Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Production of Recombinant Human Hybrid Ferritin with Heavy Chain and Light Chain in Escherichia coli and its Characterization

Author(s): Xiaotong Song, Yongxiang Zheng, Yongdong Liu, Huan Meng, Rong Yu and Chun Zhang*

Volume 24, Issue 2, 2023

Published on: 21 July, 2022

Page: [341 - 349] Pages: 9

DOI: 10.2174/1389201023666220517225048

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Natural human ferritin generally contains 24 subunits with different ratios of heavy chain to light chain, and the ratio of both subunits varies depending on tissue distribution and pathological conditions. However, the production of recombinant hybrid ferritin with both subunits is more challenging.

Objective: This study aimed to prepare the recombinant hybrid ferritin for prokaryotic expression and characterize its structure and physicochemical properties.

Methods: A prokaryotic expression vector of pACYCDuet-1 harboring the two individual genes of human ferritin heavy chain and light chain (FTH/FTL-pACYCDuet-1) was constructed and transfected into Escherichia coli bacteria. Then the genes were co-induced by IPTG to express.

Results: The ferritin was purified by hydrophobic interaction chromatography combining size exclusion chromatography and verified by mass spectrometry and characterized by spectral and morphological analysis.

Conclusion: FTH and FTL subunits were successfully co-assembled into a hybrid ferritin nanoparticle (rhFTH/L). The structure of rhFTH/L was demonstrated highly ordered and fairly compact. Besides, the hybrid rhFTH/L nanoparticle was shown more sensitive to thermal stress and reduced stability when compared with that of both individual rhFTH and rhFTL.

Keywords: Recombinant human hybrid ferritin, E. coli co-expression, human ferritin, heavy chain light chain, size exclusion chromatography, mass spectrometry.

« Previous
Graphical Abstract
[1]
Bertoli, S.; Paubelle, E.; Bérard, E.; Saland, E.; Thomas, X.; Tavitian, S.; Larcher, M.V.; Vergez, F.; Delabesse, E.; Sarry, A.; Huguet, F.; Larrue, C.; Bosc, C.; Farge, T.; Sarry, J.E.; Michallet, M.; Récher, C. Ferritin heavy/light chain (FTH1/FTL) expression, serum ferritin levels, and their functional as well as prognostic roles in acute myeloid leukemia. Eur. J. Haematol., 2019, 102(2), 131-142.
[http://dx.doi.org/10.1111/ejh.13183] [PMID: 30325535]
[2]
Fan, K.; Gao, L.; Yan, X. Human ferritin for tumor detection and therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2013, 5(4), 287-298.
[http://dx.doi.org/10.1002/wnan.1221] [PMID: 23606622]
[3]
Levi, S.; Yewdall, S.J.; Harrison, P.M.; Santambrogio, P.; Cozzi, A.; Rovida, E.; Albertini, A.; Arosio, P. Evidence of H- and L-chains have co-operative roles in the iron-uptake mechanism of human ferritin. Biochem. J., 1992, 288(Pt 2), 591-596.
[http://dx.doi.org/10.1042/bj2880591] [PMID: 1463463]
[4]
Wang, Z.; Li, C.; Ellenburg, M.; Soistman, E.; Ruble, J.; Wright, B.; Ho, J.X.; Carter, D.C. Structure of human ferritin L chain. Acta Crystallogr. D Biol. Crystallogr., 2006, 62(Pt 7), 800-806.
[http://dx.doi.org/10.1107/S0907444906018294] [PMID: 16790936]
[5]
Rucker, P.; Torti, F.M.; Torti, S.V. Recombinant ferritin: Modulation of subunit stoichiometry in bacterial expression systems. Protein Eng., 1997, 10(8), 967-973.
[http://dx.doi.org/10.1093/protein/10.8.967] [PMID: 9415447]
[6]
Luscieti, S.; Santambrogio, P.; Langlois d’Estaintot, B.; Granier, T.; Cozzi, A.; Poli, M.; Gallois, B.; Finazzi, D.; Cattaneo, A.; Levi, S.; Arosio, P. Mutant ferritin L-chains that cause neurodegeneration act in a dominant-negative manner to reduce ferritin iron incorporation. J. Biol. Chem., 2010, 285(16), 11948-11957.
[http://dx.doi.org/10.1074/jbc.M109.096404] [PMID: 20159981]
[7]
Boumaiza, M.; Carmona, F.; Poli, M.; Asperti, M.; Gianoncelli, A.; Bertuzzi, M.; Ruzzenenti, P.; Arosio, P.; Marzouki, M.N. Production and characterization of functional recombinant hybrid heteropolymers of camel hepcidin and human ferritin H and L chains. Protein Eng. Des. Sel., 2017, 30(2), 77-84.
[http://dx.doi.org/10.1093/protein/gzw066] [PMID: 27980120]
[8]
Santambrogio, P.; Levi, S.; Cozzi, A.; Rovida, E.; Albertini, A.; Arosio, P. Production and characterization of recombinant heteropolymers of human ferritin H and L chains. J. Biol. Chem., 1993, 268(17), 12744-12748.
[http://dx.doi.org/10.1016/S0021-9258(18)31451-0] [PMID: 8509409]
[9]
Huh, Y.S.; Kim, I.H. Purification of fusion ferritin from recombinant E. coli using two-step sonications. Biotechnol. Lett., 2003, 25(12), 993-996.
[http://dx.doi.org/10.1023/A:1024005408387] [PMID: 12889837]
[10]
Lee, J.; Kim, S.W.; Kim, Y.H.; Ahn, J.Y. Active human ferritin H/L-hybrid and sequence effect on folding efficiency in Escherichia coli. Biochem. Biophys. Res. Commun., 2002, 298(2), 225-229.
[http://dx.doi.org/10.1016/S0006-291X(02)02429-4] [PMID: 12387819]
[11]
Selas Castiñeiras, T.; Williams, S.G.; Hitchcock, A.G.; Smith, D.C.E. Coli strain engineering for the production of advanced biopharmaceutical products. FEMS Microbiol. Lett., 2018, 365(15), fny162.
[http://dx.doi.org/10.1093/femsle/fny162] [PMID: 29982628]
[12]
Rosano, G.L.; Ceccarelli, E.A. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol., 2014, 5, 172.
[http://dx.doi.org/10.3389/fmicb.2014.00172] [PMID: 24860555]
[13]
Huard, D.J.E.; Kane, K.M.; Tezcan, F.A. Re-engineering protein interfaces yields copper-inducible ferritin cage assembly. Nat. Chem. Biol., 2013, 9(3), 169-176.
[http://dx.doi.org/10.1038/nchembio.1163] [PMID: 23340339]
[14]
Zou, W.; Liu, X.; Zhao, X.; Wang, J.; Chen, D.; Li, J.; Ji, L.; Hua, Z. Expression, purification, and characterization of recombinant human L-chain ferritin. Protein Expr. Purif., 2016, 119, 63-68.
[http://dx.doi.org/10.1016/j.pep.2015.11.018] [PMID: 26621552]
[15]
He, F. Laemmli-SDS-PAGE. Bio Protoc., 2011, 1(11), e80. [PMID: Not available].
[http://dx.doi.org/10.21769/BioProtoc.80]
[16]
Louis-Jeune, C.; Andrade-Navarro, M.A.; Perez-Iratxeta, C. Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins, 2012, 80(2), 374-381.
[http://dx.doi.org/10.1002/prot.23188] [PMID: 22095872]
[17]
Corsi, B.; Perrone, F.; Bourgeois, M.; Beaumont, C.; Panzeri, M.C.; Cozzi, A.; Sangregorio, R.; Santambrogio, P.; Albertini, A.; Arosio, P.; Levi, S. Transient overexpression of human H- and L-ferritin chains in COS cells. Biochem. J., 1998, 330(Pt 1), 315-320.
[http://dx.doi.org/10.1042/bj3300315] [PMID: 9461525]
[18]
Torti, F.M.; Torti, S.V. Regulation of ferritin genes and protein. Blood, 2002, 99(10), 3505-3516.
[http://dx.doi.org/10.1182/blood.V99.10.3505] [PMID: 11986201]
[19]
Sammarco, M.C.; Ditch, S.; Banerjee, A.; Grabczyk, E. Ferritin L and H subunits are differentially regulated on a post-transcriptional level. J. Biol. Chem., 2008, 283(8), 4578-4587.
[http://dx.doi.org/10.1074/jbc.M703456200] [PMID: 18160403]
[20]
Kim, M.; Rho, Y.; Jin, K.S.; Ahn, B.; Jung, S.; Kim, H.; Ree, M. pH-dependent structures of ferritin and apoferritin in solution: Disassembly and reassembly. Biomacromolecules, 2011, 12(5), 1629-1640.
[http://dx.doi.org/10.1021/bm200026v] [PMID: 21446722]
[21]
Chen, H.; Zhang, S.; Xu, C.; Zhao, G. Engineering protein interfaces yields ferritin disassembly and reassembly under benign experimental conditions. Chem. Commun., (Camb.), 2016, 52(46), 7402-7405.
[http://dx.doi.org/10.1039/C6CC03108K] [PMID: 27194454]
[22]
Song, X.; Zheng, Y.; Zhu, L.; Zhang, L.; Meng, H.; Yu, R.; Zhang, C. Development of robust and facile purification process for production of recombinant human ferritin heavy chain nanoparticle from Escherichia coli. Process Biochem., 2021, 104, 1-9. [PMID: Not available].
[http://dx.doi.org/10.1016/j.procbio.2021.02.014]
[23]
Santambrogio, P.; Levi, S.; Arosio, P.; Palagi, L.; Vecchio, G.; Lawson, D.M.; Yewdall, S.J.; Artymiuk, P.J.; Harrison, P.M.; Jappelli, R.; Cesareni, G. Evidence that a salt bridge in the light chain contributes to the physical stability difference between heavy and light human ferritins. J. Biol. Chem., 1992, 267(20), 14077-14083.
[http://dx.doi.org/10.1016/S0021-9258(19)49681-6] [PMID: 1629207]
[24]
Mohanty, A.; K, M.; Jena, S.S.; Behera, R.K. Kinetics of ferritin self-assembly by laser light scattering: Impact of subunit concentration, pH, and ionic strength. Biomacromolecules, 2021, 22(4), 1389-1398.
[http://dx.doi.org/10.1021/acs.biomac.0c01562] [PMID: 33720694]
[25]
Sato, D.; Ikeguchi, M. Mechanisms of ferritin assembly studied by time-resolved small-angle X-ray scattering. Biophys. Rev., 2019, 11(3), 449-455.
[http://dx.doi.org/10.1007/s12551-019-00538-x] [PMID: 31069627]
[26]
Martsev, S.P.; Vlasov, A.P.; Arosio, P. Distinct stability of recombinant L and H subunits of human ferritin: Calorimetric and ANS binding studies. Protein Eng., 1998, 11(5), 377-381.
[http://dx.doi.org/10.1093/protein/11.5.377] [PMID: 9681870]
[27]
Carmona, F.; Poli, M.; Bertuzzi, M.; Gianoncelli, A.; Gangemi, F.; Arosio, P. Study of ferritin self-assembly and heteropolymer formation by the use of Fluorescence Resonance Energy Transfer (FRET) technology. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(3), 522-532.
[http://dx.doi.org/10.1016/j.bbagen.2016.12.011] [PMID: 27993659]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy