Research Article

抗TLR4 IgG2通过小鼠Toll样受体4 / MAPKs信号通路预防对乙酰氨基酚诱导的急性肝损伤

卷 23, 期 5, 2023

发表于: 29 August, 2022

页: [453 - 469] 页: 17

弟呕挨: 10.2174/1566524022666220516141728

价格: $65

conference banner
摘要

背景与目的:对乙酰氨基酚(APAP)是一种广泛使用的解热镇痛药。如果服用过量,可引起严重的药物性急性肝损伤。本研究的目的是研究抗 TLR4 IgG2 对 APAP 诱导的肝损伤的影响及其潜在机制。 方法:将APAP注入小鼠腹腔建立肝损伤模型。小鼠分为对照组、APAP组和APAP+抗TLR4 IgG2组。为了验证 toll 样受体 4 和丝裂原活化蛋白激酶激活 (TLR4/MAPKs) 信号通路的意义,小鼠腹腔注射了 TLR4/MAPKs 抑制剂抗 TLR4 IgG2。我们评估了 TLR4 IgG2 对 APAP 小鼠的抗氧化、抗凋亡、抗炎和肝组织病理学的影响。此外,Western blot检测TLR4/MAPKs信号通路的表达。 结果:本研究表明成功建立了APAP小鼠模型;然而,用抗 TLR4 IgG2 预处理减轻了 APAP 诱导的肝损伤,24 小时存活率证明了这一点。同时,抗 TLR4 IgG2 可防止血清生化参数和脂质谱升高。此外,与 APAP 组相比,APAP + 抗 TLR4 IgG2 组增加了肝脏抗氧化剂,包括 3-硝基酪氨酸、高迁移率族蛋白 B1、超氧化物歧化酶、过氧化氢酶和谷胱甘肽。相反,丙二醛的水平显着降低,丙二醛是一种脂质过氧化产物。此外,蛋白质印迹分析显示,抗 TLR4 IgG2 处理通过增加 Bcl-2 和减少 Bax、P53 以及切割 caspase-3 / caspase-3 蛋白表达来抑制细胞凋亡途径的激活。这些结果通过 TUNEL 染色和免疫组织化学进一步验证。组织病理学观察还显示,用抗 TLR4 IgG2 预处理可以显着逆转 APAP 引起的肝细胞炎症浸润、充血和肝组织坏死。重要的是,抗 TLR4 IgG2 通过抑制 toll 样受体 4 和丝裂原活化蛋白激酶激活信号通路 (TLR4/MAPKs) 有效减轻 APAP 诱导的肝损伤。 结论:结果清楚地表明,抗 TLR4 IgG2 在 APAP 诱导的肝毒性中保肝的潜在分子机制可能是由于其通过抑制 TLR4/MAPKs 信号轴发挥抗氧化、抗细胞凋亡和抗炎作用。

关键词: 人源抗TLR4抗体IgG,对乙酰氨基酚,肝毒性,抗氧化,抗细胞凋亡,抗炎,TLR4 / MAPK。

[1]
Zhu L, Jiang J, Zhai X, et al. Hepatitis B virus infection and risk of non-alcoholic fatty liver disease: A population-based cohort study. Liver Int 2019; 39(1): 70-80.
[http://dx.doi.org/10.1111/liv.13933] [PMID: 30025200]
[2]
Will JS, Snyder CJ, Westerfield KL. N-Acetylcysteine (NAC) for the prevention of liver failure in heat injury-mediated ischemic hepatitis. Mil Med 2019; 184(9-10): 565-7.
[http://dx.doi.org/10.1093/milmed/usz022] [PMID: 30811527]
[3]
de Abajo FJ, Montero D, Madurga M, García Rodríguez LA. Acute and clinically relevant drug-induced liver injury: A population based case-control study. Br J Clin Pharmacol 2004; 58(1): 71-80.
[http://dx.doi.org/10.1111/j.1365-2125.2004.02133.x] [PMID: 15206996]
[4]
Munoz-Schuffenegger P, Ng S, Dawson LA. Radiation-induced liver toxicity. Semin Radiat Oncol 2017; 27(4): 350-7.
[5]
Chan C, Levitsky J. Infection and alcoholic liver disease. Clin Liver Dis 2016; 20(3): 595-606.
[http://dx.doi.org/10.1016/j.cld.2016.02.014] [PMID: 27373619]
[6]
Poppers PJ. Hepatic drug metabolism and anesthesia. Anaesthesist 1980; 29(2): 55-8.
[PMID: 6990824]
[7]
Andrade RJ, Robles M, Fernández-Castañer A, López-Ortega S, López-Vega MC, Lucena MI. Assessment of drug-induced hepatotoxicity in clinical practice: A challenge for gastroenterologists. World J Gastroenterol 2007; 13(3): 329-40.
[http://dx.doi.org/10.3748/wjg.v13.i3.329] [PMID: 17230599]
[8]
Olive G. Therapie 2006; 61(2): 151-60. [Analgesic/Antipyretic treatment: Ibuprofen or acetaminophen? An update]
[http://dx.doi.org/10.2515/therapie:2006034] [PMID: 16886709]
[9]
Lee WM. Acute liver failure. Semin Respir Crit Care Med 2012; 33(1): 36-45.
[http://dx.doi.org/10.1055/s-0032-1301733] [PMID: 22447259]
[10]
Wu H, et al. Protective effect of Epicatechin on APAP-induced acute liver injury of mice through anti-inflammation and apoptosis inhibition. Nat Prod Res 2018; 1-4.
[PMID: 30394110]
[11]
Dahlin DC, Miwa GT, Lu AY, Nelson SD. N-acetyl-p-benzoquinone imine: A cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci USA 1984; 81(5): 1327-31.
[http://dx.doi.org/10.1073/pnas.81.5.1327] [PMID: 6424115]
[12]
Miles CS, Ost TW, Noble MA, Munro AW, Chapman SK. Protein engineering of cytochromes P-450. Biochim Biophys Acta 2000; 1543(2): 383-407.
[http://dx.doi.org/10.1016/S0167-4838(00)00236-3] [PMID: 11150615]
[13]
Hinson JA, Roberts DW, James LP. Mechanisms of acetaminophen-induced liver necrosis. Handb Exp Pharmacol 2010; 196: 369-405.
[http://dx.doi.org/10.1007/978-3-642-00663-0_12] [PMID: 20020268]
[14]
Kim RO, Jo MA, Song J, Kim IC, Yoon S, Kim WK. Novel approach for evaluating pharmaceuticals toxicity using daphnia model: Analysis of the mode of cytochrome P450-generated metabolite action after acetaminophen exposure. Aquat Toxicol 2018; 196: 35-42.
[http://dx.doi.org/10.1016/j.aquatox.2017.12.017] [PMID: 29328974]
[15]
Jollow DJ, Mitchell JR, Potter WZ, Davis DC, Gillette JR, Brodie BB. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther 1973; 187(1): 195-202.
[PMID: 4746327]
[16]
Vale JA, Meredith TJ, Crome P, et al. Intravenous N-acetylcysteine: The treatment of choice in paracetamol poisoning? BMJ 1979; 2(6202): 1435-6.
[http://dx.doi.org/10.1136/bmj.2.6202.1435] [PMID: 519491]
[17]
Michaeli A, Mezan S, Kühbacher A, et al. Computationally designed bispecific MD2/CD14 binding peptides show TLR4 agonist activity. J Immunol 2018; 201(11): 3383-91.
[http://dx.doi.org/10.4049/jimmunol.1800380] [PMID: 30348734]
[18]
Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol 2011; 187(5): 2626-31.
[http://dx.doi.org/10.4049/jimmunol.1003930] [PMID: 21784973]
[19]
Kordjazy N, Haj-Mirzaian A, Haj-Mirzaian A, et al. Role of toll-like receptors in inflammatory bowel disease. Pharmacol Res 2018; 129: 204-15.
[http://dx.doi.org/10.1016/j.phrs.2017.11.017] [PMID: 29155256]
[20]
Ness T, Abdallah M, Adams J, et al. Candida albicans-derived mannoproteins activate NF-κB in reporter cells expressing TLR4, MD2 and CD14. PLoS One 2017; 12(12): e0189939.
[http://dx.doi.org/10.1371/journal.pone.0189939] [PMID: 29281684]
[21]
Żwierełło W, Maruszewska A, Nowak R, Kostrzewa-Nowak D, Tarasiuk J. DNA damage induced by NADPH cytochrome P450 reductase-activated idarubicin in sensitive and multidrug resistant MCF7 breast cancer cells. Pharmacol Rep 2017; 69(1): 185-95.
[http://dx.doi.org/10.1016/j.pharep.2016.10.002] [PMID: 27940401]
[22]
McGill MR, Sharpe MR, Williams CD, Taha M, Curry SC, Jaeschke H. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Invest 2012; 122(4): 1574-83.
[http://dx.doi.org/10.1172/JCI59755] [PMID: 22378043]
[23]
Higuchi H, Gores GJ. Mechanisms of liver injury: An overview. Curr Mol Med 2003; 3(6): 483-90.
[http://dx.doi.org/10.2174/1566524033479528] [PMID: 14527080]
[24]
Jiang Z, Guo X, Zhang K, et al. The essential oils and eucalyptol from Artemisia vulgaris L. Prevent acetaminophen-induced liver injury by activating nrf2-keap1 and enhancing APAP clearance through non-toxic metabolic pathway. Front Pharmacol 2019; 10: 782.
[http://dx.doi.org/10.3389/fphar.2019.00782] [PMID: 31404264]
[25]
Yan M, Huo Y, Yin S, Hu H. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol 2018; 17: 274-83.
[http://dx.doi.org/10.1016/j.redox.2018.04.019] [PMID: 29753208]
[26]
Nelson SD. Molecular mechanisms of the hepatotoxicity caused by acetaminophen. Semin Liver Dis 1990; 10(4): 267-78.
[http://dx.doi.org/10.1055/s-2008-1040482] [PMID: 2281334]
[27]
Bunchorntavakul C, Reddy KR. Acetaminophen-related hepatotoxicity. Clin Liver Dis 2013; 17(4): 587-607, viii.
[http://dx.doi.org/10.1016/j.cld.2013.07.005] [PMID: 24099020]
[28]
Lee WM. Acetaminophen (APAP) hepatotoxicity-Isn’t it time for APAP to go away? J Hepatol 2017; 67(6): 1324-31.
[http://dx.doi.org/10.1016/j.jhep.2017.07.005] [PMID: 28734939]
[29]
Gandhi A, Guo T, Ghose R. Role of c-Jun N-terminal kinase (JNK) in regulating tumor necrosis factor-alpha (TNF-alpha) mediated increase of acetaminophen (APAP) and chlorpromazine (CPZ) toxicity in murine hepatocytes. J Toxicol Sci 2010; 35(2): 163-73.
[http://dx.doi.org/10.2131/jts.35.163] [PMID: 20371967]
[30]
Bunchorntavakul C, Reddy KR. Acetaminophen (APAP or N-Acetyl-p-Aminophenol) and Acute Liver Failure. Clin Liver Dis 2018; 22(2): 325-46.
[http://dx.doi.org/10.1016/j.cld.2018.01.007] [PMID: 29605069]
[31]
Pingili RB, Pawar AK, Challa SR. Effect of chrysin on the formation of N-acetyl-p-benzoquinoneimine, a toxic metabolite of paracetamol in rats and isolated rat hepatocytes. Chem Biol Interact 2019; 302: 123-34.
[http://dx.doi.org/10.1016/j.cbi.2019.02.014] [PMID: 30794797]
[32]
Nguyen NU, Stamper BD. Polyphenols reported to shift APAP-induced changes in MAPK signaling and toxicity outcomes. Chem Biol Interact 2017; 277: 129-36.
[http://dx.doi.org/10.1016/j.cbi.2017.09.007] [PMID: 28918124]
[33]
Trettin A, Batkai S, Thum T, Jordan J, Tsikas D. Trapping of NAPQI, the intermediate toxic paracetamol metabolite, by aqueous sulfide (S2−) and analysis by GC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 963: 99-105.
[http://dx.doi.org/10.1016/j.jchromb.2014.05.050] [PMID: 24950097]
[34]
Athersuch TJ, Antoine DJ, Boobis AR, et al. Paracetamol metabolism, hepatotoxicity, biomarkers and therapeutic interventions: A perspective. Toxicol Res 2018; 7(3): 347-57.
[http://dx.doi.org/10.1039/c7tx00340d] [PMID: 30090586]
[35]
Huang Z, Chen M, Wei M, et al. Liver inflammatory injury initiated by DAMPs-TLR4-MyD88/TRIF-NFκB signaling pathway is involved in monocrotaline-induced HSOS. Toxicol Sci 2019; 172(2): 385-97.
[http://dx.doi.org/10.1093/toxsci/kfz193] [PMID: 31504964]
[36]
Abdel-Daim M, Abushouk AI, Reggi R, Yarla NS, Palmery M, Peluso I. Association of antioxidant nutraceuticals and acetaminophen (paracetamol): Friend or foe? J Food Drug Anal 2018; 26(2S): S78-87.
[http://dx.doi.org/10.1016/j.jfda.2017.11.004] [PMID: 29703389]
[37]
Zaharieva ET, Kamenov ZA, Savov AS. TLR4 polymorphisms seem not to be associated with prediabetes and type 2 diabetes but predispose to diabetic retinopathy; TLR4 polymorphisms in glucose continuum. Endocr Regul 2017; 51(3): 137-44.
[http://dx.doi.org/10.1515/enr-2017-0014] [PMID: 28858846]
[38]
Xie X, Shi X, Liu M. The roles of TLR gene polymorphisms in atherosclerosis: A systematic review and meta-analysis of 35,317 subjects. Scand J Immunol 2017; 86(1): 50-8.
[http://dx.doi.org/10.1111/sji.12560] [PMID: 28474755]
[39]
Thameem F, Puppala S, Farook VS, et al. Genetic variants in toll-like receptor 4 gene and their association analysis with estimated glomerular filtration rate in mexican american families. Cardiorenal Med 2016; 6(4): 301-6.
[http://dx.doi.org/10.1159/000445754] [PMID: 27648011]
[40]
Yiu JH, Dorweiler B, Woo CW. Interaction between gut microbiota and toll-like receptor: From immunity to metabolism. J Mol Med 2017; 95(1): 13-20.
[http://dx.doi.org/10.1007/s00109-016-1474-4] [PMID: 27639584]
[41]
Wada J, Makino H. Innate immunity in diabetes and diabetic nephropathy. Nat Rev Nephrol 2016; 12(1): 13-26.
[http://dx.doi.org/10.1038/nrneph.2015.175] [PMID: 26568190]
[42]
Robb CT, Regan KH, Dorward DA, Rossi AG. Key mechanisms governing resolution of lung inflammation. Semin Immunopathol 2016; 38(4): 425-48.
[http://dx.doi.org/10.1007/s00281-016-0560-6] [PMID: 27116944]
[43]
Guo H, Sun J, Li D, et al. Shikonin attenuates acetaminophen-induced acute liver injury via inhibition of oxidative stress and inflammation. Biomed Pharmacother 2019; 112: 108704.
[http://dx.doi.org/10.1016/j.biopha.2019.108704] [PMID: 30818140]
[44]
Gaweł S, Wardas M, Niedworok E, Wardas P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek 2004; 57(9-10): 453-5.
[PMID: 15765761]
[45]
Li M, Wang S, Li X, et al. Diallyl sulfide treatment protects against acetaminophen-/carbon tetrachloride-induced acute liver injury by inhibiting oxidative stress, inflammation and apoptosis in mice. Toxicol Res 2018; 8(1): 67-76.
[http://dx.doi.org/10.1039/C8TX00185E] [PMID: 30713662]
[46]
Meng SL, Chen JZ, Xu P, et al. Hepatic antioxidant enzymes SOD and CAT of Nile tilapia (Oreochromis niloticus) in response to pesticide methomyl and recovery pattern. Bull Environ Contam Toxicol 2014; 92(4): 388-92.
[http://dx.doi.org/10.1007/s00128-014-1232-7] [PMID: 24531323]
[47]
Hernández-Guerrero C, Parra-Carriedo A, Ruiz-de-Santiago D, Galicia-Castillo O, Buenrostro-Jáuregui M, Díaz-Gutiérrez C. Genetic polymorphisms of antioxidant enzymes CAT and SOD affect the outcome of clinical, biochemical, and anthropometric variables in people with obesity under a dietary intervention. Genes Nutr 2018; 13(1): 1.
[http://dx.doi.org/10.1186/s12263-017-0590-2] [PMID: 29339975]
[48]
Zhang W, Zhang X, Zou K, et al. Seabuckthorn berry polysaccharide protects against carbon tetrachloride-induced hepatotoxicity in mice via anti-oxidative and anti-inflammatory activities. Food Funct 2017; 8(9): 3130-8.
[http://dx.doi.org/10.1039/C7FO00399D] [PMID: 28766672]
[49]
Kim SY, Son M, Lee SE, et al. High-mobility group box 1-induced complement activation causes sterile inflammation. Front Immunol 2018; 9: 705.
[http://dx.doi.org/10.3389/fimmu.2018.00705] [PMID: 29696019]
[50]
Chen R, Hou W, Zhang Q, Kang R, Fan XG, Tang D. Emerging role of High-Mobility Group Box 1 (HMGB1) in liver diseases. Mol Med 2013; 19(1): 357-66.
[http://dx.doi.org/10.2119/molmed.2013.00099] [PMID: 24306421]
[51]
Yan W, Chang Y, Liang X, et al. High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology 2012; 55(6): 1863-75.
[http://dx.doi.org/10.1002/hep.25572] [PMID: 22234969]
[52]
Xiang M, Shi X, Li Y, et al. Hemorrhagic shock activation of NLRP3 inflammasome in lung endothelial cells. J Immunol 2011; 187(9): 4809-17.
[http://dx.doi.org/10.4049/jimmunol.1102093] [PMID: 21940680]
[53]
Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418(6894): 191-5.
[http://dx.doi.org/10.1038/nature00858] [PMID: 12110890]
[54]
Huebener P, Pradere J-P, Hernandez C, et al. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. J Clin Invest 2019; 130(4): 1802.
[http://dx.doi.org/10.1172/JCI126975]
[55]
Lundbäck P, Lea JD, Sowinska A, et al. A novel high mobility group box 1 neutralizing chimeric antibody attenuates drug-induced liver injury and postinjury inflammation in mice. Hepatology 2016; 64(5): 1699-710.
[http://dx.doi.org/10.1002/hep.28736] [PMID: 27474782]
[56]
Abdulmahdi W, Patel D, Rabadi MM, et al. HMGB1 redox during sepsis. Redox Biol 2017; 13: 600-7.
[http://dx.doi.org/10.1016/j.redox.2017.08.001] [PMID: 28806702]
[57]
Calderón-Torres CM, Sarabia-Curz L, Ledesma-Soto Y, Murguía-Romero M, Terrazas LI. Denitrase activity of Debaryomyces hansenii reduces the oxidized compound 3-nitrotyrosine in mice liver with colitis. Exp Ther Med 2019; 17(5): 3748-54.
[PMID: 31007730]
[58]
Wang X, Wu Q, Liu A, et al. Paracetamol: Overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro. Drug Metab Rev 2017; 49(4): 395-437.
[http://dx.doi.org/10.1080/03602532.2017.1354014] [PMID: 28766385]
[59]
Singh G, Kaur A, Kaur J, Bhatti MS, Singh P, Bhatti R. Bergapten inhibits chemically induced nociceptive behavior and inflammation in mice by decreasing the expression of spinal PARP, iNOS, COX-2 and inflammatory cytokines. Inflammopharmacology 2019; 27(4): 749-60.
[http://dx.doi.org/10.1007/s10787-019-00585-6] [PMID: 30953227]
[60]
Jaeschke H, McGill MR, Ramachandran A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: Lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev 2012; 44(1): 88-106.
[http://dx.doi.org/10.3109/03602532.2011.602688] [PMID: 22229890]
[61]
He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 2017; 44(2): 532-53.
[http://dx.doi.org/10.1159/000485089] [PMID: 29145191]
[62]
Michael Brown J, Ball JG, Wright MS, Van Meter S, Valentovic MA. Novel protective mechanisms for S-adenosyl-L-methionine against acetaminophen hepatotoxicity: Improvement of key antioxidant enzymatic function. Toxicol Lett 2012; 212(3): 320-8.
[http://dx.doi.org/10.1016/j.toxlet.2012.05.018] [PMID: 22683606]
[63]
Denecke B, Gräber S, Schäfer C, Heiss A, Wöltje M, Jahnen-Dechent W. Tissue distribution and activity testing suggest a similar but not identical function of fetuin-B and fetuin-A. Biochem J 2003; 376(Pt 1): 135-45.
[http://dx.doi.org/10.1042/bj20030676] [PMID: 12943536]
[64]
Auberger P, Falquerho L, Contreres JO, et al. Characterization of a natural inhibitor of the insulin receptor tyrosine kinase: cDNA cloning, purification, and anti-mitogenic activity. Cell 1989; 58(4): 631-40.
[http://dx.doi.org/10.1016/0092-8674(89)90098-6] [PMID: 2766355]
[65]
Ju H, Zhou Z, Sun M, Chen H. Association of fetuin-A to adiponectin ratio with metabolic syndrome: A cross-sectional study. Endocrine 2017; 58(1): 190-3.
[http://dx.doi.org/10.1007/s12020-017-1383-5] [PMID: 28779425]
[66]
Naito C, Hashimoto M, Watanabe K, et al. Facilitatory effects of fetuin-A on atherosclerosis. Atherosclerosis 2016; 246: 344-51.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.01.037] [PMID: 26828753]
[67]
Pal D, Dasgupta S, Kundu R, et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med 2012; 18(8): 1279-85.
[http://dx.doi.org/10.1038/nm.2851] [PMID: 22842477]
[68]
Lee KY, Lee W, Jung SH, et al. Hepatic upregulation of fetuin-A mediates acetaminophen-induced liver injury through activation of TLR4 in mice. Biochem Pharmacol 2019; 166: 46-55.
[http://dx.doi.org/10.1016/j.bcp.2019.05.011] [PMID: 31077645]
[69]
Engin A. Non-alcoholic fatty liver disease. Adv Exp Med Biol 2017; 960: 443-67.
[http://dx.doi.org/10.1007/978-3-319-48382-5_19] [PMID: 28585211]
[70]
Zhang Y, Gu X, Li D, Cai L, Xu Q. METTL3 regulates osteoblast differentiation and inflammatory response via smad signaling and MAPK signaling. Int J Mol Sci 2019; 21(1): E199.
[http://dx.doi.org/10.3390/ijms21010199] [PMID: 31892163]
[71]
Zhou R, Yang X, Li X, et al. Recombinant CC16 inhibits NLRP3/caspase-1-induced pyroptosis through p38 MAPK and ERK signaling pathways in the brain of a neonatal rat model with sepsis. J Neuroinflammation 2019; 16(1): 239.
[http://dx.doi.org/10.1186/s12974-019-1651-9] [PMID: 31775794]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy