Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Distribution of Nicotinamide Mononucleotide after Intravenous Injection in Normal and Ischemic Stroke Mice

Author(s): Si-Li Zheng, Dong-Sheng Wang, Xin Dong, Yun-Feng Guan, Qi Qi, Wen-Jun Hu, Chen Hong, Chuan Zhang and Chao-Yu Miao*

Volume 24, Issue 2, 2023

Published on: 06 July, 2022

Page: [299 - 309] Pages: 11

DOI: 10.2174/1389201023666220518113219

Price: $65

Open Access Journals Promotions 2
Abstract

Objective: This study determined for the first time the distribution of intravenous nicotinamide mononucleotide (NMN) and its metabolite nicotinamide adenine dinucleotide (NAD) in normal and ischemic stroke mice, examined the therapeutic effect of NMN on ischemic brain infarction, and evaluated acute toxicity of NMN after intravenous injection of NMN.

Methods: NMN and NAD levels were determined using ultra-high-performance liquid chromatography tandem mass spectrometry in biological samples from mice with or without middle cerebral artery occlusion (MCAO) at different time points post intravenous NMN injection (300 mg/kg). Brain infarction was evaluated 24 h post-MCAO. 2 g/kg NMN was used in the acute toxicity test.

Results: Under either normal or MCAO conditions, serum NMN levels sharply increased after intravenous NMN administration and then decreased rapidly within 15 min, while serum NAD levels remained unchanged during 30 min observation. Both substances displayed tissue accumulation over time and stored faster under MCAO conditions, with kidney having the highest concentrations. Particularly, NMN accumulated earlier than NAD in the brain. Moreover, NMN reduced cerebral infarction at 24 h post-MCAO. No acute toxicity was observed for 14 days. NRK1 and SLC12A8 involved in two pathways of NMN uptake exhibited the highest expressions in kidney and colon, respectively, among 11 different tissues.

Conclusion: NMN distributes to various tissues after intravenous injection and has the ability to enter the brain to boost NAD levels, and exhibits safety and therapeutic effect on acute ischemic stroke injury. High renal distribution of NMN indicates its importance in the kidney.

Keywords: Nicotinamide mononucleotide, nicotinamide adenine dinucleotide, distribution, ischemic stroke, therapeutic effect, acute toxicity.

Graphical Abstract
[1]
Wang, P.; Miao, C.Y. NAMPT as a Therapeutic Target against Stroke. Trends Pharmacol. Sci., 2015, 36(12), 891-905.
[http://dx.doi.org/10.1016/j.tips.2015.08.012] [PMID: 26538317]
[2]
Rajman, L.; Chwalek, K.; Sinclair, D.A. Therapeutic potential of nad-boosting molecules: The in vivo evidence. Cell Metab., 2018, 27(3), 529-547.
[http://dx.doi.org/10.1016/j.cmet.2018.02.011] [PMID: 29514064]
[3]
Zhu, Y.; Liu, J.; Park, J.; Rai, P.; Zhai, R.G. Subcellular compartmentalization of NAD+ and its role in cancer: A sereNADe of metabolic melodies. Pharmacol. Ther., 2019, 200, 27-41.
[http://dx.doi.org/10.1016/j.pharmthera.2019.04.002] [PMID: 30974124]
[4]
Yoshino, J.; Baur, J.A.; Imai, S.I. NAD+ Intermediates: The Biology and Therapeutic Potential of NMN and NR. Cell Metab., 2018, 27(3), 513-528.
[http://dx.doi.org/10.1016/j.cmet.2017.11.002] [PMID: 29249689]
[5]
Lautrup, S.; Sinclair, D.A.; Mattson, M.P.; Fang, E.F. NAD+ in Brain Aging and Neurodegenerative Disorders. Cell Metab., 2019, 30(4), 630-655.
[http://dx.doi.org/10.1016/j.cmet.2019.09.001] [PMID: 31577933]
[6]
Mills, K.F.; Yoshida, S.; Stein, L.R.; Grozio, A.; Kubota, S.; Sasaki, Y.; Redpath, P.; Migaud, M.E.; Apte, R.S.; Uchida, K.; Yoshino, J.; Imai, S.I. Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice. Cell Metab., 2016, 24(6), 795-806.
[http://dx.doi.org/10.1016/j.cmet.2016.09.013] [PMID: 28068222]
[7]
Guan, Y.; Wang, S.R.; Huang, X.Z.; Xie, Q.H.; Xu, Y.Y.; Shang, D.; Hao, C.M. Nicotinamide Mononucleotide, an NAD+ Precursor, Rescues Age-Associated Susceptibility to AKI in a Sirtuin 1-Dependent Manner. J. Am. Soc. Nephrol., 2017, 28(8), 2337-2352.
[http://dx.doi.org/10.1681/ASN.2016040385] [PMID: 28246130]
[8]
Yamamoto, T.; Byun, J.; Zhai, P.; Ikeda, Y.; Oka, S.; Sadoshima, J. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One, 2014, 9(6), e98972.
[http://dx.doi.org/10.1371/journal.pone.0098972] [PMID: 24905194]
[9]
Yoshino, J.; Mills, K.F.; Yoon, M.J.; Imai, S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab., 2011, 14(4), 528-536.
[http://dx.doi.org/10.1016/j.cmet.2011.08.014] [PMID: 21982712]
[10]
Caton, P.W.; Kieswich, J.; Yaqoob, M.M.; Holness, M.J.; Sugden, M.C. Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function. Diabetologia, 2011, 54(12), 3083-3092.
[http://dx.doi.org/10.1007/s00125-011-2288-0] [PMID: 21901281]
[11]
Braidy, N.; Berg, J.; Clement, J.; Khorshidi, F.; Poljak, A.; Jayasena, T.; Grant, R.; Sachdev, P. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Antioxid. Redox Signal., 2019, 30(2), 251-294.
[http://dx.doi.org/10.1089/ars.2017.7269] [PMID: 29634344]
[12]
Hosseini, L.; Vafaee, M.S.; Mahmoudi, J.; Badalzadeh, R. Nicotinamide adenine dinucleotide emerges as a therapeutic target in aging and ischemic conditions. Biogerontology, 2019, 20(4), 381-395.
[http://dx.doi.org/10.1007/s10522-019-09805-6] [PMID: 30838484]
[13]
Wang, P.; Xu, T.Y.; Guan, Y.F.; Tian, W.W.; Viollet, B.; Rui, Y.C.; Zhai, Q.W.; Su, D.F.; Miao, C.Y. Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway. Ann. Neurol., 2011, 69(2), 360-374.
[http://dx.doi.org/10.1002/ana.22236] [PMID: 21246601]
[14]
Zhao, Y.; Guan, Y.F.; Zhou, X.M.; Li, G.Q.; Li, Z.Y.; Zhou, C.C.; Wang, P.; Miao, C.Y. Regenerative Neurogenesis After Ischemic Stroke Promoted by Nicotinamide Phosphoribosyltransferase-Nicotinamide Adenine Dinucleotide Cascade. Stroke, 2015, 46(7), 1966-1974.
[http://dx.doi.org/10.1161/STROKEAHA.115.009216] [PMID: 26060246]
[15]
Park, J.H.; Long, A.; Owens, K.; Kristian, T. Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiol. Dis., 2016, 95, 102-110.
[http://dx.doi.org/10.1016/j.nbd.2016.07.018] [PMID: 27425894]
[16]
Klimova, N.; Fearnow, A.; Long, A.; Kristian, T. NAD+ precursor modulates post-ischemic mitochondrial fragmentation and reactive oxygen species generation via SIRT3 dependent mechanisms. Exp. Neurol., 2020, 325, 113144.
[http://dx.doi.org/10.1016/j.expneurol.2019.113144] [PMID: 31837320]
[17]
Wang, S.N.; Miao, C.Y. Targeting NAMPT as a therapeutic strategy against stroke. Stroke Vasc. Neurol., 2019, 4(2), 83-89.
[http://dx.doi.org/10.1136/svn-2018-000199] [PMID: 31338216]
[18]
Liu, L.; Su, X.; Quinn, W.J., III; Hui, S.; Krukenberg, K.; Frederick, D.W.; Redpath, P.; Zhan, L.; Chellappa, K.; White, E.; Migaud, M.; Mitchison, T.J.; Baur, J.A.; Rabinowitz, J.D. Quantitative Analysis of NAD Synthesis-Breakdown Fluxes. Cell Metab., 2018, 27(5), 1067-1080.e5.
[http://dx.doi.org/10.1016/j.cmet.2018.03.018] [PMID: 29685734]
[19]
Ratajczak, J.; Joffraud, M.; Trammell, S.A.; Ras, R.; Canela, N.; Boutant, M.; Kulkarni, S.S.; Rodrigues, M.; Redpath, P.; Migaud, M.E.; Auwerx, J.; Yanes, O.; Brenner, C.; Cantó, C. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nat. Commun., 2016, 7(1), 13103.
[http://dx.doi.org/10.1038/ncomms13103] [PMID: 27725675]
[20]
Grozio, A.; Mills, K.F.; Yoshino, J.; Bruzzone, S.; Sociali, G.; Tokizane, K.; Lei, H.C.; Cunningham, R.; Sasaki, Y.; Migaud, M.E.; Imai, S.I. Slc12a8 is a nicotinamide mononucleotide transporter. Nat. Metab., 2019, 1(1), 47-57.
[http://dx.doi.org/10.1038/s42255-018-0009-4] [PMID: 31131364]
[21]
Wang, P.; Xu, T.Y.; Wei, K.; Guan, Y.F.; Wang, X.; Xu, H.; Su, D.F.; Pei, G.; Miao, C.Y. ARRB1/β-arrestin-1 mediates neuroprotection through coordination of BECN1-dependent autophagy in cerebral ischemia. Autophagy, 2014, 10(9), 1535-1548.
[http://dx.doi.org/10.4161/auto.29203] [PMID: 24988431]
[22]
Yan, F.; Cheng, X.; Zhao, M.; Gong, S.; Han, Y.; Ding, L.; Wu, D.; Luo, Y.; Zuo, W.; Zhu, L.; Fan, M.; Ji, X. Loss of Wip1 aggravates brain injury after ischaemia/reperfusion by overactivating microglia. Stroke Vasc. Neurol., 2021, 6(3), 344-351.
[http://dx.doi.org/10.1136/svn-2020-000490] [PMID: 33452162]
[23]
Li, Z.Y.; Song, J.; Zheng, S.L.; Fan, M.B.; Guan, Y.F.; Qu, Y.; Xu, J.; Wang, P.; Miao, C.Y. Adipocyte Metrnl Antagonizes Insulin Resistance Through PPARγ Signaling. Diabetes, 2015, 64(12), 4011-4022.
[http://dx.doi.org/10.2337/db15-0274] [PMID: 26307585]
[24]
Nikiforov, A.; Dölle, C.; Niere, M.; Ziegler, M. Pathways and subcellular compartmentation of NAD biosynthesis in human cells: From entry of extracellular precursors to mitochondrial NAD generation. J. Biol. Chem., 2011, 286(24), 21767-21778.
[http://dx.doi.org/10.1074/jbc.M110.213298] [PMID: 21504897]
[25]
Hasegawa, K.; Wakino, S.; Simic, P.; Sakamaki, Y.; Minakuchi, H.; Fujimura, K.; Hosoya, K.; Komatsu, M.; Kaneko, Y.; Kanda, T.; Kubota, E.; Tokuyama, H.; Hayashi, K.; Guarente, L.; Itoh, H. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat. Med., 2013, 19(11), 1496-1504.
[http://dx.doi.org/10.1038/nm.3363] [PMID: 24141423]
[26]
Ferrigno, M.; Bricout, N.; Leys, D.; Estrade, L.; Cordonnier, C.; Personnic, T.; Kyheng, M.; Henon, H. Intravenous Recombinant Tissue-Type Plasminogen Activator: Influence on Outcome in Anterior Circulation Ischemic Stroke Treated by Mechanical Thrombectomy. Stroke, 2018, 49(6), 1377-1385.
[http://dx.doi.org/10.1161/STROKEAHA.118.020490] [PMID: 29748424]
[27]
Powers, W.J.; Derdeyn, C.P.; Biller, J.; Coffey, C.S.; Hoh, B.L.; Jauch, E.C.; Johnston, K.C.; Johnston, S.C.; Khalessi, A.A.; Kidwell, C.S.; Meschia, J.F.; Ovbiagele, B.; Yavagal, D.R. 2015 American Heart Association/American Stroke Association Focused Update of the 2013 Guidelines for the Early Management of Patients With Acute Ischemic Stroke Regarding Endovascular Treatment: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke, 2015, 46(10), 3020-3035.
[http://dx.doi.org/10.1161/STR.0000000000000074] [PMID: 26123479]
[28]
Demaerschalk, B.M.; Kleindorfer, D.O.; Adeoye, O.M.; Demchuk, A.M.; Fugate, J.E.; Grotta, J.C.; Khalessi, A.A.; Levy, E.I.; Palesch, Y.Y.; Prabhakaran, S.; Saposnik, G.; Saver, J.L.; Smith, E.E. Scientific Rationale for the Inclusion and Exclusion Criteria for Intravenous Alteplase in Acute Ischemic Stroke: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke, 2016, 47(2), 581-641.
[http://dx.doi.org/10.1161/STR.0000000000000086] [PMID: 26696642]
[29]
Fernandez-Gotico, H.; Lightfoot, T.; Meighan, M. Multicenter Study of Adverse Events After Intravenous Tissue-Type Plasminogen Activator Treatment of Acute Ischemic Stroke. J. Neurosci. Nurs., 2017, 49(1), 31-36.
[http://dx.doi.org/10.1097/JNN.0000000000000247] [PMID: 28060219]
[30]
Li, F.; Liu, W.C.; Wang, Q.; Sun, Y.; Wang, H.; Jin, X. NG2-glia cell proliferation and differentiation by glial growth factor 2 (GGF2), a strategy to promote functional recovery after ischemic stroke. Biochem. Pharmacol., 2020, 171, 113720.
[http://dx.doi.org/10.1016/j.bcp.2019.113720] [PMID: 31751533]
[31]
Wei, C.C.; Kong, Y.Y.; Hua, X.; Li, G.Q.; Zheng, S.L.; Cheng, M.H.; Wang, P.; Miao, C.Y. NAD replenishment with nicotinamide mononucleotide protects blood-brain barrier integrity and attenuates delayed tissue plasminogen activator-induced haemorrhagic transformation after cerebral ischaemia. Br. J. Pharmacol., 2017, 174(21), 3823-3836.
[http://dx.doi.org/10.1111/bph.13979] [PMID: 28812311]
[32]
Wei, C.C.; Kong, Y.Y.; Li, G.Q.; Guan, Y.F.; Wang, P.; Miao, C.Y. Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway. Sci. Rep., 2017, 7(1), 717.
[http://dx.doi.org/10.1038/s41598-017-00851-z] [PMID: 28386082]
[33]
Irie, J.; Inagaki, E.; Fujita, M.; Nakaya, H.; Mitsuishi, M.; Yamaguchi, S.; Yamashita, K.; Shigaki, S.; Ono, T.; Yukioka, H.; Okano, H.; Nabeshima, Y.I.; Imai, S.I.; Yasui, M.; Tsubota, K.; Itoh, H. Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocr. J., 2020, 67(2), 153-160.
[http://dx.doi.org/10.1507/endocrj.EJ19-0313] [PMID: 31685720]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy