Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Evaluating Potentials of Species Rich Taxonomic Groups in Cosmetics and Dermatology: Clustering and Dispersion of Skin Efficacy of Asteraceae and Ranunculales Plants on the Species Phylogenetic Tree

Author(s): Da-Cheng Hao*, Huai-Yu Lyu, Fan Wang and Pei-Gen Xiao*

Volume 24, Issue 2, 2023

Published on: 21 July, 2022

Page: [279 - 298] Pages: 20

DOI: 10.2174/1389201023666220324123926

Price: $65

conference banner
Abstract

Background: The medicinal properties of plants can be predicted by virtue of phylogenetic methods, which nevertheless have not been utilized to explore the regularity of skin-related bioactivities of ethnomedicinal plants. We aim to investigate the distribution of skin efficacy of Asteraceae and Ranunculales plants on the species-level Tree of Life.

Methods: The clinical efficacy data of 551 ethnomedicinal species belonging to Ranunculales, as well as 579 ethnomedicinal species of Asteraceae, were systematically collected and collated; these therapeutic data fell into 15 categories, including skin disease/cosmeceutical. The large phylogenetic tree of all China angiosperm species was used to detect the phylogenetic signals of ethnomedicinal plants by calculating the D statistic, phylogenetic diversity (PD), net relatedness index (NRI), and nearest taxon index (NTI). Of all Chinese ethnomedicinal plants of Ranunculales and Asteraceae, 339 (61.5% of all ethnomedicinal species) and 382 (66.0% of all) are used for skin problems. In Ranunculales, a clustered structure was suggested by the NRI value for skin uses. In Asteraceae, the skin utility was not clustered; Artemisia, Aster, Cremanthodium, Ligularia, and Saussurea are the most used Asteraceae genera for skin issues.

Results: The clustering structure was identified in Artemisia, and the skin efficacy in other genera was of overdispersion (NRI < 0). NTI values and D statistics largely agree with NRI. When compared with PD values of different therapeutic categories, the PD value of the skin category was relatively high in Cremanthodium, Ranunculales, Asteraceae, and Artemisia, suggesting the enormous efficacy space in the new taxa of these taxonomic groups.

Conclusion: By resolving the distribution of therapeutic effects of Ranunculales/Asteraceae taxa, the importance of phylogenetic methods in mining botanical resources with skin utilities is validated.

Keywords: Ranunculales, asteraceae, skin efficacy, net relatedness index, nearest taxon index, phylogenetic diversity, Dstatistic.

Graphical Abstract
[1]
Dos Santos, D.S.; Barreto, R.S.S.; Serafini, M.R.; Gouveia, D.N.; Marques, R.S.; Nascimento, L.C.; Nascimento, J.C.; Guimarães, A.G. Phytomedicines containing Matricaria species for the treatment of skin diseases: A biotechnological approach. Fitoterapia, 2019, 138, 104267.
[http://dx.doi.org/10.1016/j.fitote.2019.104267] [PMID: 31319107]
[2]
Chaiyana, W.; Charoensup, W.; Sriyab, S.; Punyoyai, C.; Neimkhum, W. Herbal extracts as potential antioxidant, anti-aging, anti-inflammatory, and whitening cosmeceutical ingredients. Chem. Biodivers., 2021, 18(7), e2100245.
[http://dx.doi.org/10.1002/cbdv.202100245] [PMID: 33989453]
[3]
Bowe, W.P. Cosmetic benefits of natural ingredients: Mushrooms, feverfew, tea, and wheat complex. J. Drugs Dermatol., 2013, 12(9)(Suppl.), s133-s136.
[PMID: 24002162]
[4]
Mantle, D.; Gok, M.A.; Lennard, T.W. Adverse and beneficial effects of plant extracts on skin and skin disorders. Adverse Drug React. Toxicol. Rev., 2001, 20(2), 89-103.
[PMID: 11482001]
[5]
Zakeri, S.; Esmaeilzadeh, S.; Gorji, N.; Memariani, Z.; Moeini, R.; Bijani, A. The effect of Achillea Millefolium L. on vulvovaginal candidiasis compared with clotrimazole: A randomized controlled trial. Complement. Ther. Med., 2020, 52, 102483.
[http://dx.doi.org/10.1016/j.ctim.2020.102483] [PMID: 32951733]
[6]
Zhang, Q.; Lyu, Y.; Huang, J.; Zhang, X.; Yu, N.; Wen, Z.; Chen, S. Antibacterial activity and mechanism of sanguinarine against Providencia rettgeriin vitro. PeerJ, 2020, 8, e9543.
[http://dx.doi.org/10.7717/peerj.9543] [PMID: 32864203]
[7]
Nawrot, J.; Gornowicz-Porowska, J.; Nowak, G. Phytotherapy perspectives for treating fungal infections, migraine, sebhorreic dermatitis and hyperpigmentations with the plants of the Centaureinae subtribe (Asteraceae). Molecules, 2020, 25(22), 5329.
[http://dx.doi.org/10.3390/molecules25225329] [PMID: 33203185]
[8]
Zaman, W.; Ye, J.; Saqib, S.; Liu, Y.; Shan, Z.; Hao, D.; Chen, Z.; Xiao, P. Predicting potential medicinal plants with phylogenetic topology: Inspiration from the research of traditional Chinese medicine. J. Ethnopharmacol., 2021, 281, 114515.
[http://dx.doi.org/10.1016/j.jep.2021.114515] [PMID: 34388416]
[9]
Mandel, J.R.; Dikow, R.B.; Siniscalchi, C.M.; Thapa, R.; Watson, L.E.; Funk, V.A. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc. Natl. Acad. Sci. USA, 2019, 116(28), 14083-14088.
[http://dx.doi.org/10.1073/pnas.1903871116] [PMID: 31209018]
[10]
Chan, Y.S.; Cheng, L.N.; Wu, J.H.; Chan, E.; Kwan, Y.W.; Lee, S.M.; Leung, G.P.; Yu, P.H.; Chan, S.W. A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology, 2011, 19(5), 245-254.
[http://dx.doi.org/10.1007/s10787-010-0062-4] [PMID: 20981575]
[11]
Jeong, E.H.; Yang, H.; Kim, J.E.; Lee, K.W. Safflower seed oil and its active compound acacetin inhibit UVB-induced skin photoaging. J. Microbiol. Biotechnol., 2020, 30(10), 1567-1573.
[http://dx.doi.org/10.4014/jmb.2003.03064] [PMID: 32522955]
[12]
Paulsen, E. Oral ingestion of dandelion juice for vesicular hand eczema: Treatment or challenge? Contact Dermat., 2020, 82(5), 327-328.
[http://dx.doi.org/10.1111/cod.13473] [PMID: 31951290]
[13]
Hao, D.C.; Xiao, P.G.; Ma, H.Y.; Peng, Y.; He, C.N. Mining chemodiversity from biodiversity: Pharmacophylogeny of medicinal plants of Ranunculaceae. Chin. J. Nat. Med., 2015, 13(7), 507-520.
[http://dx.doi.org/10.1016/S1875-5364(15)30045-5] [PMID: 26233841]
[14]
Hao, D.C.; Xiao, P.G. An introduction of plant pharmacophylogeny; Chemical Industry Press: Beijing, 2017.
[15]
Xiao, P.G.; Wang, L.W.; Chou, G.S. [Statistical analysis of ethnopharmacologic data on Chinese medicinal plants using an electronic computer I. Magnoliidae]. Chung Hsi I Chieh Ho Tsa Chih, 1986, 6(4), 253-256, 200, 197.
[PMID: 2945664]
[16]
Yessoufou, K.; Daru, B.H.; Muasya, A.M. Phylogenetic exploration of commonly used medicinal plants in South Africa. Mol. Ecol. Resour., 2015, 15(2), 405-413.
[http://dx.doi.org/10.1111/1755-0998.12310] [PMID: 25066923]
[17]
Abdalla, M.A.; Zidorn, C. The genus Tragopogon (Asteraceae): A review of its traditional uses, phytochemistry, and pharmacological properties. J. Ethnopharmacol., 2020, 250, 112466.
[http://dx.doi.org/10.1016/j.jep.2019.112466] [PMID: 31837413]
[18]
Farahnik, B.; Sharma, D.; Alban, J.; Sivamani, R.K. Topical botanical agents for the treatment of psoriasis: A systematic review. Am. J. Clin. Dermatol., 2017, 18(4), 451-468.
[http://dx.doi.org/10.1007/s40257-017-0266-0] [PMID: 28289986]
[19]
Kim, M.; Park, Y.G.; Lee, H.J.; Lim, S.J.; Nho, C.W. Youngiasides A and C isolated from Youngia denticulatum inhibit UVB-induced MMP expression and promote type I procollagen production via repression of MAPK/AP-1/NF-κB and activation of AMPK/Nrf2 in HaCaT cells and human dermal fibroblasts. J. Agric. Food Chem., 2015, 63(22), 5428-5438.
[http://dx.doi.org/10.1021/acs.jafc.5b00467] [PMID: 25994852]
[20]
Zhang, H.; Wang, K.; Zhang, G.; Ho, H.I.; Gao, A. Synergistic anti-candidal activity of tetrandrine on ketoconazole: An experimental study. Planta Med., 2010, 76(1), 53-61.
[http://dx.doi.org/10.1055/s-0029-1185973] [PMID: 19644794]
[21]
Jia, M.R.; Zhang, Y. Dictionary of Chinese ethnic medicine; China Medical Science Press: Beijing, 2016, pp. 1-886.
[22]
Hu, H.H.; Liu, B.; Liang, Y.S.; Ye, J-F.; Saqib, S.; Meng, Z.; Lu, L-M.; Chen, Z-D. An updated Chinese vascular plant tree of life: Phylogenetic diversity hotspots revisited. J. Syst. Evol., 2020, 58(5), 663-672.
[http://dx.doi.org/10.1111/jse.12642]
[23]
Lu, L.M.; Mao, L.F.; Yang, T.; Ye, J.F.; Liu, B.; Li, H.L.; Sun, M.; Miller, J.T.; Mathews, S.; Hu, H.H.; Niu, Y.T.; Peng, D.X.; Chen, Y.H.; Smith, S.A.; Chen, M.; Xiang, K.L.; Le, C.T.; Dang, V.C.; Lu, A.M.; Soltis, P.S.; Soltis, D.E.; Li, J.H.; Chen, Z.D. Evolutionary history of the angiosperm flora of China. Nature, 2018, 554(7691), 234-238.
[http://dx.doi.org/10.1038/nature25485] [PMID: 29420476]
[24]
Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 2010, 26(11), 1463-1464.
[http://dx.doi.org/10.1093/bioinformatics/btq166] [PMID: 20395285]
[25]
Fritz, S.A.; Purvis, A. Selectivity in mammalian extinction risk and threat types: A new measure of phylogenetic signal strength in binary traits. Conserv. Biol., 2010, 24(4), 1042-1051.
[http://dx.doi.org/10.1111/j.1523-1739.2010.01455.x] [PMID: 20184650]
[26]
Ernst, M.; Saslis-Lagoudakis, C.H.; Grace, O.M.; Nilsson, N.; Simonsen, H.T.; Horn, J.W.; Rønsted, N. Evolutionary prediction of medicinal properties in the genus Euphorbia L. Sci. Rep., 2016, 6(1), 30531.
[http://dx.doi.org/10.1038/srep30531] [PMID: 27464466]
[27]
Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv., 1992, 61(1), 1-10.
[http://dx.doi.org/10.1016/0006-3207(92)91201-3]
[28]
Souza, E.N.F.; Williamson, E.M.; Hawkins, J.A. Which plants used in ethnomedicine are characterized? Phylogenetic patterns in traditional use related to research effort. Front. Plant Sci., 2018, 9, 834.
[http://dx.doi.org/10.3389/fpls.2018.00834] [PMID: 29973942]
[29]
Wati, R.K.; de Graaf, E.F.; Bogarín, D.; Heijungs, R.; van Vugt, R.; Smets, E.F.; Gravendeel, B. Antimicrobial activity of necklace orchids is phylogenetically clustered and can be predicted with a biological response method. Front. Pharmacol., 2021, 11586345.
[http://dx.doi.org/10.3389/fphar.2020.586345] [PMID: 33776752]
[30]
Lu, A.M.; Tang, Y.C. The origin and evolution of primitive angiosperms; Science Press: Beijing, 2020.
[31]
Chen, Z.D.; Lu, A.M.; Liu, B.; Ye, J.F. Tree of life for Chinese vascular plants; Science Press: Beijing, 2020.
[32]
Hao, C.; Yang, L. Drug metabolism and disposition diversity of Ranunculales phytometabolites: A systems perspective. Expert Opin. Drug Metab. Toxicol., 2016, 12(9), 1047-1065.
[http://dx.doi.org/10.1080/17425255.2016.1201068] [PMID: 27295138]
[33]
Akhtar, N.; Zaman, S.U.; Khan, B.A.; Amir, M.N.; Ebrahimzadeh, M.A. Calendula extract: Effects on mechanical parameters of human skin. Acta Pol. Pharm., 2011, 68(5), 693-701.
[PMID: 21928714]
[34]
Cho, W.K.; Kim, H.I.; Kim, S.Y.; Seo, H.H.; Song, J.; Kim, J.; Shin, D.S.; Jo, Y.; Choi, H.; Lee, J.H.; Moh, S.H. Anti-aging effects of Leontopodium alpinum (Edelweiss) callus culture extract through transcriptome profiling. Genes (Basel), 2020, 11(2), 230.
[http://dx.doi.org/10.3390/genes11020230] [PMID: 32098197]
[35]
Vostálová, J.; Tinková, E.; Biedermann, D.; Kosina, P.; Ulrichová, J.; Rajnochová Svobodová, A. Skin protective activity of silymarin and its flavonolignans. Molecules, 2019, 24(6), 1022.
[http://dx.doi.org/10.3390/molecules24061022] [PMID: 30875758]
[36]
Shin, S.Y.; Koh, D.; Lim, Y.; Lee, Y.H. Inhibition of EGR-1-dependent MMP1 transcription by ethanol extract of Ageratum houstonianum in HaCaT keratinocytes. Mol. Biol. Rep., 2021, 48(1), 1-11.
[http://dx.doi.org/10.1007/s11033-020-06091-1] [PMID: 33449301]
[37]
Li, L.; Han, X.; Gao, Y.; Diao, Q.; Xiao, Y. Ethanol extract of Gynura bicolor (GB) protects against UVB-induced photodamage of skin by inhibiting P53-mediated Bcl-2/BAX/Caspase-3 apoptosis pathway. Arch. Dermatol. Res., 2020, 312(1), 41-49.
[http://dx.doi.org/10.1007/s00403-019-01977-y] [PMID: 31538224]
[38]
Kim, J.; Lee, C.W.; Kim, E.K.; Lee, S.J.; Park, N.H.; Kim, H.S.; Kim, H.K.; Char, K.; Jang, Y.P.; Kim, J.W. Inhibition effect of Gynura procumbens extract on UV-B-induced matrix-metalloproteinase expression in human dermal fibroblasts. J. Ethnopharmacol., 2011, 137(1), 427-433.
[http://dx.doi.org/10.1016/j.jep.2011.04.072] [PMID: 21672616]
[39]
Maity, N.; Nema, N.K.; Abedy, M.K.; Sarkar, B.K.; Mukherjee, P.K. Exploring Tagetes erecta Linn flower for the elastase, hyaluronidase and MMP-1 inhibitory activity. J. Ethnopharmacol., 2011, 137(3), 1300-1305.
[http://dx.doi.org/10.1016/j.jep.2011.07.064] [PMID: 21843618]
[40]
Wu, P.S.; Jeng, J.; Yang, J.J.; Kao, V.; Yen, J.H.; Wu, M.J. Vernonia patula (Dryand.) Merr. and Leucas chinensis (Retz.) R. Brown exert anti-inflammatory activities and relieve oxidative stress via Nrf2 activation. J. Ethnopharmacol., 2020, 262, 113155.
[http://dx.doi.org/10.1016/j.jep.2020.113155] [PMID: 32736054]
[41]
Hwang, E.; Gao, W.; Xiao, Y.K.; Ngo, H.T.T.; Yi, T.H. Helianthus annuus L. flower prevents UVB-induced photodamage in human dermal fibroblasts by regulating the MAPK/AP-1, NFAT, and Nrf2 signaling pathways. J. Cell. Biochem., 2019, 120(1), 601-612.
[http://dx.doi.org/10.1002/jcb.27417] [PMID: 30195253]
[42]
Yoon, S.J.; Lim, C.J.; Chung, H.J.; Kim, J.H.; Huh, Y.H.; Park, K.; Jeong, S. Autophagy activation by Crepidiastrum Denticulatum extract attenuates environmental pollutant-induced damage in dermal fibroblasts. Int. J. Mol. Sci., 2019, 20(3), 517.
[http://dx.doi.org/10.3390/ijms20030517] [PMID: 30691106]
[43]
Knott, A.; Reuschlein, K.; Mielke, H.; Wensorra, U.; Mummert, C.; Koop, U.; Kausch, M.; Kolbe, L.; Peters, N.; Stäb, F.; Wenck, H.; Gallinat, S. Natural Arctium lappa fruit extract improves the clinical signs of aging skin. J. Cosmet. Dermatol., 2008, 7(4), 281-289.
[http://dx.doi.org/10.1111/j.1473-2165.2008.00407.x] [PMID: 19146605]
[44]
Jeong, D.; Lee, J.; Jeong, S.G.; Hong, Y.H.; Yoo, S.; Han, S.Y.; Kim, J.H.; Kim, S.; Kim, J.S.; Chung, Y.S.; Kim, J.H.; Yi, Y.S.; Cho, J.Y. Artemisia asiatica ethanol extract exhibits anti-photoaging activity. J. Ethnopharmacol., 2018, 220, 57-66.
[http://dx.doi.org/10.1016/j.jep.2018.03.037] [PMID: 29609010]
[45]
Maia Campos, P.M.; G. Mercurio, D.; O Melo, M.; Closs-Gonthier, B. Cichorium intybus root extract: A “vitamin D-like” active ingredient to improve skin barrier function. J. Dermatolog. Treat., 2017, 28(1), 78-81.
[http://dx.doi.org/10.1080/09546634.2016.1178695] [PMID: 27161285]
[46]
Shin, S.; Lee, J.A.; Kim, M.; Kum, H.; Jung, E.; Park, D. Anti-glycation activities of phenolic constituents from Silybum marianum (Milk Thistle) flower in vitro and on human explants. Molecules, 2015, 20(3), 3549-3564.
[http://dx.doi.org/10.3390/molecules20033549] [PMID: 25706757]
[47]
Adnan, Q.; Akhtar, N.; Khan, B.A. Phytoformulation of Sassurea lappa plant extract: A Single blind, noninvasive and split face study of cream on various skin parameters. Pak. J. Pharm. Sci., 2017, 30(5)(Supplementary), 1981-1986.
[PMID: 29105631]
[48]
Kim, J.; Kim, M.B.; Yun, J.G.; Hwang, J.K. Protective effects of standardized Siegesbeckia glabrescens extract and its active compound kirenol against UVB-induced photoaging through inhibition of MAPK/NF-κB pathways. J. Microbiol. Biotechnol., 2017, 27(2), 242-250.
[http://dx.doi.org/10.4014/jmb.1610.10050] [PMID: 27880964]
[49]
Martin, K.; Sur, R.; Liebel, F.; Tierney, N.; Lyte, P.; Garay, M.; Oddos, T.; Anthonavage, M.; Shapiro, S.; Southall, M. Parthenolide-depleted Feverfew (Tanacetum parthenium) protects skin from UV irradiation and external aggression. Arch. Dermatol. Res., 2008, 300(2), 69-80.
[http://dx.doi.org/10.1007/s00403-007-0818-x] [PMID: 18071724]
[50]
Morquio, A.; Rivera-Megret, F.; Dajas, F. Photoprotection by topical application of Achyrocline satureioides (‘Marcela’). Phytother. Res., 2005, 19(6), 486-490.
[http://dx.doi.org/10.1002/ptr.1665] [PMID: 16114090]
[51]
Zhang, X.; Xie, Y.L.; Yu, X.T.; Su, Z.Q.; Yuan, J.; Li, Y.C.; Su, Z.R.; Zhan, J.Y.; Lai, X.P. Protective effect of super-critical carbon dioxide fluid extract from flowers and buds of Chrysanthemum indicum Linnén against ultraviolet-induced photo-aging in mice. Rejuvenation Res., 2015, 18(5), 437-448.
[http://dx.doi.org/10.1089/rej.2014.1651] [PMID: 25849065]
[52]
Auh, J.H.; Madhavan, J. Protective effect of a mixture of marigold and rosemary extracts on UV-induced photoaging in mice. Biomed. Pharmacother., 2021, 135, 111178.
[http://dx.doi.org/10.1016/j.biopha.2020.111178] [PMID: 33388598]
[53]
Fonseca, B.L.; dos Santos, B.C.; Martins, P.; Bonorino, C.; Corte, T.W.; da Silva, V.D.; Bauer, M.E. Neuroprotective effects of a new skin care formulation following ultraviolet exposure. Cell Prolif., 2012, 45(1), 48-52.
[http://dx.doi.org/10.1111/j.1365-2184.2011.00795.x] [PMID: 22151837]
[54]
Chen, C.C.; Lin, M.W.; Liang, C.J.; Wang, S.H. The anti-inflammatory effects and mechanisms of eupafolin in lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages. PLoS One, 2016, 11(7), e0158662.
[http://dx.doi.org/10.1371/journal.pone.0158662] [PMID: 27414646]
[55]
Tanaka, Y.T.; Tanaka, K.; Kojima, H.; Hamada, T.; Masutani, T.; Tsuboi, M.; Akao, Y. Cynaropicrin from Cynara scolymus L. suppresses photoaging of skin by inhibiting the transcription activity of nuclear factor-kappa B. Bioorg. Med. Chem. Lett., 2013, 23(2), 518-523.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.034] [PMID: 23232059]
[56]
Hong, Y.H.; Kim, J.H.; Cho, J.Y. Photoaging protective effects of Ranunculus bulumei methanol extract. Evid. Based Complement. Alternat. Med., 2020, 2020, 1761785.
[http://dx.doi.org/10.1155/2020/1761785] [PMID: 32328122]
[57]
Lee, S.E.; Park, S.H.; Yoo, J.A.; Kwon, K.; Kim, J.W.; Oh, S.W.; Park, S.J.; Kim, J.; Yu, E.; Han, B.S.; Cho, J.Y.; Lee, J. Antagonizing effects of Clematis apiifolia DC. extract against benzo[a]pyrene-induced damage to human keratinocytes. Oxid. Med. Cell. Longev., 2019, 2019, 2386163.
[http://dx.doi.org/10.1155/2019/2386163] [PMID: 31885779]
[58]
Li, H.; DaSilva, N.A.; Liu, W.; Xu, J.; Dombi, G.W.; Dain, J.A.; Li, D.; Chamcheu, J.C.; Seeram, N.P.; Ma, H. Thymocid®, a standardized black cumin (Nigella sativa) seed extract, modulates collagen cross-linking, collagenase and elastase activities, and melanogenesis in murine B16F10 melanoma cells. Nutrients, 2020, 12(7), 2146.
[http://dx.doi.org/10.3390/nu12072146] [PMID: 32707654]
[59]
Ehrlich, M.; Rao, J.; Pabby, A.; Goldman, M.P. Improvement in the appearance of wrinkles with topical transforming growth factor beta(1) and l-ascorbic acid. Dermatol. Surg., 2006, 32(5), 618-625.
[PMID: 16706755]
[60]
Milam, E.C.; Rieder, E.A. An approach to cosmeceuticals. J. Drugs Dermatol., 2016, 15(4), 452-456.
[PMID: 27050700]
[61]
Lohani, A.; Mishra, A.K.; Verma, A. Cosmeceutical potential of geranium and calendula essential oil: Determination of antioxidant activity and in vitro sun protection factor. J. Cosmet. Dermatol., 2019, 18(2), 550-557.
[http://dx.doi.org/10.1111/jocd.12789] [PMID: 30251317]
[62]
D’Antuono, I.; Carola, A.; Sena, L.M.; Linsalata, V.; Cardinali, A.; Logrieco, A.F.; Colucci, M.G.; Apone, F. Artichoke polyphenols produce skin anti-age effects by improving endothelial cell integrity and functionality. Molecules, 2018, 23(11), 2729.
[http://dx.doi.org/10.3390/molecules23112729] [PMID: 30360471]
[63]
Sharifi-Rad, M.; Nazaruk, J.; Polito, L.; Morais-Braga, M.F.B.; Rocha, J.E.; Coutinho, H.D.M.; Salehi, B.; Tabanelli, G.; Montanari, C.; Del Mar Contreras, M.; Yousaf, Z.; Setzer, W.N.; Verma, D.R.; Martorell, M.; Sureda, A.; Sharifi-Rad, J. Matricaria genus as a source of antimicrobial agents: From farm to pharmacy and food applications. Microbiol. Res., 2018, 215, 76-88.
[http://dx.doi.org/10.1016/j.micres.2018.06.010] [PMID: 30172312]
[64]
Strzępek-Gomółka, M.; Gaweł-Bęben, K.; Kukula-Koch, W. Achillea species as sources of active phytochemicals for dermatological and cosmetic applications. Oxid. Med. Cell. Longev., 2021, 2021, 6643827.
[http://dx.doi.org/10.1155/2021/6643827] [PMID: 33833853]
[65]
Ahmad, H.I.; Khan, H.M.S.; Akhtar, N. Development of topical drug delivery system with Sphaeranthus indicus flower extract and its investigation on skin as a cosmeceutical product. J. Cosmet. Dermatol., 2020, 19(4), 985-994.
[http://dx.doi.org/10.1111/jocd.13108] [PMID: 31444866]
[66]
Mamalis, A.; Nguyen, D.H.; Brody, N.; Jagdeo, J. The active natural anti-oxidant properties of chamomile, milk thistle, and halophilic bacterial components in human skin in vitro. J. Drugs Dermatol., 2013, 12(7), 780-784.
[PMID: 23884490]
[67]
Kumkarnjana, S.; Suttisri, R.; Nimmannit, U.; Koobkokkruad, T.; Pattamadilok, C.; Vardhanabhuti, N. Anti-adipogenic effect of flavonoids from Chromolaena odorata leaves in 3T3-L1 adipocytes. J. Integr. Med., 2018, 16(6), 427-434.
[http://dx.doi.org/10.1016/j.joim.2018.10.002] [PMID: 30352773]
[68]
Kumkarnjana, S.; Suttisri, R.; Nimmannit, U.; Sucontphunt, A.; Khongkow, M.; Koobkokkruad, T.; Vardhanabhuti, N. Flavonoids kaempferide and 4,2′-dihydroxy-4′,5′,6′-trimethoxychalcone inhibit mitotic clonal expansion and induce apoptosis during the early phase of adipogenesis in 3T3-L1 cells. J. Integr. Med., 2019, 17(4), 288-295.
[http://dx.doi.org/10.1016/j.joim.2019.04.004] [PMID: 31078439]
[69]
Kumar, N.; Rungseevijitprapa, W.; Narkkhong, N.A.; Suttajit, M.; Chaiyasut, C. 5α-reductase inhibition and hair growth promotion of some Thai plants traditionally used for hair treatment. J. Ethnopharmacol., 2012, 139(3), 765-771.
[http://dx.doi.org/10.1016/j.jep.2011.12.010] [PMID: 22178180]
[70]
Veryser, L.; Taevernier, L.; Roche, N.; Peremans, K.; Burvenich, C.; De Spiegeleer, B. Quantitative transdermal behavior of pellitorine from Anacyclus pyrethrum extract. Phytomedicine, 2014, 21(14), 1801-1807.
[http://dx.doi.org/10.1016/j.phymed.2014.08.015] [PMID: 25481393]
[71]
De Spiegeleer, B.; Boonen, J.; Malysheva, S.V.; Mavungu, J.D.; De Saeger, S.; Roche, N.; Blondeel, P.; Taevernier, L.; Veryser, L. Skin penetration enhancing properties of the plant N-alkylamide spilanthol. J. Ethnopharmacol., 2013, 148(1), 117-125.
[http://dx.doi.org/10.1016/j.jep.2013.03.076] [PMID: 23583736]
[72]
Halteh, P.; Scher, R.K.; Lipner, S.R. Over-the-counter and natural remedies for onychomycosis: Do they really work? Cutis, 2016, 98(5), E16-E25.
[PMID: 28040821]
[73]
Dulić, M.; Ciganović, P.; Vujić, L.; Zovko Končić, M. Antidiabetic and cosmeceutical potential of common barbery (Berberis vulgaris L.) root bark extracts obtained by optimization of ‘green’ ultrasound-assisted extraction. Molecules, 2019, 24(19), 3613.
[http://dx.doi.org/10.3390/molecules24193613] [PMID: 31597237]
[74]
Colantonio, S.; Rivers, J.K. Botanicals with dermatologic properties derived from First Nations healing: Part 2-Plants and algae. J. Cutan. Med. Surg., 2017, 21(4), 299-307.
[http://dx.doi.org/10.1177/1203475416683390] [PMID: 28300437]
[75]
Peng, Y.; Chen, S.B.; Liu, Y.; Chen, S.L.; Xiao, P.G. A pharmacophylogenetic study of the Berberidaceae (s.l.). Zhiwu Fenlei Xuebao, 2006, 44(3), 241-257.
[http://dx.doi.org/10.1360/aps040149]
[76]
Li, J.Y.; Kampp, J.T. Review of common alternative herbal “remedies” for skin cancer. Dermatol. Surg., 2019, 45(1), 58-67.
[http://dx.doi.org/10.1097/DSS.0000000000001622] [PMID: 30096105]
[77]
Fravor, L.; Khachemoune, A. Dermatologic uses of bloodroot: A review and reappraisal. Int. J. Dermatol., 2021, 60(9), 1070-1075.
[http://dx.doi.org/10.1111/ijd.15273] [PMID: 33128472]
[78]
Nam, Y.J.; Lee, E.Y.; Choi, E.J.; Kang, S.; Kim, J.; Choi, Y.S.; Kim, D.H.; An, J.H.; Han, I.; Lee, S.; Lee, M.H.; Kim, Y.H.; Chung, J.H. CRH receptor antagonists from Pulsatilla chinensis prevent CRH-induced premature catagen transition in human hair follicles. J. Cosmet. Dermatol., 2020, 19(11), 3058-3066.
[http://dx.doi.org/10.1111/jocd.13328] [PMID: 32056369]
[79]
Pain, S.; Altobelli, C.; Boher, A.; Cittadini, L.; Favre-Mercuret, M.; Gaillard, C.; Sohm, B.; Vogelgesang, B.; André-Frei, V. Surface rejuvenating effect of Achillea millefolium extract. Int. J. Cosmet. Sci., 2011, 33(6), 535-542.
[http://dx.doi.org/10.1111/j.1468-2494.2011.00667.x] [PMID: 21711463]
[80]
Park, P.J.; Rha, C.S.; Kim, S.T. Theaflavin-enriched fraction stimulates adipogenesis in human subcutaneous fat cells. Int. J. Mol. Sci., 2019, 20(8), 2034.
[http://dx.doi.org/10.3390/ijms20082034] [PMID: 31027178]
[81]
Usui, K.; Ikeda, T.; Horibe, Y.; Nakao, M.; Hoshino, T.; Mizushima, T. Identification of HSP70-inducing activity in Arnica montana extract and purification and characterization of HSP70-inducers. J. Dermatol. Sci., 2015, 78(1), 67-75.
[http://dx.doi.org/10.1016/j.jdermsci.2015.01.014] [PMID: 25724362]
[82]
Souza de Carvalho, V.M.; Covre, J.L.; Correia-Silva, R.D.; Lice, I.; Corrêa, M.P.; Leopoldino, A.M.; Gil, C.D. Bellis perennis extract mitigates UVA-induced keratinocyte damage: Photoprotective and immunomodulatory effects. J. Photochem. Photobiol. B, 2021, 221, 112247.
[http://dx.doi.org/10.1016/j.jphotobiol.2021.112247] [PMID: 34175580]
[83]
Popoola, O.K.; Marnewick, J.L.; Rautenbach, F.; Iwuoha, E.I.; Hussein, A.A. Acylphloroglucinol derivatives from the South African Helichrysum niveum and their biological activities. Molecules, 2015, 20(9), 17309-17324.
[http://dx.doi.org/10.3390/molecules200917309] [PMID: 26393563]
[84]
Popoola, O.K.; Marnewick, J.L.; Rautenbach, F.; Ameer, F.; Iwuoha, E.I.; Hussein, A.A. Inhibition of oxidative stress and skin aging-related enzymes by prenylated chalcones and other flavonoids from Helichrysum teretifolium. Molecules, 2015, 20(4), 7143-7155.
[http://dx.doi.org/10.3390/molecules20047143] [PMID: 25903365]
[85]
Antunes Viegas, D.; Palmeira-de-Oliveira, A.; Salgueiro, L.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, R. Helichrysum italicum: From traditional use to scientific data. J. Ethnopharmacol., 2014, 151(1), 54-65.
[http://dx.doi.org/10.1016/j.jep.2013.11.005] [PMID: 24239849]
[86]
Hao, D.C.; Xiao, P.G. Pharmaceutical resource discovery from traditional medicinal plants: Pharmacophylogeny and pharmacophylogenomics. Chin. Herb. Med., 2020, 12(2), 104-117.
[http://dx.doi.org/10.1016/j.chmed.2020.03.002]
[87]
Lee, J.; Song, K.; Hiebert, P.; Werner, S.; Kim, T.G.; Kim, Y.S. Tussilagonone ameliorates psoriatic features in keratinocytes and imiquimod-induced psoriasis-like lesions in mice via Nrf2 activation. J. Invest. Dermatol., 2020, 140(6), 1223-1232.e4.
[http://dx.doi.org/10.1016/j.jid.2019.12.008] [PMID: 31877316]
[88]
Joubert, E.; Gelderblom, W.C.; Louw, A.; de Beer, D. South African herbal teas: Aspalathus linearis, Cyclopia spp. and Athrixia phylicoides--a review. J. Ethnopharmacol., 2008, 119(3), 376-412.
[http://dx.doi.org/10.1016/j.jep.2008.06.014] [PMID: 18621121]
[89]
Jeon, Y.D.; Kee, J.Y.; Kim, D.S.; Han, Y.H.; Kim, S.H.; Kim, S.J.; Um, J.Y.; Hong, S.H. Effects of Ixeris dentata water extract and caffeic acid on allergic inflammation in vivo and in vitro. BMC Complement. Altern. Med., 2015, 15(1), 196.
[http://dx.doi.org/10.1186/s12906-015-0700-x] [PMID: 26104582]
[90]
Wang, Y.Q.; Cai, L.; Zhang, N.; Zhang, J.; Wang, H.H.; Zhu, W. Protective effect of total flavonoids from Ixeris Sonchifolia on herpes simplex virus keratitis in mice. BMC Complement Med Ther, 2020, 20(1), 113.
[http://dx.doi.org/10.1186/s12906-020-02911-w] [PMID: 32295580]
[91]
Nuño, G.; Zampini, I.C.; Ordoñez, R.M.; Alberto, M.R.; Arias, M.E.; Isla, M.I. Antioxidant/antibacterial activities of a topical phytopharmaceutical formulation containing a standardized extract of Baccharis incarum, an extremophile plant species from Argentine Puna. Phytother. Res., 2012, 26(11), 1759-1767.
[http://dx.doi.org/10.1002/ptr.4633] [PMID: 22451265]
[92]
Brandenburg, M.M.; Rocha, F.G.; Pawloski, P.L.; Soley, B.D.S.; Rockenbach, A.; Scharf, D.R.; Heiden, G.; Ascari, J.; Cabrini, D.A.; Otuki, M.F. Baccharis dracunculifolia (Asteraceae) essential oil displays anti-inflammatory activity in models of skin inflammation. J. Ethnopharmacol., 2020, 259, 112840.
[http://dx.doi.org/10.1016/j.jep.2020.112840] [PMID: 32268204]
[93]
Di Caprio, R.; Monfrecola, G.; Gasparri, F.; Micillo, R.; Balato, A.; Lembo, S. Milk thistle and olive extract: Old substances with a new mission against sun-induced skin damage. G. Ital. Dermatol. Venereol., 2020, 155(3), 286-293.
[http://dx.doi.org/10.23736/S0392-0488.17.05726-1] [PMID: 29192469]
[94]
Vaid, M.; Katiyar, S.K. Molecular mechanisms of inhibition of photocarcinogenesis by silymarin, a phytochemical from milk thistle (Silybum marianum L. Gaertn.) (Review). Int. J. Oncol., 2010, 36(5), 1053-1060.
[PMID: 20372777]
[95]
Frassová, Z.; Rudá-Kučerová, J. Milk thistle (Silybum marianum) as a supportive phytotherapeutic agent in oncology. Klin. Onkol., 2017, 30(6), 426-432.
[http://dx.doi.org/10.14735/amko2017426] [PMID: 29271213]
[96]
Fontao, F.; von Engelbrechten, M.; Seilaz, C.; Sorg, O.; Saurat, J.H. Microcomedones in non-lesional acne prone skin New orientations on comedogenesis and its prevention. J. Eur. Acad. Dermatol. Venereol., 2020, 34(2), 357-364.
[http://dx.doi.org/10.1111/jdv.15926] [PMID: 31465602]
[97]
Panero, J.L.; Crozier, B.S. Macroevolutionary dynamics in the early diversification of Asteraceae. Mol. Phylogenet. Evol., 2016, 99, 116-132.
[http://dx.doi.org/10.1016/j.ympev.2016.03.007] [PMID: 26979262]
[98]
Simões, F.V.; Santos, V.O.; Silva, R.N.D.; Silva, R.C.D. Effectiveness of skin protectors and calendula officinalis for prevention and treatment of radiodermatitis: An integrative review. Rev. Bras. Enferm., 2020, 73(S5)(Suppl. 5), e20190815.
[http://dx.doi.org/10.1590/0034-7167-2019-0815] [PMID: 33084806]
[99]
Sharifi-Heris, Z.; Farahani, L.A.; Haghani, H.; Abdoli-Oskouee, S.; Hasanpoor-Azghady, S.B. Comparison the effects of topical application of olive and calendula ointments on Children’s diaper dermatitis: A triple-blind randomized clinical trial. Dermatol. Ther., 2018, 31(6), e12731.
[http://dx.doi.org/10.1111/dth.12731] [PMID: 30311724]
[100]
Sherban, A.; Wang, J.V.; Geronemus, R.G. Growing role for arnica in cosmetic dermatology: Lose the bruise. J. Cosmet. Dermatol., 2021, 20(7), 2062-2068.
[http://dx.doi.org/10.1111/jocd.14191] [PMID: 33930256]
[101]
Ho, D.; Jagdeo, J.; Waldorf, H.A. Is there a role for arnica and bromelain in prevention of post-procedure ecchymosis or edema? A systematic review of the literature. Dermatol. Surg., 2016, 42(4), 445-463.
[http://dx.doi.org/10.1097/DSS.0000000000000701] [PMID: 27035499]
[102]
Rodríguez-Chávez, J.L.; Egas, V.; Linares, E.; Bye, R.; Hernández, T.; Espinosa-García, F.J.; Delgado, G. Mexican Arnica (Heterotheca inuloides Cass. Asteraceae: Astereae): Ethnomedical uses, chemical constituents and biological properties. J. Ethnopharmacol., 2017, 195, 39-63.
[http://dx.doi.org/10.1016/j.jep.2016.11.021] [PMID: 27847336]
[103]
Medeiros-Neves, B.; Teixeira, H.F.; von Poser, G.L. The genus Pterocaulon (Asteraceae) - A review on traditional medicinal uses, chemical constituents and biological properties. J. Ethnopharmacol., 2018, 224, 451-464.
[http://dx.doi.org/10.1016/j.jep.2018.06.012] [PMID: 29913300]
[104]
Oláh, A.; Szabó-Papp, J.; Soeberdt, M.; Knie, U.; Dähnhardt-Pfeiffer, S.; Abels, C.; Bíró, T. Echinacea purpurea-derived alkylamides exhibit potent anti-inflammatory effects and alleviate clinical symptoms of atopic eczema. J. Dermatol. Sci., 2017, 88(1), 67-77.
[http://dx.doi.org/10.1016/j.jdermsci.2017.05.015] [PMID: 28610718]
[105]
Dattola, A.; Ventura, A.; Mazzeo, M.; Bianchi, L. Oral echinacea exerts complete clearing of multiple facial molluscum contagiosum in a young black patient. G. Ital. Dermatol. Venereol., 2019, 154(6), 725-727.
[http://dx.doi.org/10.23736/S0392-0488.18.05879-0] [PMID: 29582619]
[106]
Hulley, I.M.; van Vuuren, S.F.; Sadgrove, N.J.; van Wyk, B.E. Antimicrobial activity of Elytropappus rhinocerotis (Asteraceae) against micro-organisms associated with foot odour and skin ailments. J. Ethnopharmacol., 2019, 228, 92-98.
[http://dx.doi.org/10.1016/j.jep.2018.09.014] [PMID: 30217789]
[107]
Sarac, G.; Kapicioglu, Y.; Sener, S.; Mantar, I.; Yologlu, S.; Dundar, C.; Turkoglu, M.; Pekmezci, E. Effectiveness of topical Nigella sativa for vitiligo treatment. Dermatol. Ther., 2019, 32(4), e12949.
[http://dx.doi.org/10.1111/dth.12949] [PMID: 31025474]
[108]
Soleymani, S.; Zargaran, A.; Farzaei, M.H.; Iranpanah, A.; Heydarpour, F.; Najafi, F.; Rahimi, R. The effect of a hydrogel made by Nigella sativa L. on acne vulgaris: A randomized double-blind clinical trial. Phytother. Res., 2020, 34(11), 3052-3062.
[http://dx.doi.org/10.1002/ptr.6739] [PMID: 32548864]
[109]
Yousefi, M.; Barikbin, B.; Kamalinejad, M.; Abolhasani, E.; Ebadi, A.; Younespour, S.; Manouchehrian, M.; Hejazi, S. Comparison of therapeutic effect of topical Nigella with Betamethasone and Eucerin in hand eczema. J. Eur. Acad. Dermatol. Venereol., 2013, 27(12), 1498-1504.
[http://dx.doi.org/10.1111/jdv.12033] [PMID: 23198836]
[110]
Aljabre, S.H.; Randhawa, M.A.; Akhtar, N.; Alakloby, O.M.; Alqurashi, A.M.; Aldossary, A. Antidermatophyte activity of ether extract of Nigella sativa and its active principle, thymoquinone. J. Ethnopharmacol., 2005, 101(1-3), 116-119.
[http://dx.doi.org/10.1016/j.jep.2005.04.002] [PMID: 15908151]
[111]
Syed, D.N.; Suh, Y.; Afaq, F.; Mukhtar, H. Dietary agents for chemoprevention of prostate cancer. Cancer Lett., 2008, 265(2), 167-176.
[http://dx.doi.org/10.1016/j.canlet.2008.02.050] [PMID: 18395333]
[112]
Gulliver, W.P.; Donsky, H.J. A report on three recent clinical trials using Mahonia aquifolium 10% topical cream and a review of the worldwide clinical experience with Mahonia aquifolium for the treatment of plaque psoriasis. Am. J. Ther., 2005, 12(5), 398-406.
[http://dx.doi.org/10.1097/01.mjt.0000174350.82270.da] [PMID: 16148424]
[113]
Donsky, H.; Clarke, D. Reliéva, a Mahonia aquifolium extract for the treatment of adult patients with atopic dermatitis. Am. J. Ther., 2007, 14(5), 442-446.
[http://dx.doi.org/10.1097/MJT.0b013e31814002c1] [PMID: 17890932]
[114]
Denisow-Pietrzyk, M.; Pietrzyk, Ł.; Denisow, B. Asteraceae species as potential environmental factors of allergy. Environ. Sci. Pollut. Res. Int., 2019, 26(7), 6290-6300.
[http://dx.doi.org/10.1007/s11356-019-04146-w] [PMID: 30666578]
[115]
Bax, C.E.; Chakka, S.; Concha, J.S.S.; Zeidi, M.; Werth, V.P. The effects of immunostimulatory herbal supplements on autoimmune skin diseases. J. Am. Acad. Dermatol., 2021, 84(4), 1051-1058.
[http://dx.doi.org/10.1016/j.jaad.2020.06.037] [PMID: 32553683]
[116]
Hao, D.C. Ranunculales medicinal plants: Biodiversity, chemodiversity and pharmacotherapy; Elsevier/Academic Press: London, 2018.
[117]
Jawhari, F.Z.; El Moussaoui, A.; Bourhia, M.; Imtara, H.; Mechchate, H.; Es-Safi, I.; Ullah, R.; Ezzeldin, E.; Mostafa, G.A.; Grafov, A.; Ibenmoussa, S.; Bousta, D.; Bari, A. Anacyclus pyrethrum (L): Chemical composition, analgesic, anti-Inflammatory, and wound healing properties. Molecules, 2020, 25(22), 5469.
[http://dx.doi.org/10.3390/molecules25225469] [PMID: 33238392]
[118]
Ahuja, A.; Yi, Y.S.; Kim, M.Y.; Cho, J.Y. Ethnopharmacological properties of Artemisia asiatica: A comprehensive review. J. Ethnopharmacol., 2018, 220, 117-128.
[http://dx.doi.org/10.1016/j.jep.2018.03.032] [PMID: 29604379]
[119]
Lovecka, P.; Lipov, J.; Thumova, K.; Macurkova, A. Characterization of biologically active substances from Calendula officinalis. Curr. Pharm. Biotechnol., 2017, 18(14), 1167-1174.
[http://dx.doi.org/10.2174/1389201019666180226151910] [PMID: 29484986]
[120]
Hao, D.C.; Gu, X.J.; Xiao, P.G.; Peng, Y. Chemical and biological research of Clematis medicinal resources. Chin. Sci. Bull., 2013, 58(10), 1120-1129.
[http://dx.doi.org/10.1007/s11434-012-5628-7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy