In vitro and in vivo toxicity. Toxicol Int 2014; 21(3): 275-82.
[http://dx.doi.org/10.4103/0971-6580.155361] [PMID: 25948966]
[111]
Zaru M, Sinico C, De Logu A, et al. Rifampicin-loaded liposomes for the passive targeting to alveolar macrophages:In vitro and in vivo evaluation. J Liposome Res 2009; 19(1): 68-76.
[http://dx.doi.org/10.1080/08982100802610835] [PMID: 19515009]
[112]
Klemens SP, Cynamon MH, Swenson CE, Ginsberg RS. Liposome-encapsulated-gentamicin therapy of Mycobacterium avium complex infection in beige mice. Antimicrob Agents Chemother 1990; 34(6): 967-70.
[http://dx.doi.org/10.1128/AAC.34.6.967] [PMID: 2393294]
[113]
Nightingale SD, Saletan SL, Swenson CE, et al. Liposome-encapsulated gentamicin treatment of Mycobacterium avium-Mycobacterium intracellulare complex bacteremia in AIDS patients. Antimicrob Agents Chemother 1993; 37(9): 1869-72.
[http://dx.doi.org/10.1128/AAC.37.9.1869] [PMID: 8239598]
[114]
Leitzke S, Bucke W, Borner K, Müller R, Hahn H, Ehlers S. Rationale for and efficacy of prolonged-interval treatment using liposome-encapsulated amikacin in experimental Mycobacterium avium infection. Antimicrob Agents Chemother 1998; 42(2): 459-61.
[http://dx.doi.org/10.1128/AAC.42.2.459] [PMID: 9527808]
[115]
Chimote G, Banerjee R. In vitro evaluation of inhalable isoniazid-loaded surfactant liposomes as an adjunct therapy in pulmonary tuberculosis. J Biomed Mater Res B Appl Biomater 2010; 94(1): 1-10.
[http://dx.doi.org/10.1002/jbm.b.31608] [PMID: 20524179]
[116]
Changsan N, Nilkaeo A, Pungrassami P, Srichana T. Monitoring safety of liposomes containing rifampicin on respiratory cell lines and in vitro efficacy against Mycobacterium bovis in alveolar macrophages. J Drug Target 2009; 17(10): 751-62.
[http://dx.doi.org/10.3109/10611860903079462] [PMID: 19863196]
[117]
Rojanarat W, Nakpheng T, Thawithong E, Yanyium N, Srichana T. Inhaled pyrazinamide proliposome for targeting alveolar macrophages. Drug Deliv 2012; 19(7): 334-45.
[http://dx.doi.org/10.3109/10717544.2012.721144] [PMID: 22985352]
[118]
Rojanarat W, Changsan N, Tawithong E, Pinsuwan S, Chan HK, Srichana T. Isoniazid proliposome powders for inhalation-preparation, characterization and cell culture studies. Int J Mol Sci 2011; 12(7): 4414-34.
[http://dx.doi.org/10.3390/ijms12074414] [PMID: 21845086]
[119]
Hussain A, Kumar Singh S, Ranjan Prasad Verma P, Singh N, Jalees Ahmad F. Experimental design-based optimization of lipid nanocarrier as delivery system against Mycobacterium species: In vitro and in vivo evaluation. Pharm Dev Technol 2017; 22(7): 910-27.
[http://dx.doi.org/10.1080/10837450.2016.1212879] [PMID: 27484389]
[120]
Sumaila M, Ramburrun P, Kumar P, Choonara YE, Pillay V. Lipopolysaccharide polyelectrolyte complex for oral delivery of an anti-tubercular drug. AAPS PharmSciTech 2019; 3: 107.
[http://dx.doi.org/10.1208/s12249-019-1310-6]
[121]
Carazo E, Sandri G, Cerezo P, et al. Halloysite nanotubes as tools to improve the actual challenge of fixed doses combinations in tuberculosis treatment. J Biomed Mater Res A 2019; 107(7): 1513-21.
[http://dx.doi.org/10.1002/jbm.a.36664] [PMID: 30821051]
[122]
Cui J, Wang L, Han Y, et al. ZnOnano-cages derived from ZIF-8 with enhanced anti Mycobacterium-tuberculosis activities. J Alloys Compd 2018; 766: 619-25.
[http://dx.doi.org/10.1016/j.jallcom.2018.06.339]
[123]
Mehnath S, Ayisha Sithika MA, Arjama M, Rajan M, Amarnath Praphakar R, Jeyaraj M. Sericin-chitosan doped maleate gellan gum nanocomposites for effective cell damage in Mycobacterium tuberculosis. Int J Biol Macromol 2019; 122: 174-84.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.167] [PMID: 30393136]
[124]
Mulla JA, Mabrouk M, Choonara YE, et al. Development of respirable rifampicin-loaded nano-lipomer composites by microemulsion-spray drying for pulmonary delivery. J Drug Deliv Sci Technol 2017; 41: 13-9.
[http://dx.doi.org/10.1016/j.jddst.2017.06.017]
[125]
Ishikawa AA, Salazar JV, Salinas M, et al. Self-assembled nanospheres for encapsulation and aerosolization of rifampicin. RSC Advances 2016; 6(16): 12959-63.
[http://dx.doi.org/10.1039/C5RA25044G] [PMID: 26998252]
[126]
Kulkarni P, Rawtani D, Barot T. Formulation and optimization of long acting dual niosomes using box-behnken experimental design method for combinative delivery of ethionamide and D-cycloserine in tuberculosis treatment. Colloid Surf A Physicochem. Eng ASP 2019; 565: 131-42.
[127]
Christianah I, Rodrigues A, Ijeoma O, Judith O, Mercy A, Ochubiojo EM. Rifampicin-loaded silver-starch nanocomposite for the treatment of multi-resistant tuberculosis. Nanomed Nanotechnol 2016; 3: 1000374.
[http://dx.doi.org/10.4172/2157-7439.1000374]
[128]
Beeram VV, Krupanidhi S, Nadh RV. In-vivo evaluation of rifampicin loaded nanospheres: Biodistribution and mycobacterium screening studies. Curr Trends Biotechnol Pharm 2018; 12(2): 169-76.
[129]
Leidinger P, Treptow J, Hagens K, et al. Isoniazid@ Fe2O3 nanocontainersand their antibacterial effect on tuberculosis Mycobacteria. Angew Chem Int Ed Engl 2015; 54(43): 12597-601.
[http://dx.doi.org/10.1002/anie.201505493] [PMID: 26332072]
[130]
Hädrich G, Boschero RA, Appel AS, et al. Tuberculosis treatment facilitated by lipid nanocarriers: Can inhalation improve the regimen? Assay Drug Dev Technol 2020; 18(7): 298-307.
[http://dx.doi.org/10.1089/adt.2020.998] [PMID: 33054379]
[131]
Hussain A, Singh S, Das SS, Anjireddy K, Karpagam S, Shakeel F. nanomedicines as drug delivery carriers of anti-tubercular drugs: From pathogenesis to infection control. Curr Drug Deliv 2019; 16(5): 400-29.
[http://dx.doi.org/10.2174/1567201816666190201144815] [PMID: 30714523]
[132]
Rowland R, McShane H. Tuberculosis vaccines in clinical trials. Expert Rev Vaccines 2011; 10(5): 645-58.
[http://dx.doi.org/10.1586/erv.11.28] [PMID: 21604985]
[133]
Mendez-Samperio P. Development of tuberculosis vaccines in clinical trials: Current status. Scand J Immunol 2018; 4: e12710.
[134]
Martin C, Williams A, Hernandez-Pando R, et al. The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine 2006; 24(17): 3408-19.
[http://dx.doi.org/10.1016/j.vaccine.2006.03.017] [PMID: 16564606]
[135]
Pérez E, Samper S, Bordas Y, Guilhot C, Gicquel B, Martín C. An essential role for phoP in Mycobacterium tuberculosis virulence. Mol Microbiol 2001; 41(1): 179-87.
[http://dx.doi.org/10.1046/j.1365-2958.2001.02500.x] [PMID: 11454210]
[136]
Cardona PJ, Asensio JG, Arbués A, et al. Extended safety studies of the attenuated live tuberculosis vaccine SO2 based on phoP mutant. Vaccine 2009; 27(18): 2499-505.
[http://dx.doi.org/10.1016/j.vaccine.2009.02.060] [PMID: 19368792]
[137]
Verreck FA, Vervenne RA, Kondova I. MVA 85A boosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques. PLoS One 2009; 4: e5264.
[138]
Williams A, Goonetilleke NP, McShane H, et al. Boosting with poxviruses enhances Mycobacterium bovis BCG efficacy against tuberculosis in guinea pigs. Infect Immun 2005; 73(6): 3814-6.
[http://dx.doi.org/10.1128/IAI.73.6.3814-3816.2005] [PMID: 15908420]
[139]
Vordermeier HM, Villarreal-Ramos B, Cockle PJ, et al. Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis. Infect Immun 2009; 77(8): 3364-73.
[http://dx.doi.org/10.1128/IAI.00287-09] [PMID: 19487476]
[140]
Sun R, Skeiky YA, Izzo A, et al. Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical characterization, safety and protection against challenge with Mycobacterium tuberculosis. Vaccine 2009; 27(33): 4412-23.
[http://dx.doi.org/10.1016/j.vaccine.2009.05.048] [PMID: 19500523]
[141]
Horwitz MA, Harth G. A new vaccine against tuberculosis affords greater survival after challenge than the current vaccine in the guinea pig model of pulmonary tuberculosis. Infect Immun 2003; 71(4): 1672-9.
[http://dx.doi.org/10.1128/IAI.71.4.1672-1679.2003] [PMID: 12654780]
[142]
Hoft DF, Blazevic A, Abate G, et al. A new recombinant bacille Calmette-Guérin vaccine safely induces significantly enhanced tuberculosis-specific immunity in human volunteers. J Infect Dis 2008; 198(10): 1491-501.
[http://dx.doi.org/10.1086/592450] [PMID: 18808333]
[143]
Kostense S, Koudstaal W, Sprangers M, et al. Adenovirus types 5 and 35 seroprevalence in AIDS risk groups supports type 35 as a vaccine vector. AIDS 2004; 18(8): 1213-6.
[http://dx.doi.org/10.1097/00002030-200405210-00019] [PMID: 15166541]
[144]
Vogels R, Zuijdgeest D, van Rijnsoever R, et al. Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: Efficient human cell infection and bypass of preexisting adenovirus immunity. J Virol 2003; 77(15): 8263-71.
[http://dx.doi.org/10.1128/JVI.77.15.8263-8271.2003] [PMID: 12857895]
[145]
Radosevic K, Wieland CW, Rodriguez A, et al. Protective immune responses to a recombinant adenovirus type 35 tuberculosis vaccine in two mouse strains: CD4 and CD8 T-cell epitope mapping and role of γ interferon. Infect Immun 2007; 75(8): 4105-15.
[http://dx.doi.org/10.1128/IAI.00004-07] [PMID: 17526747]
[146]
Barouch DH, Pau MG, Custers JH, et al. Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. J Immunol 2004; 172(10): 6290-7.
[http://dx.doi.org/10.4049/jimmunol.172.10.6290] [PMID: 15128818]
[147]
Cosma A, Nagaraj R, Staib C, et al. Evaluation of modified vaccinia virus Ankara as an alternative vaccine against smallpox in chronically HIV type 1-infected individuals undergoing HAART. AIDS Res Hum Retroviruses 2007; 23(6): 782-93.
[http://dx.doi.org/10.1089/aid.2006.0226] [PMID: 17604541]
[148]
Tatsis N, Ertl HC. Adenoviruses as vaccine vectors. Mol Ther 2004; 10(4): 616-29.
[http://dx.doi.org/10.1016/j.ymthe.2004.07.013] [PMID: 15451446]
[149]
Mayr A, Stickl H, Müller HK, Danner K, Singer H. The smallpox vaccination strain MVA: Marker, genetic structure, experience gained with the parenteral vaccination and behavior in organisms with a debilitated defence mechanism (author’s transl). Zentralbl Bakteriol B 1978; 167(5-6): 375-90.
[PMID: 219640]
[150]
Xing Z, McFarland CT, Sallenave JM, Izzo A, Wang J, McMurray DN. Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis. PLoS ONE 2009; 6: e5856.
[http://dx.doi.org/10.1371/journal.pone.0005856]
[151]
Santosuosso M, McCormick S, Zhang X, Zganiacz A, Xing Z. Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis. Infect Immun 2006; 74(8): 4634-43.
[http://dx.doi.org/10.1128/IAI.00517-06] [PMID: 16861651]
[152]
Wang J, Thorson L, Stokes RW, et al. Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J Immunol 2004; 173(10): 6357-65.
[http://dx.doi.org/10.4049/jimmunol.173.10.6357] [PMID: 15528375]
[153]
Pashine A, Valiante NM, Ulmer JB. Targeting the innate immune response with improved vaccine adjuvants. Nat Med 2005; 11(4) (Suppl.): S63-8.
[http://dx.doi.org/10.1038/nm1210] [PMID: 15812492]
[154]
Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trends Immunol 2009; 30(1): 23-32.
[http://dx.doi.org/10.1016/j.it.2008.09.006] [PMID: 19059004]
[155]
Pichichero ME. Improving vaccine delivery using novel adjuvant systems. Hum Vaccin 2008; 4(4): 262-70.
[http://dx.doi.org/10.4161/hv.4.4.5742] [PMID: 18398303]
[156]
Skeiky YA, Alderson MR, Ovendale PJ, et al. Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J Immunol 2004; 172(12): 7618-28.
[http://dx.doi.org/10.4049/jimmunol.172.12.7618] [PMID: 15187142]
[157]
Dietrich J, Aagaard C, Leah R, et al. Exchanging ESAT6 with TB10.4 in an Ag85B fusion molecule-based tuberculosis subunit vaccine: Efficient protection and ESAT6-based sensitive monitoring of vaccine efficacy. J Immunol 2005; 174(10): 6332-9.
[http://dx.doi.org/10.4049/jimmunol.174.10.6332] [PMID: 15879133]
[158]
Skeiky YA, Dietrich J, Lasco TM, et al. Non-clinical efficacy and safety of HyVac4:IC31 vaccine administered in a BCG prime-boost regimen. Vaccine 2010; 28(4): 1084-93.
[http://dx.doi.org/10.1016/j.vaccine.2009.10.114] [PMID: 19896449]
[159]
Hervas-Stubbs S, Majlessi L, Simsova M, et al. High frequency of CD4+ T cells specific for the TB10.4 protein correlates with protection against Mycobacterium tuberculosis infection. Infect Immun 2006; 74(6): 3396-407.
[http://dx.doi.org/10.1128/IAI.02086-05] [PMID: 16714570]
[160]
Dose-Escalation study on safety and immunogenicity of vpm1002 in comparison to BCG in healthy volunteers in South Africa. Availble: http://clinicaltrials.gov/ct2/show/NCT01113281
[161]
Vilaplana C, Montané E, Pinto S, et al. Double-blind, randomized, placebo-controlled Phase I Clinical Trial of the therapeutical antituberculous vaccine RUTI. Vaccine 2010; 28(4): 1106-16.
[http://dx.doi.org/10.1016/j.vaccine.2009.09.134] [PMID: 19853680]
[162]
Lima MM, Trindade A, Carnavalli F, Bolognesi Melchior AC, Chin CM, Dos Santos JL. Tuberculosis: Challenges to improve the treatment. Curr Clin Pharmacol 2015; 10(3): 242-51.
[http://dx.doi.org/10.2174/1574884708666131229124215] [PMID: 26338175]
[163]
Rath G, Pradhan D, Ghosh G, Goyal AK. Challenges and opportunities of nanotechnological based approach for the treatment of tuberculosis. Curr Pharm Des 2021; 27(17): 2026-40.
[http://dx.doi.org/10.2174/1381612827666210226121359] [PMID: 33634753]
[164]
Liangfang Z, Ronnie HF. Che-ming, HU. Jonathan, C.O.P.P. Membrane encapsulated nanoparticles and method of use Patent EP2714017B1, 2018.
[165]
Narain, N.R. , John P. Inhalable pharmaceutical composition. Patent JP6158984B2, 2017.
[166]
Hossam H, Morad N. Sensor technology for diagnosing tuberculosis. Patent US10168315B2, 2019.
[167]
Bryan B, Balaji N. Antimicrobial Polyanhydride nanoparticles. Patent US8927024B1, 2015.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy