Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Anti-cancer Virotherapy in Russia: Lessons from the Past, Current Challenges and Prospects for the Future

Author(s): Nadezhda M. Kolyasnikova, Nikolay B. Pestov*, Jeanne P. Sanchez-Pimentel, Nikolay A. Barlev and Aidar A. Ishmukhametov

Volume 24, Issue 2, 2023

Published on: 24 August, 2022

Page: [266 - 278] Pages: 13

DOI: 10.2174/1389201023666220516121813

Price: $65

conference banner
Abstract

The idea of using the lytic power of viruses against malignant cells has been entertained for many decades. However, oncolytic viruses gained broad attention as an emerging anti-cancer therapy only recently with the successful implementation of several oncolytic viruses to treat advanced melanoma. Here we review the history of oncolytic viruses in the Russian Federation and recent biotechnological advances in connection with the perspectives of their practical use against aggressive tumors such as glioblastoma or pancreatic cancer. A particular emphasis is made on novel applications of safe non-lytic virus-derived vectors armed with prodrug-converting enzyme transgenes. Rational improvement of oncotropism by conjugation with biopolymers and nanoformulations is also discussed.

Keywords: Gliomas, pancreatic cancer, adenoviruses, adeno-associated viruses, enteroviruses, enzyme gene therapy, parvoviruses.

Graphical Abstract
[1]
Alberts, P.; Tilgase, A.; Rasa, A.; Bandere, K.; Venskus, D. The advent of oncolytic virotherapy in oncology: The Rigvir® story. Eur. J. Pharmacol., 2018, 837, 117-126.
[http://dx.doi.org/10.1016/j.ejphar.2018.08.042] [PMID: 30179611]
[2]
Liang, M. Oncorine, the World First Oncolytic virus medicine and its update in China. Curr. Cancer Drug Targets, 2018, 18(2), 171-176.
[http://dx.doi.org/10.2174/1568009618666171129221503] [PMID: 29189159]
[3]
Haitz, K.; Khosravi, H.; Lin, J.Y.; Menge, T.; Nambudiri, V.E. Review of talimogene laherparepvec: A first-in-class oncolytic viral treatment of advanced melanoma. J. Am. Acad. Dermatol., 2020, 83(1), 189-196.
[http://dx.doi.org/10.1016/j.jaad.2020.01.039] [PMID: 32004650]
[4]
Nettelbeck, D.M.; Leber, M.F.; Altomonte, J.; Angelova, A.; Beil, J.; Berchtold, S.; Delic, M.; Eberle, J.; Ehrhardt, A.; Engeland, C.E.; Fechner, H.; Geletneky, K.; Goepfert, K.; Holm, P.S.; Kochanek, S.; Kreppel, F.; Krutzke, L.; Kühnel, F.; Lang, K.S.; Marchini, A.; Moehler, M.; Mühlebach, M.D.; Naumann, U.; Nawroth, R.; Nüesch, J.; Rommelaere, J.; Lauer, U.M.; Ungerechts, G. Virotherapy in Germany-recent activities in virus engineering, preclinical development, and clinical studies. Viruses, 2021, 13(8), 1420.
[http://dx.doi.org/10.3390/v13081420] [PMID: 34452286]
[5]
Kelly, E.; Russell, S.J. History of oncolytic viruses: Genesis to genetic engineering. Mol. Ther., 2007, 15(4), 651-659.
[http://dx.doi.org/10.1038/sj.mt.6300108] [PMID: 17299401]
[6]
Dock, G. The influence of complicating diseases upon leukæmia. Am. J. Med. Sci., 1904, 127(4), 563-592.
[http://dx.doi.org/10.1097/00000441-190412740-00001]
[7]
de Pace, N.G. Sulla Scomparsa di un enorme cancro vegetante del collo dell utero senza cura chirurgica. Ginecologia, 1912, 9, 82-88.
[8]
Shen, R.M. Problems of Medical Virology; Мedgiz: Mоscow, USSR, 1949, p. 347.
[9]
Moore, A.E. The destructive effect of the virus of Russian Far East encephalitis on the transplantable mouse sarcoma 180. Cancer, 1949, 2(3), 525-534.
[http://dx.doi.org/10.1002/1097-0142(194905)2:3<525:::AID-CNCR2820020317>3.0.CO;2-O] [PMID: 18131412]
[10]
Levkovich, E.N.; Karpovich, L.G. A comparative study on viruses of the tick-borne encephalytis group in cultures of HeLa cells. Vopr. Virusol., 1960, 5(1), 30-39.
[11]
Sergeeva, G.I.; Levkovich, E.N. Studies on reproduction properties of certain viruses from the tick-borne encephalytis complex with different degrees of neurovirulence in tumor cells in vitro and in vivo. Voprosy Virusologii, 1966.
[12]
Levkovich, E.N.; Sergeeva, G.I. Inhibitory action of viruses from the tick-borne encephalytis complex with different degrees of neurovirulence on murine tumors in vivo. Vopr. Virusol., 1966, 88-91.
[13]
Tsypkin, L.B.; Voroshilova, M.K.; Goryunova, A.G.; Lavrova, I.K.; Koroleva, G.A. The morphology of tumors of the human gastrointestinal tract in short-term organ culture and the reaction of these tumors to infection with poliovirus. Cancer, 1976, 38(4), 1796-1806.
[http://dx.doi.org/10.1002/1097-0142(197610)38:4<1796::AID-CNCR2820380457>3.0.CO;2-Y] [PMID: 186175]
[14]
Voroshilova, M.K.; Goryuniva, A.G.; Gorbachkov, E.A.; Chumakov, P.M.; Oganian, T.G.; Kodkind, G.H. Studies on cellular immunity of oncology patients in the process of asymptomic enteroviral infection; Zinātne: Riga, 1977, pp. 17-20.
[15]
Voroshilova, M.K.; Vaganova, N.T. Treatment of patients with gastro-intestinal tract tumors with live enteroviral vaccines; Zinātne: Riga, USSR, 1969.
[16]
Yurchenko, K.S.; Zhou, P.; Kovner, A.V.; Zavjalov, E.L.; Shestopalova, L.V.; Shestopalov, A.M. Oncolytic effect of wild-type Newcastle disease virus isolates in cancer cell lines in vitro and in vivo on xenograft model. PLoS One, 2018, 13(4), e0195425.
[http://dx.doi.org/10.1371/journal.pone.0195425] [PMID: 29621357]
[17]
Babaeva, F.E.; Lipatova, A.V.; Kochetkov, D.V.; Chumakov, P.M.; Kravchenko, S.K. The study of oncolytic viruses reproduction in organ cultures of human lymphoid tumors. Oncohematology, 2019, 14(4), 84-89.
[http://dx.doi.org/10.17650/1818-8346-2019-14-4-84-89]
[18]
Razumov, I.A.; Sviatchenko, V.A.; Protopopova, E.V.; Kochneva, G.V.; Kiselev, N.N.; Gubanova, N.V.; Shilov, A.G.; Mordvinov, V.A.; Netesov, S.V.; Chumakov, P.M.; Loktev, V.B. Oncolytic properties of some orthopoxviruses, adenoviruses and parvoviruses in human glioma cells. Vestn. Ross. Akad. Med. Nauk, 2013, 68(12), 4-8.
[http://dx.doi.org/10.15690/vramn.v68i12.853] [PMID: 24741936]
[19]
Ammour, Y.; Ryabaya, O.; Shchetinina, Y.; Prokofeva, E.; Gavrilova, M.; Khochenkov, D.; Vorobyev, D.; Faizuloev, E.; Shohin, I.; Zverev, V.V.; Svitich, O.; Nasedkina, T. The susceptibility of human melanoma cells to infection with the Leningrad-16 vaccine strain of measles virus. Viruses, 2020, 12(2), E173.
[http://dx.doi.org/10.3390/v12020173] [PMID: 32033013]
[20]
Mach, N.; Gao, J.; Schaffarczyk, L.; Janz, S.; Ehrke-Schulz, E.; Dittmar, T.; Ehrhardt, A.; Zhang, W. Spectrum-wide exploration of human adenoviruses for breast cancer therapy. Cancers, 2020, 12(6), E1403.
[http://dx.doi.org/10.3390/cancers12061403] [PMID: 32486014]
[21]
Geletneky, K.; Huesing, J.; Rommelaere, J.; Schlehofer, J.R.; Leuchs, B.; Dahm, M.; Krebs, O.; von Knebel Doeberitz, M.; Huber, B.; Hajda, J. Phase I/IIa study of intratumoral/intracerebral or intravenous/intracerebral administration of Parvovirus H-1 (ParvOryx) in patients with progressive primary or recurrent glioblastoma multiforme: ParvOryx01 protocol. BMC Cancer, 2012, 12(1), 99.
[http://dx.doi.org/10.1186/1471-2407-12-99] [PMID: 22436661]
[22]
Hajda, J.; Leuchs, B.; Angelova, A.L.; Frehtman, V.; Rommelaere, J.; Mertens, M.; Pilz, M.; Kieser, M.; Krebs, O.; Dahm, M.; Huber, B.; Engeland, C.E.; Mavratzas, A.; Hohmann, N.; Schreiber, J.; Jäger, D.; Halama, N.; Sedlaczek, O.; Gaida, M.M.; Daniel, V.; Springfeld, C.; Ungerechts, G. Phase 2 trial of Oncolytic H-1 parvovirus therapy shows safety and signs of immune system activation in patients with metastatic pancreatic ductal adenocarcinoma. Clin. Cancer Res., 2021, 27(20), 5546-5556.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-1020] [PMID: 34426438]
[23]
Loktev, V.B.; Ivan’kina, T.Y.; Netesov, S.V.; Chumakov, P.M. Oncolytic parvoviruses. New approaches for cancer therapy. Vestnik. Russ. Acad. Med. Sci., 2012, 67(2), 42-47.
[http://dx.doi.org/10.15690/vramn.v67i2.121]
[24]
Kochneva, G.V.; Sivolobova, G.F.; Iudina, K.V.; Babkin, I.V.; Chumakov, P.M.; Netesov, S.V. Oncolytic poxviruses. Mol. Gen. Mikrobiol. Virusol., 2012, 27(1), 8-15.
[http://dx.doi.org/10.3103/S0891416812010041] [PMID: 22702138]
[25]
Chumakov, P.M.; Morozova, V.V.; Babkin, I.V.; Baĭkov, I.K.; Netesov, S.V.; Tikunova, N.V. Oncolytic enteroviruses. Mol. Biol., 2012, 46(5), 712-725.
[http://dx.doi.org/10.1134/S0026893312050032] [PMID: 23156670]
[26]
Soboleva, A.V.; Seryak, D.A.; Gabdrakhmanova, A.F.; Sosnovtseva, A.O.; Tkhe, L.H.; Kochetkov, D.V.; Ilyinskaya, G.V.; Lipatova, A.V.; Chumakov, P.M.; Golbin, D.A. Glioblastoma multiforme stem cells are highly sensitive to some human non-pathogenic enteroviruses. J. Pharm. Sci. Res., 2018, 10(4), 936-939.
[27]
Goncharova, E.P.; Ruzhenkova, J.S.; Petrov, I.S.; Shchelkunov, S.N.; Zenkova, M.A. Oncolytic virus efficiency inhibited growth of tumour cells with multiple drug resistant phenotype in vivo and in vitro. J. Transl. Med., 2016, 14(1), 241.
[http://dx.doi.org/10.1186/s12967-016-1002-x] [PMID: 27538520]
[28]
Bauer, T.V.; Tregubchak, T.V.; Maksyutov, A.Z.; Taranov, O.S.; Solovieva, O.I.; Razumov, I.A.; Zavjalov, E.L.; Maksyutov, R.A.; Gavrilova, E.V. Recombinant vaccinia virus promising for melanoma treatment. Mol. Gen. Microbiol. Virol., 2020, 35(2), 97-104.
[http://dx.doi.org/10.3103/S0891416820020032]
[29]
Zonov, E.; Kochneva, G.; Yunusova, A.; Grazhdantseva, A.; Richter, V.; Ryabchikova, E. Features of the antitumor effect of vaccinia virus lister strain. Viruses, 2016, 8(1), E20.
[http://dx.doi.org/10.3390/v8010020] [PMID: 26771631]
[30]
Sidorenko, A.S.; Zheltukhin, A.O.; Le, T.H.; Soboleva, A.V.; Lipatova, A.V.; Golbin, D.A.; Chumakov, P.M. Persistence of oncolytic coxsackie virus A7 in subcutaneous human glioblastoma xenografts in mice in the context of experimental therapy. Bull Russ State Medl. Univ., 2018, 3(3), 42-48.
[http://dx.doi.org/10.24075/brsmu.2018.032]
[31]
Sosnovtceva, A.O.; Karshieva, S.S.; Smirnova, G.B.; Borisova, Y.A.; Lebedinskaya, O.V.; Shubina, I.Z.; Treshalina, H.M.; Chumakov, P.M.; Chekhonin, V.P. Sensitivity of the transplanted human neuroblastoma to oncolytic coxsackie A7 virus. Russian J Oncol., 2017, 22(3), 158-163.
[http://dx.doi.org/10.18821/1028-9984-2017-22-2-158-163]
[32]
Zheltukhin, A.O.; Soboleva, A.V.; Sosnovtseva, A.O.; Le, T.H.; Ilyinskaya, G.V.; Kochetkov, D.V.; Lipatova, A.V.; Chumakov, P.M. Human enteroviruses exhibit selective oncolytic activity in the model of human glioblastoma multiforme xenografts In immunodeficient mice. Bull Russ. State Med. Univ., 2018, 2, 45-51.
[http://dx.doi.org/10.24075/vrgmu.2018.026]
[33]
Stepanenko, A.A.; Sosnovtseva, A.O.; Valikhov, M.P.; Chekhonin, V.P. A new insight into aggregation of oncolytic adenovirus Ad5-delta-24-RGD during CsCl gradient ultracentrifugation. Sci. Rep., 2021, 11(1), 16088.
[http://dx.doi.org/10.1038/s41598-021-94573-y] [PMID: 34373477]
[34]
Romanenko, M.V.; Dolgova, E.V.; Osipov, I.D.; Ritter, G.S.; Sizova, M.S.; Proskurina, A.S.; Efremov, Y.R.; Bayborodin, S.I.; Potter, E.A.; Taranov, O.S.; Omigov, V.V.; Kochneva, G.V.; Grazhdantseva, A.A.; Zavyalov, E.L.; Razumov, I.A.; Netesov, S.V.; Bogachev, S.S. Oncolytic effect of adenoviruses serotypes 5 and 6 against U87 glioblastoma cancer stem cells. Anticancer Res., 2019, 39(11), 6073-6086.
[http://dx.doi.org/10.21873/anticanres.13815] [PMID: 31704835]
[35]
Svyatchenko, V.A.; Tarasova, M.V.; Netesov, S.V.; Chumakov, P.M. Oncolytic Adenoviruses in anticancer therapy: Current status and prospects. Mol. Biol., 2012, 46(4), 496-507.
[http://dx.doi.org/10.1134/S0026893312040103]
[36]
Chumakov, P.M. Could oncolytic viruses provide a breakthrough in oncology? Her. Russ. Acad. Sci., 2019, 89(5), 475-484.
[http://dx.doi.org/10.31857/S0869-5873895475-484]
[37]
Zilber, L.A. Viral theory of the origin of malignant tumors; Medgiz: Moscow, USSR, 1946.
[38]
Lidsky, P.V.; Andino, R. Epidemics as an adaptive driving force determining lifespan setpoints. Proc. Natl. Acad. Sci. USA, 2020, 117(30), 17937-17948.
[http://dx.doi.org/10.1073/pnas.1920988117] [PMID: 32651271]
[39]
Voroshilova, M.K. Potential use of nonpathogenic enteroviruses for control of human disease. Prog. Med. Virol., 1989, 36, 191-202.
[PMID: 2555836]
[40]
Chouljenko, D.V.; Ding, J.; Lee, I.F.; Murad, Y.M.; Bu, X.; Liu, G.; Delwar, Z.; Sun, Y.; Yu, S.; Samudio, I.; Zhao, R.; Jia, W.W. Induction of durable antitumor response by a novel oncolytic herpesvirus expressing multiple immunomodulatory transgenes. Biomedicines, 2020, 8(11), E484.
[http://dx.doi.org/10.3390/biomedicines8110484] [PMID: 33182232]
[41]
Brown, M.C.; Mosaheb, M.M.; Mohme, M.; McKay, Z.P.; Holl, E.K.; Kastan, J.P.; Yang, Y.; Beasley, G.M.; Hwang, E.S.; Ashley, D.M.; Bigner, D.D.; Nair, S.K.; Gromeier, M. Viral infection of cells within the tumor microenvironment mediates antitumor immunotherapy via selective TBK1-IRF3 signaling. Nat. Commun., 2021, 12(1), 1858.
[http://dx.doi.org/10.1038/s41467-021-22088-1] [PMID: 33767151]
[42]
Jiang, H.; Fueyo, J. Healing after death: Antitumor immunity induced by oncolytic adenoviral therapy. OncoImmunology, 2014, 3(7), e947872.
[http://dx.doi.org/10.4161/21624011.2014.947872] [PMID: 25954598]
[43]
Matzinger, P. The danger model: A renewed sense of self. Science, 2002, 296(5566), 301-305.
[http://dx.doi.org/10.1126/science.1071059] [PMID: 11951032]
[44]
Matveeva, O.V.; Chumakov, P.M. Defects in interferon pathways as potential biomarkers of sensitivity to oncolytic viruses. Rev. Med. Virol., 2018, 28(6), e2008.
[http://dx.doi.org/10.1002/rmv.2008] [PMID: 30209859]
[45]
Le, T.H.; Lipatova, A.V.; Volskaya, M.A.; Tikhonova, O.A.; Chumakov, P.M. The State of the jak/stat pathway affects the sensitivity of tumor cells to oncolytic enteroviruses. Mol. Biol., 2020, 54(4), 634-642.
[http://dx.doi.org/10.31857/S0026898420040102] [PMID: 32799226]
[46]
Kamynina, M.; Tskhovrebova, S.; Fares, J.; Timashev, P.; Laevskaya, A.; Ulasov, I. Oncolytic virus-induced autophagy in glioblastoma. Cancers, 2021, 13(14), 3482.
[http://dx.doi.org/10.3390/cancers13143482] [PMID: 34298694]
[47]
Kaverina, N.V.; Kadagidze, Z.G.; Borovjagin, A.V.; Karseladze, A.I.; Kim, C.K.; Lesniak, M.S.; Miska, J.; Zhang, P.; Baryshnikova, M.A.; Xiao, T.; Ornelles, D.; Cobbs, C.; Khramtsov, A.; Ulasov, I.V. Tamoxifen overrides autophagy inhibition in beclin-1-deficient glioma cells and their resistance to adenovirus-mediated oncolysis via upregulation of PUMA and BAX. Oncogene, 2018, 37(46), 6069-6082.
[http://dx.doi.org/10.1038/s41388-018-0395-9] [PMID: 29991800]
[48]
Kallinikova, V.D.; Borisova, E.N.; Pakhorukova, L.V.; Ogloblina, T.A.; Batmonkh, T.; Kravtsov, E.G.; Karpenko, L.P.; Dalin, M.V. Immunization against Trypanosoma cruzi and tumor growth in mice. Med. Parazitol., 2006, 4, 9-12.
[49]
Yurchenko, K.S.; Glushchenko, A.V.; Gulyaeva, M.A.; Bi, Y.; Chen, J.; Shi, W.; Adamenko, L.S.; Shestopalov, A.M. Intratumoral virotherapy with wild-type newcastle disease virus in carcinoma Krebs-2 cancer model. Viruses, 2021, 13(4), 552.
[http://dx.doi.org/10.3390/v13040552] [PMID: 33806229]
[50]
Matveeva, O.V.; Kochneva, G.V.; Zainutdinov, S.S.; Ilyinskaya, G.V.; Chumakov, P.M. Oncolytic paramyxoviruses: Mechanism of action, preclinical and clinical studies. Mol. Biol., 2018, 52(3), 360-379.
[http://dx.doi.org/10.1134/S002689331803010X] [PMID: 29989571]
[51]
Matveeva, O.V.; Guo, Z.S.; Shabalina, S.A.; Chumakov, P.M. Oncolysis by paramyxoviruses: Multiple mechanisms contribute to therapeutic efficiency. Mol. Ther. Oncolytics, 2015, 2, 15011.
[http://dx.doi.org/10.1038/mto.2015.11] [PMID: 26640816]
[52]
Matveeva, O.V.; Kochneva, G.V.; Netesov, S.V.; Onikienko, S.B.; Chumakov, P.M. Mechanisms of oncolysis by paramyxovirus sendai. Acta Nat., 2015, 7(2), 6-16.
[http://dx.doi.org/10.32607/20758251-2015-7-2-6-16] [PMID: 26085940]
[53]
Ilyinskaya, G.V.; Mukhina, E.V.; Soboleva, A.V.; Matveeva, O.V.; Chumakov, P.M. Oncolytic sendai virus therapy of canine mast cell tumors: (A pilot study). Front. Vet. Sci., 2018, 5, 116.
[http://dx.doi.org/10.3389/fvets.2018.00116] [PMID: 29915788]
[54]
Sosnovtseva, A.O.; Lipatova, A.V.; Grinenko, N.F.; Baklaushev, V.P.; Chumakov, P.M.; Chekhonin, V.P. Sensitivity of C6 glioma cells carrying the human poliovirus receptor to oncolytic polioviruses. Bull. Exp. Biol. Med., 2016, 161(6), 821-825.
[http://dx.doi.org/10.1007/s10517-016-3520-1] [PMID: 27783287]
[55]
Sosnovtseva, A.O.; Zheltukhin, A.O.; Lipatova, A.V.; Chumakov, P.M.; Chekhonin, V.P. Oncolytic activity of the vaccine strain of type 3 poliovirus on the model of rat glioma C6 cells. Bull. Exp. Biol. Med., 2019, 167(1), 111-115.
[http://dx.doi.org/10.1007/s10517-019-04472-6] [PMID: 31177454]
[56]
Zhu, Z.; Gorman, M.J.; McKenzie, L.D.; Chai, J.N.; Hubert, C.G.; Prager, B.C.; Fernandez, E.; Richner, J.M.; Zhang, R.; Shan, C.; Tycksen, E.; Wang, X.; Shi, P.Y.; Diamond, M.S.; Rich, J.N.; Chheda, M.G. Zika virus has oncolytic activity against glioblastoma stem cells. J. Exp. Med., 2017, 214(10), 2843-2857.
[http://dx.doi.org/10.1084/jem.20171093] [PMID: 28874392]
[57]
Svyatchenko, V.A.; Razumov, I.A.; Protopopova, E.V.; Demina, A.V.; Solovieva, O.I.; Zavjalov, E.L.; Loktev, V.B. Zika virus has an oncolytic activity against human glioblastoma U87 cells. Vavilovskii Zhurnal Genet. Selektsii, 2018, 22(8), 1040-1045.
[http://dx.doi.org/10.18699/VJ18.448]
[58]
Tassone, E.; Muscolini, M.; van Montfoort, N.; Hiscott, J. Oncolytic virotherapy for pancreatic ductal adenocarcinoma: A glimmer of hope after years of disappointment? Cytokine Growth Factor Rev., 2020, 56, 141-148.
[http://dx.doi.org/10.1016/j.cytogfr.2020.07.015] [PMID: 32859494]
[59]
Stepanenko, A.A.; Chekhonin, V.P. Recent Advances in Oncolytic Virotherapy and Immunotherapy for glioblastoma: A glimmer of hope in the search for an effective therapy? Cancers, 2018, 10(12), E492.
[http://dx.doi.org/10.3390/cancers10120492] [PMID: 30563098]
[60]
Sosnovtceva, A.O.; Grinenko, N.F.; Lipatova, A.V.; Chumakov, P.M.; Chekhonin, V.P. Oncolytic viruses for therapy of malignant glioma. Biomed. Khim., 2016, 62, 376-390.
[http://dx.doi.org/10.18097/PBMC20166204376]
[61]
Baklaushev, V.P.; Goryainov, S.A.; Potapov, A.A.; Pavlova, G.V.; Chehonin, V.P. Oncolytic Viruses In High-Grade Gliomas Treatment. J. Clin. Pract., 2015, 2, 6-59.
[62]
Zainutdinov, S.S.; Kochneva, G.V.; Netesov, S.V.; Chumakov, P.M.; Matveeva, O.V. Directed evolution as a tool for the selection of oncolytic RNA viruses with desired phenotypes. Oncolytic Virother., 2019, 8, 9-26.
[http://dx.doi.org/10.2147/OV.S176523] [PMID: 31372363]
[63]
Svyatchenko, V.A.; Ternovoy, V.A.; Kiselev, N.N.; Demina, A.V.; Loktev, V.B.; Netesov, S.V.; Chumakov, P.M. Bioselection of coxsackievirus B6 strain variants with altered tropism to human cancer cell lines. Arch. Virol., 2017, 162(11), 3355-3362.
[http://dx.doi.org/10.1007/s00705-017-3492-0] [PMID: 28766058]
[64]
Yurchenko, K.S.; Jing, Y.; Shestopalov, A.M. Adaptation of the new castle disease virus to cell cultures for enhancing its oncolytic properties. Acta Nat., 2019, 11(1), 66-73.
[http://dx.doi.org/10.32607/20758251-2019-11-1-66-73] [PMID: 31024750]
[65]
Zainutdinov, S.S.; Sivolobova, G.F.; Grazhdantseva, A.A.; Kochneva, G.V. Changes in oncolytic activity of Sendai virus during adaptation to cell cultures. Mol. Gen. Microbiol. Virol., 2017, 32(4), 212-217.
[http://dx.doi.org/10.3103/S0891416817040115]
[66]
Soboleva, A.V.; Lipatova, A.V.; Kochetkov, D.V.; Chumakov, P.M. Changes in the sensitivity of human glioblastoma cells to oncolytic enteroviruses induced by passaging. Bull Russ State Med Univ., 2018, 2, 40-44.
[http://dx.doi.org/10.24075/vrgmu.2018.025]
[67]
Kachko, A.V.; Ternovoj, V.A.; Kiselev, N.N.; Sorokin, A.V.; Svjatchenko, V.A.; Netesov, S.V.; Kiselev, S.L. Recombinant plasmid DNA PAD5-F carrying of adenovirus type 5 genome fragment with deletion in gene E1B-55K and strain of mutant adenovirus Ade 12 exhibiting selective antitumor activity. Russian Patent RU 2194755 C2, 2001.
[68]
Ulasov, I.V.; Borovjagin, A.V.; Schroeder, B.A.; Baryshnikov, A.Y. Oncolytic adenoviruses: A thorny path to glioma cure. Genes Dis., 2014, 1(2), 214-226.
[http://dx.doi.org/10.1016/j.gendis.2014.09.009] [PMID: 25685829]
[69]
Grazhdantseva, A.A.; Sivolobova, G.F.; Tkacheva, A.V.; Gileva, I.P.; Kochneva, G.V.; Kuligina, E.V.; Rikhter, V.A. Highly effective production of biologically active, secreted, human granulocyte-macrophage colony-stimulating factor by recombinant vaccinia virus. Appl. Biochem. Microbiol., 2016, 52(7), 685-691.
[http://dx.doi.org/10.1134/S0003683816070036]
[70]
Westphal, M.; Ylä-Herttuala, S.; Martin, J.; Warnke, P.; Menei, P.; Eckland, D.; Kinley, J.; Kay, R.; Ram, Z. Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): A randomised, open-label, phase 3 trial. Lancet Oncol., 2013, 14(9), 823-833.
[http://dx.doi.org/10.1016/S1470-2045(13)70274-2] [PMID: 23850491]
[71]
Liu, B.; Paton, J.F.; Kasparov, S. Viral vectors based on bidirectional cell-specific mammalian promoters and transcriptional amplification strategy for use in vitro and in vivo. BMC Biotechnol., 2008, 8(1), 49.
[http://dx.doi.org/10.1186/1472-6750-8-49] [PMID: 18485188]
[72]
Kochneva, G.V.; Tkacheva, A.V.; Sivolobova, G.F.; Grazhdantseva, A.A.; Yunusova, A.Yu.; Ryabchikova, E.I.; Kuligina, E.V.; Koval, O.A.; Rikhter, V.A. Antitumor potential of recombinant vaccinia virus strain, which produces a secreted chimera protein, composed of human Gm-Csf and oncotoxic peptide lactaptin. Russian J. Biopharmaceut., 2017, 9, 11-21.
[73]
Patel, S.; Bui, T.T.T.; Drake, A.F.; Fraternali, F.; Nikolova, P.V. The p73 DNA binding domain displays enhanced stability relative to its homologue, the tumor suppressor p53, and exhibits cooperative DNA binding. Biochemistry, 2008, 47(10), 3235-3244.
[http://dx.doi.org/10.1021/bi7023207] [PMID: 18260640]
[74]
Breitbach, C.J.; Thorne, S.H.; Bell, J.C.; Kirn, D.H. Targeted and armed oncolytic poxviruses for cancer: The lead example of JX-594. Curr. Pharm. Biotechnol., 2012, 13(9), 1768-1772.
[http://dx.doi.org/10.2174/138920112800958922] [PMID: 21740365]
[75]
Kochneva, G.V.; Babkina, I.N.; Lupan, T.A.; Grazhdantseva, A.A.; Yudin, P.V.; Sivolobova, G.F.; Shvalov, A.N.; Popov, E.G.; Babkin, I.V.; Netesov, S.V.; Chumakov, P.M. Apoptin enhances the oncolytic activity of vaccinia virus in vitro. Mol. Biol., 2013, 47(5), 733-742.
[http://dx.doi.org/10.1134/S0026893313050075]
[76]
Zonov, E.V.; Tupitsyna, A.V.; Ryabchikova, E.I.; Kochneva, G.V. The in vivo antitumor effect of the apoptin-producing recombinant vaccinia virus strain is associated with blockage of mitotic division of cancer cells. Mol. Gen. Microbiol. Virol., 2016, 31(4), 233-239.
[http://dx.doi.org/10.3103/S089141681604008X]
[77]
Kochneva, G.; Zonov, E.; Grazhdantseva, A.; Yunusova, A.; Sibolobova, G.; Popov, E.; Taranov, O.; Netesov, S.; Chumakov, P.; Ryabchikova, E. Apoptin enhances the oncolytic properties of vaccinia virus and modifies mechanisms of tumor regression. Oncotarget, 2014, 5(22), 11269-11282.
[http://dx.doi.org/10.18632/oncotarget.2579] [PMID: 25358248]
[78]
Ternovoy, V.A.; Svyatchenko, V.A.; Tarasova, M.V.; Kiselev, N.N.; Chub, E.V.; Mikryukova, T.P.; Protopopova, E.V.; Loktev, V.B.; Chumakov, P.M.; Netesov, S.V. The construction of recombinant adenoviruses expressing apoptin. Tomsk State J. Biol., 2013, 3, 100-110.
[79]
Tkacheva, A.V.; Sivolobova, G.F.; Grazhdantseva, A.A.; Loktev, V.B.; Kochneva, G.V.; Shevelev, O.B.; Razumov, I.A.; Zavjalov, E.L. Targeted therapy of human glioblastoma combining the oncolytic properties of parvovirus H-1 and attenuated strains of the vaccinia virus. Mol. Gen. Microbiol. Virol., 2019, 34(2), 140-147.
[http://dx.doi.org/10.3103/S0891416819020101]
[80]
Kochneva, G.; Sivolobova, G.; Tkacheva, A.; Grazhdantseva, A.; Troitskaya, O.; Nushtaeva, A.; Tkachenko, A.; Kuligina, E.; Richter, V.; Koval, O. Engineering of double recombinant vaccinia virus with enhanced oncolytic potential for solid tumor virotherapy. Oncotarget, 2016, 7(45), 74171-74188.
[http://dx.doi.org/10.18632/oncotarget.12367] [PMID: 27708236]
[81]
Stepanenko, A.A.; Chekhonin, V.P. Tropism and transduction of oncolytic adenovirus 5 vectors in cancer therapy: Focus on fiber chimerism and mosaicism, hexon and pIX. Virus Res., 2018, 257, 40-51.
[http://dx.doi.org/10.1016/j.virusres.2018.08.012] [PMID: 30125593]
[82]
Stepanenko, A.A.; Chekhonin, V.P. A compendium of adenovirus genetic modifications for enhanced replication, oncolysis, and tumor immunosurveillance in cancer therapy. Gene, 2018, 679, 11-18.
[http://dx.doi.org/10.1016/j.gene.2018.08.069] [PMID: 30171937]
[83]
Logunov, D.Y.; Ilyinskaya, G.V.; Cherenova, L.V.; Verhovskaya, L.V.; Shmarov, M.M.; Chumakov, P.M.; Kopnin, B.P.; Naroditsky, B.S. Restoration of p53 tumor-suppressor activity in human tumor cells in vitro and in their xenografts in vivo by recombinant avian adenovirus CELO-p53. Gene Ther., 2004, 11(1), 79-84.
[http://dx.doi.org/10.1038/sj.gt.3302146] [PMID: 14681700]
[84]
Reid, T.; Warren, R.; Kirn, D. Intravascular adenoviral agents in cancer patients: Lessons from clinical trials. Cancer Gene Ther., 2002, 9(12), 979-986.
[http://dx.doi.org/10.1038/sj.cgt.7700539] [PMID: 12522437]
[85]
Xie, R.; Bi, X.; Shang, B.; Zhou, A.; Shi, H.; Shou, J. Efficacy and safety of oncolytic viruses in advanced or metastatic cancer: A network meta-analysis. Virol. J., 2021, 18(1), 158.
[http://dx.doi.org/10.1186/s12985-021-01630-z] [PMID: 34332591]
[86]
Breitbach, C.J.; Paterson, J.M.; Lemay, C.G.; Falls, T.J.; McGuire, A.; Parato, K.A.; Stojdl, D.F.; Daneshmand, M.; Speth, K.; Kirn, D.; McCart, J.A.; Atkins, H.; Bell, J.C. Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol. Ther., 2007, 15(9), 1686-1693.
[http://dx.doi.org/10.1038/sj.mt.6300215] [PMID: 17579581]
[87]
Li, L.; Liu, S.; Han, D.; Tang, B.; Ma, J. Delivery and biosafety of oncolytic virotherapy. Front. Oncol., 2020, 10, 475.
[http://dx.doi.org/10.3389/fonc.2020.00475] [PMID: 32373515]
[88]
Beasley, G.M.; Nair, S.K.; Farrow, N.E.; Landa, K.; Selim, M.A.; Wiggs, C.A.; Jung, S-H.; Bigner, D.D.; True Kelly, A.; Gromeier, M.; Salama, A.K. Phase I trial of intratumoral PVSRIPO in patients with unresectable, treatment-refractory melanoma. J. Immunother. Cancer, 2021, 9(4), e002203.
[http://dx.doi.org/10.1136/jitc-2020-002203] [PMID: 33875611]
[89]
Tian, G.; Liu, J.; Zhou, J.S.R.; Chen, W. Multiple hepatic arterial injections of recombinant adenovirus p53 and 5-fluorouracil after transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma: A pilot phase II trial. Anticancer Drugs, 2009, 20(5), 389-395.
[http://dx.doi.org/10.1097/CAD.0b013e32832a2df9] [PMID: 19287305]
[90]
Tyshkovskiy, A.; Panchin, A.Y. There is still no evidence of SARS-CoV-2 laboratory origin: Response to segreto and deigin. Bioessays, 2021, 43(12), e2100194.
[http://dx.doi.org/10.1002/bies.202100194]
[91]
Domingo, J.L. What we know and what we need to know about the origin of SARS-CoV-2. Environ. Res., 2021, 200, 111785.
[http://dx.doi.org/10.1016/j.envres.2021.111785] [PMID: 34329631]
[92]
Chulpanova, D.S.; Solovyeva, V.V.; Kitaeva, K.V.; Dunham, S.P.; Khaiboullina, S.F.; Rizvanov, A.A. Recombinant viruses for cancer therapy. Biomedicines, 2018, 6(4), E94.
[http://dx.doi.org/10.3390/biomedicines6040094] [PMID: 30257488]
[93]
Berzhitskaya, D.; Chumakov, P. Dendritic cells as carriers of oncolytic viruses. FEBS Open Bio, 2019, 9(S1)
[94]
Podshivalova, E.S.; Semkina, A.S.; Kravchenko, D.S.; Frolova, E.I.; Chumakov, S.P. Efficient delivery of oncolytic enterovirus by carrier cell line NK-92. Mol. Ther. Oncolytics, 2021, 21, 110-118.
[http://dx.doi.org/10.1016/j.omto.2021.03.013] [PMID: 33981827]
[95]
Sonabend, A.M.; Ulasov, I.V.; Tyler, M.A.; Rivera, A.A.; Mathis, J.M.; Lesniak, M.S. Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells, 2008, 26(3), 831-841.
[http://dx.doi.org/10.1634/stemcells.2007-0758] [PMID: 18192232]
[96]
Muslimov, A.R.; Timin, A.S.; Bichaykina, V.R.; Peltek, O.O.; Karpov, T.E.; Dubavik, A.; Nominé, A.; Ghanbaja, J.; Sukhorukov, G.B.; Zyuzin, M.V. Biomimetic drug delivery platforms based on mesenchymal stem cells impregnated with light-responsive submicron sized carriers. Biomater. Sci., 2020, 8(4), 1137-1147.
[http://dx.doi.org/10.1039/C9BM00926D] [PMID: 31584052]
[97]
Logunov, D.Y.; Dolzhikova, I.V.; Zubkova, O.V.; Tukhvatullin, A.I.; Shcheblyakov, D.V.; Dzharullaeva, A.S.; Grousova, D.M.; Erokhova, A.S.; Kovyrshina, A.V.; Botikov, A.G.; Izhaeva, F.M.; Popova, O.; Ozharovskaya, T.A.; Esmagambetov, I.B.; Favorskaya, I.A.; Zrelkin, D.I.; Voronina, D.V.; Shcherbinin, D.N.; Semikhin, A.S.; Simakova, Y.V.; Tokarskaya, E.A.; Lubenets, N.L.; Egorova, D.A.; Shmarov, M.M.; Nikitenko, N.A.; Morozova, L.F.; Smolyarchuk, E.A.; Kryukov, E.V.; Babira, V.F.; Borisevich, S.V.; Naroditsky, B.S.; Gintsburg, A.L. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: Two open, non-randomised phase 1/2 studies from Russia. Lancet, 2020, 396(10255), 887-897.
[http://dx.doi.org/10.1016/S0140-6736(20)31866-3] [PMID: 32896291]
[98]
Matveeva, O.V.; Guo, Z.S.; Senin, V.M.; Senina, A.V.; Shabalina, S.A.; Chumakov, P.M. Oncolysis by paramyxoviruses: Preclinical and clinical studies. Mol. Ther. Oncolytics, 2015, 2, 150017.
[http://dx.doi.org/10.1038/mto.2015.17] [PMID: 26640815]
[99]
Vdovochenko, G.V.; Radaeva, I.F.; Sergeev, A.A.; Kolokol’tsova, T.d.; Nechaeva, E.A.; Il’ina, T.v.; Petrishchenko, V.A.; Ternovoy, V.A.; Sviatchenko, V.A.; Sergeev, A.N. Development of banks of a 203-cell continuous culture for manufacturing the anti-tumor therapeutic preparation cancerolysin. Biotechnol. Russ., 2006, 1, 83-89.
[100]
Cook, M.; Chauhan, A. Clinical application of oncolytic viruses: A systematic review. Int. J. Mol. Sci., 2020, 21(20), 7505.
[http://dx.doi.org/10.3390/ijms21207505] [PMID: 33053757]
[101]
Kemp, V.; Lamfers, M.L.M.; van der Pluijm, G.; van den Hoogen, B.G.; Hoeben, R.C. Developing oncolytic viruses for clinical use: A consortium approach. Cytokine Growth Factor Rev., 2020, 56, 133-140.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.010] [PMID: 32553482]
[102]
Cataldi, M.; Shah, N.R.; Felt, S.A.; Grdzelishvili, V.Z. Breaking resistance of pancreatic cancer cells to an attenuated vesicular stomatitis virus through a novel activity of IKK inhibitor TPCA-1. Virology, 2015, 485, 340-354.
[http://dx.doi.org/10.1016/j.virol.2015.08.003] [PMID: 26331681]
[103]
Vandeborne, L.; Pantziarka, P.; Van Nuffel, A.M.T.; Bouche, G. repurposing infectious diseases vaccines against cancer. Front. Oncol., 2021, 11, 688755.
[http://dx.doi.org/10.3389/fonc.2021.688755] [PMID: 34055652]
[104]
Kasaraneni, N.; Chamoun-Emanuelli, A.M.; Wright, G.; Chen, Z. Retargeting lentiviruses via SpyCatcher-SpyTag chemistry for gene delivery into specific cell types. MBio, 2017, 8(6), e01860-17.
[http://dx.doi.org/10.1128/mBio.01860-17] [PMID: 29233896]
[105]
Keeble, A.H.; Turkki, P.; Stokes, S.; Khairil Anuar, I.N.A.; Rahikainen, R.; Hytönen, V.P.; Howarth, M. Approaching infinite affinity through engineering of peptide-protein interaction. Proc. Natl. Acad. Sci. USA, 2019, 116(52), 201909653.
[http://dx.doi.org/10.1073/pnas.1909653116] [PMID: 31822621]
[106]
Huang, L.L.; Li, X.; Liu, K.; Zou, B.; Xie, H.Y. Engineering oncolytic vaccinia virus with functional peptides through mild and universal strategy. Anal. Bioanal. Chem., 2019, 411(4), 925-933.
[http://dx.doi.org/10.1007/s00216-018-1519-3] [PMID: 30523361]
[107]
Thangudu, S.; Cheng, F.Y.; Su, C.H. Advancements in the blood-brain barrier penetrating nanoplatforms for brain related disease diagnostics and therapeutic applications. Polymers, (Basel), 2020, 12(12), E3055.
[http://dx.doi.org/10.3390/polym12123055] [PMID: 33419339]
[108]
Zorkina, Y.; Abramova, O.; Ushakova, V.; Morozova, A.; Zubkov, E.; Valikhov, M.; Melnikov, P.; Majouga, A.; Chekhonin, V. Nano carrier drug delivery systems for the treatment of neuropsychiatric disorders: Advantages and limitations. Molecules, 2020, 25(22), E5294.
[http://dx.doi.org/10.3390/molecules25225294] [PMID: 33202839]
[109]
Ganjeifar, B.; Morshed, S.F. Targeted drug delivery in brain tumors- nanochemistry applications and advances. Curr. Top. Med. Chem., 2020, 21(14), 1202-1223.
[http://dx.doi.org/10.2174/1568026620666201113140258] [PMID: 33185163]
[110]
Klyachko, N.L.; Arzt, C.J.; Li, S.M.; Gololobova, O.A.; Batrakova, E.V. Extracellular vesicle-based therapeutics: Preclinical and clinical investigations. Pharmaceutics, 2020, 12(12), E1171.
[http://dx.doi.org/10.3390/pharmaceutics12121171] [PMID: 33271883]
[111]
Han, M.; Xing, H.; Chen, L.; Cui, M.; Zhang, Y.; Qi, L.; Jin, M.; Yang, Y.; Gao, C.; Gao, Z.; Xing, X.; Huang, W. Efficient antiglioblastoma therapy in mice through doxorubicin-loaded nanomicelles modified using a novel brain-targeted RVG-15 peptide. J. Drug Target., 2021, 29(9), 1016-1028.
[http://dx.doi.org/10.1080/1061186X.2021.1912053] [PMID: 33825602]
[112]
Hill, C.; Grundy, M.; Bau, L.; Wallington, S.; Balkaran, J.; Ramos, V.; Fisher, K.; Seymour, L.; Coussios, C.; Carlisle, R. Polymer stealthing and mucin-1 retargeting for enhanced pharmacokinetics of an oncolytic vaccinia virus. Mol. Ther. Oncolytics, 2021, 21, 47-61.
[http://dx.doi.org/10.1016/j.omto.2021.03.011] [PMID: 33869742]
[113]
Kasala, D.; Yoon, A.R.; Hong, J.; Kim, S.W.; Yun, C-O. Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy. Nanomedicine, 2016, 11(13), 1689-1713.
[http://dx.doi.org/10.2217/nnm-2016-0060] [PMID: 27348247]
[114]
Alemany, R.; Suzuki, K.; Curiel, D.T. Blood clearance rates of adenovirus type 5 in mice. J. Gen. Virol., 2000, 81(Pt 11), 2605-2609.
[http://dx.doi.org/10.1099/0022-1317-81-11-2605] [PMID: 11038370]
[115]
Zelepukin, I.V.; Yaremenko, A.V.; Ivanov, I.N.; Yuryev, M.V.; Cherkasov, V.R.; Deyev, S.M.; Nikitin, P.I.; Nikitin, M.P. Long-term fate of magnetic particles in mice: A comprehensive study. ACS Nano, 2021, 15(7), 11341-11357.
[http://dx.doi.org/10.1021/acsnano.1c00687] [PMID: 34250790]
[116]
Korneyenkov, M.A.; Zamyatnin, A.A., Jr Next step in gene delivery: Modern approaches and further perspectives of AAV tropism modification. Pharmaceutics, 2021, 13(5), 750.
[http://dx.doi.org/10.3390/pharmaceutics13050750] [PMID: 34069541]
[117]
Belousova, N.; Mikheeva, G.; Gelovani, J.; Krasnykh, V. Modification of adenovirus capsid with a designed protein ligand yields a gene vector targeted to a major molecular marker of cancer. J. Virol., 2008, 82(2), 630-637.
[http://dx.doi.org/10.1128/JVI.01896-07] [PMID: 17989185]
[118]
Fares, J.; Ahmed, A.U.; Ulasov, I.V.; Sonabend, A.M.; Miska, J.; Lee-Chang, C.; Balyasnikova, I.V.; Chandler, J.P.; Portnow, J.; Tate, M.C.; Kumthekar, P.; Lukas, R.V.; Grimm, S.A.; Adams, A.K.; Hébert, C.D.; Strong, T.V.; Amidei, C.; Arrieta, V.A.; Zannikou, M.; Horbinski, C.; Zhang, H.; Burdett, K.B.; Curiel, D.T.; Sachdev, S.; Aboody, K.S.; Stupp, R.; Lesniak, M.S. Neural stem cell delivery of an oncolytic adenovirus in newly diagnosed malignant glioma: A first-in-human, phase 1, dose-escalation trial. Lancet Oncol., 2021, 22(8), 1103-1114.
[http://dx.doi.org/10.1016/S1470-2045(21)00245-X] [PMID: 34214495]
[119]
van den Wollenberg, D.J.M.; Dautzenberg, I.J.C.; van den Hengel, S.K.; Cramer, S.J.; de Groot, R.J.; Hoeben, R.C. Isolation of reovirus T3D mutants capable of infecting human tumor cells independent of junction adhesion molecule-A. PLoS One, 2012, 7(10), e48064.
[http://dx.doi.org/10.1371/journal.pone.0048064] [PMID: 23110175]
[120]
Guedan, S.; Rojas, J.J.; Gros, A.; Mercade, E.; Cascallo, M.; Alemany, R. Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol. Ther., 2010, 18(7), 1275-1283.
[http://dx.doi.org/10.1038/mt.2010.79] [PMID: 20442708]
[121]
Xia, Y.; He, J.; Zhang, H.; Wang, H.; Tetz, G.; Maguire, C.A.; Wang, Y.; Onuma, A.; Genkin, D.; Tetz, V.; Stepanov, A.; Terekhov, S.; Ukrainskaya, V.; Huang, H.; Tsung, A. AAV-mediated gene transfer of DNase I in the liver of mice with colorectal cancer reduces liver metastasis and restores local innate and adaptive immune response. Mol. Oncol., 2020, 14(11), 2920-2935.
[http://dx.doi.org/10.1002/1878-0261.12787] [PMID: 32813937]
[122]
Cloughesy, T.F.; Petrecca, K.; Walbert, T.; Butowski, N.; Salacz, M.; Perry, J.; Damek, D.; Bota, D.; Bettegowda, C.; Zhu, J.J.; Iwamoto, F.; Placantonakis, D.; Kim, L.; Elder, B.; Kaptain, G.; Cachia, D.; Moshel, Y.; Brem, S.; Piccioni, D.; Landolfi, J.; Chen, C.C.; Gruber, H.; Rao, A.R.; Hogan, D.; Accomando, W.; Ostertag, D.; Montellano, T.T.; Kheoh, T.; Kabbinavar, F.; Vogelbaum, M.A. Effect of vocimagene amiretrorepvec in combination with flucytosine vs standard of care on survival following tumor resection in patients with recurrent high-grade glioma: A randomized clinical trial. JAMA Oncol., 2020, 6(12), 1939-1946.
[http://dx.doi.org/10.1001/jamaoncol.2020.3161] [PMID: 33119048]
[123]
Alekseenko, I.; Kuzmich, A.; Kondratyeva, L.; Kondratieva, S.; Pleshkan, V.; Sverdlov, E. Step-by-step immune activation for suicide gene therapy reinforcement. Int. J. Mol. Sci., 2021, 22(17), 9376.
[http://dx.doi.org/10.3390/ijms22179376] [PMID: 34502287]
[124]
Koval, O.; Kochneva, G.; Tkachenko, A.; Troitskaya, O.; Sivolobova, G.; Grazhdantseva, A.; Nushtaeva, A.; Kuligina, E.; Richter, V. Recombinant vaccinia viruses coding transgenes of apoptosis-inducing proteins enhance apoptosis but not immunogenicity of infected tumor cells. BioMed Res. Int., 2017, 2017, 3620510.
[http://dx.doi.org/10.1155/2017/3620510] [PMID: 28951871]
[125]
Vasileva, N.; Ageenko, A.; Dmitrieva, M.; Nushtaeva, A.; Mishinov, S.; Kochneva, G.; Richter, V.; Kuligina, E. Double recombinant vaccinia virus: A candidate drug against human glioblastoma. Life, 2021, 11(10), 1084.
[http://dx.doi.org/10.3390/life11101084] [PMID: 34685455]
[126]
Stepanenko, A.A.; Sosnovtseva, A.O.; Valikhov, M.P.; Chernysheva, A.A.; Cherepanov, S.A.; Yusubalieva, G.M.; Ruzsics, Z.; Lipatova, A.V.; Chekhonin, V.P. Superior infectivity of the fiber chimeric oncolytic adenoviruses Ad5/35 and Ad5/3 over Ad5-delta-24-RGD in primary glioma cultures. Mol. Ther. Oncolytics, 2021, 24, 230-248.
[http://dx.doi.org/10.1016/j.omto.2021.12.013] [PMID: 35071746]
[127]
Romanenko, M.; Osipov, I.; Netesov, S.V.; Davydova, J. Adenovirus type 6: Subtle structural distinctions from adenovirus type 5 result in essential differences in properties and perspectives for gene therapy. Pharmaceutics, 2021, 13(10), 1641.
[http://dx.doi.org/10.3390/pharmaceutics13101641] [PMID: 34683934]
[128]
Malogolovkin, A.; Gasanov, N.; Egorov, A.; Weener, M.; Ivanov, R.; Karabelsky, A. Combinatorial approaches for cancer treatment using oncolytic viruses: projecting the perspectives through clinical trials outcomes. Viruses, 2021, 13(7), 1271.
[http://dx.doi.org/10.3390/v13071271] [PMID: 34209981]
[129]
Lipatova, A.V.; Soboleva, A.V.; Gorshkov, V.A.; Bubis, J.A.; Solovyeva, E.M.; Krasnov, G.S.; Kochetkov, D.V.; Vorobyev, P.O.; Ilina, I.Y.; Moshkovskii, S.A.; Kjeldsen, F.; Gorshkov, M.V.; Chumakov, P.M.; Tarasova, I.A. Multi-Omics Analysis of Glioblastoma Cells’ Sensitivity to Oncolytic Viruses. Cancers, 2021, 13(21), 5268.
[http://dx.doi.org/10.3390/cancers13215268] [PMID: 34771433]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy