Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Effective Proficiency of Manganese Porphyrins as Catalysts in Chemical Transformations: A Review

Author(s): Pankaj Kumar Chaurasia*, Shashi Lata Bharati*, Sunita Singh and Sudha Yadava

Volume 21, Issue 4, 2024

Published on: 03 October, 2022

Page: [471 - 476] Pages: 6

DOI: 10.2174/1570193X19666220513141040

Price: $65

Abstract

Porphyrin ligands are well-known for their promising tendency to produce metal porphyrin complexes of great significance. Out of different metal porphyrins, manganese porphyrins are one of the most valuable metal porphyrins due to effective catalytic performance and potential in many reactions like C-H isocyanation, the cycloaddition of CO2 with epoxides, epoxidation, oxygen reduction reaction, depolymerization reactions, oxidation of aromatic alcohols, selective oxidation of cycloalkenes/ alkanes, aliphatic C-H chlorination, dehydrogenation of alcohols, dye degradation, BSA nitration and others. Hence, in this review, the authors have best tried to present an effective insight overview of these aforementioned applications with the help of some recent studies for signifying the value of manganese porphyrins as a competent catalyst.

Keywords: Manganese porphyrins, porphyrins, catalytic applications, isocyanation, depolymerization, selective oxidation, cycloaddition, catalysts.

Graphical Abstract
[1]
Rayati, S.; Malekmohammadi, S. Catalytic activity of multi-wall carbon nanotube supported manganese (III) porphyrin: An efficient, selective and reusable catalyst for oxidation of alkenes and alkanes with urea–hydrogen peroxide. J. Exp. Nanosci., 2016, 11(11), 872-883.
[http://dx.doi.org/10.1080/17458080.2016.1179802]
[2]
Lesage, S.; Xu, H.; Durham, L. The occurrence and roles of porphyrins in the environment: Possible implications for bioremediation. Hydrol. Sci. J., 1993, 38(4), 343-354.
[http://dx.doi.org/10.1080/02626669309492679]
[3]
(a) Chaurasia, P.K.; Bharati, S.L.; Kumar, S.; Singh, S. Recent updates on some synthetic metal-porphyrin complexes and their catalytic properties. Advances in Chemistry Research; Taylor; James, C., Ed.; Nova Science Publishers, 2021, pp. 241-259.;
(b) Chaurasia, P.K.; Bharati, S.L.; Singh, S.; Yadava, S. An insight on the potential of manganese porphyrins in cancer treatment. Mini Rev. Org. Chem., 2022, 19.
[http://dx.doi.org/10.2174/1570193X19666220427111016]
[4]
Zucca, P.; Rescigno, A.; Rinaldi, A.C.; Sanjust, E. Biomimetic metalloporphines and metalloporphyrins as potential tools for delignification: Molecular mechanisms and application perspectives. J. Mol. Catal. Chem., 2014, 388–389, 2-34.
[http://dx.doi.org/10.1016/j.molcata.2013.09.010]
[5]
Gonçalves, J.M.; Matias, T.A.; Angnes, L.; Martins, P.R.; Araki, K. Review: Tetraruthenated porphyrins and composites as catalysts and sensor materials: A short review. ECS J. Solid State Sci. Technol., 2020, 9(6), 061011.
[http://dx.doi.org/10.1149/2162-8777/aba4f5]
[6]
Imran, M.; Ramzan, M.; Qureshi, A.K.; Khan, M.A.; Tariq, M. Emerging applications of porphyrins and metalloporphyrins in biomedicine and diagnostic magnetic resonance imaging. Biosensors (Basel), 2018, 8(4), 95.
[http://dx.doi.org/10.3390/bios8040095] [PMID: 30347683]
[7]
Huang, X.; Groves, J.T. Oxygen activation and radical transformations in heme proteins and metalloporphyrins. Chem. Rev., 2018, 118(5), 2491-2553.
[http://dx.doi.org/10.1021/acs.chemrev.7b00373] [PMID: 29286645]
[8]
Kadish, K.M.; Smith, K.M.; Guilard, R. Eds.; Handbook of porphyrin science with applications to chemistry, physics, materials science, engineering, biology and medicine; World Scientific: Singapore, 2012.
[9]
Zhang, W.; Lai, W.; Cao, R. Energy-related small molecule activation reactions: Oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev., 2017, 117(4), 3717-3797.
[http://dx.doi.org/10.1021/acs.chemrev.6b00299] [PMID: 28222601]
[10]
Anderson, S.; Anderson, H.L.; Bashall, A.; McPartlin, M.; Sanders, J.K.M. Assembly and crystal structure of a photoactive array of five porphyrins. Angew. Chem. Int. Ed. Engl., 1995, 34(10), 1096-1099.
[http://dx.doi.org/10.1002/anie.199510961]
[11]
Lewtak, J.P.; Gryko, D.T. Synthesis of π-extended porphyrins via intramolecular oxidative coupling. Chem. Commun. (Camb.), 2012, 48(81), 10069-10086.
[http://dx.doi.org/10.1039/c2cc31279d] [PMID: 22649792]
[12]
Walter, M.G.; Rudine, A.B.; Wamser, C.C. Porphyrins and phthalocyanines in solar photovoltaic cells. J. Porphyr. Phthalocyanines, 2010, 14(9), 759-792.
[http://dx.doi.org/10.1142/S1088424610002689]
[13]
Yella, A.; Lee, H-W.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M.K.; Diau, E.W-G.; Yeh, C-Y.; Zakeeruddin, S.M.; Grätzel, M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334(6056), 629-634.
[http://dx.doi.org/10.1126/science.1209688] [PMID: 22053043]
[14]
Ding, Y.; Zhu, W-H.; Xie, Y. Development of ion chemosensors based on porphyrin analogues. Chem. Rev., 2017, 117(4), 2203-2256.
[http://dx.doi.org/10.1021/acs.chemrev.6b00021] [PMID: 27078087]
[15]
Yadava, S.; Bharati, S.L. Novel complexes of Mn(III) with macrocyclic porphine ligand and ethylenediamine. J. Coord. Chem., 2011, 64(22), 3950-3959.
[http://dx.doi.org/10.1080/00958972.2011.632412]
[16]
Bharati, S.L.; Yadava, S. Some MnIII – porphyrins with depolymerization activity towards humic acid. J. Coord. Chem., 2012, 65(19), 3492-3501.
[http://dx.doi.org/10.1080/00958972.2012.718763]
[17]
Bharati, S.L.; Chaurasia, P.K.; Yadava, S. Some novel organometallic MnIII-Complexes with porphine and 1,6-diaminohexane. Russ. J. Inorg. Chem., 2016, 61(2), 232-238.
[http://dx.doi.org/10.1134/S0036023616020212]
[18]
Bharati, S.L.; Sarma, C.; Hazarika, P.J.; Chaurasia, P.K.; Anand, N.; Yadava, S. Novel Mn(III) porphyrins and prospects of their application in catalysis. Russ. J. Inorg. Chem., 2019, 64(3), 335-341.
[http://dx.doi.org/10.1134/S0036023619030045]
[19]
Liu, N.; Chen, X.; Jin, L.; Yang, Y-F.; She, Y-B. A mechanistic study of the manganese porphyrin-catalyzed C–H isocyanation reaction. Org. Chem. Front., 2021, 8(8), 1858-1866.
[http://dx.doi.org/10.1039/D0QO01442G]
[20]
Cabral, B.N.; Milani, J.L.S.; Meireles, A.M.; Martins, D.C.S.; Ribeiro, S.L.S.; Rebouças, J.S.; Donnici, C.L. das Chagas, R.P. Mn(III)–porphyrin catalysts for the cycloaddition of CO2 with epoxides at atmospheric pressure: Effects of Lewis acidity and ligand structure. New J. Chem., 2021, 45(4), 1934-1943.
[http://dx.doi.org/10.1039/D0NJ05280A]
[21]
Neves, C.M.B.; Rebelo, S.L.H.; Faustino, M.A.F.; Neves, M.G.P.M.S.; Simões, M.M.Q. Second-generation manganese(III) Porphyrins bearing 3,5-dichloropyridyl units: Innovative homogeneous and heterogeneous catalysts for the epoxidation of alkenes. Catalysts, 2019, 9(11), 967.
[http://dx.doi.org/10.3390/catal9110967]
[22]
Passard, G.; Dogutan, D.K.; Qiu, M.; Costentin, C.; Nocera, D.G. Oxygen reduction reaction promoted by manganese porphyrins. ACS Catal., 2018, 8(9), 8671-8679.
[http://dx.doi.org/10.1021/acscatal.8b01944]
[23]
Anand, N.; Yadava, S. Some novel manganese(III) porphyrins with catalytic properties. J. Coord. Chem., 2018, 71(19), 3090-3098.
[http://dx.doi.org/10.1080/00958972.2018.1511779]
[24]
Anand, N.; Yadava, S.; Chaurasia, P.K.; Bharati, S.L. Synthesis of a novel manganese(III) porphyrin and its catalytic role in selective oxidation of aromatic alcohols. Russ. J. Inorg. Chem., 2019, 64(9), 1101-1104.
[http://dx.doi.org/10.1134/S003602361909002X]
[25]
Singh, M.K.; Bandyopadhyay, D. A cross-linked manganese porphyrin as highly efficient heterogeneous catalyst for selective oxidation of cycloalkenes/alkanes. J. Chem. Sci., 2014, 126(6), 1707-1713.
[http://dx.doi.org/10.1007/s12039-014-0722-9]
[26]
Liu, W.; Groves, J.T. Manganese porphyrins catalyze selective C-H bond halogenations. J. Am. Chem. Soc., 2010, 132(37), 12847-12849.
[http://dx.doi.org/10.1021/ja105548x] [PMID: 20806921]
[27]
Azizi, K.; Akrami, S.; Madsen, R. Manganese(III) Porphyrin-catalyzed dehydrogenation of alcohols to form imines, tertiary amines and quinolines. Chemistry, 2019, 25(25), 6439-6446.
[http://dx.doi.org/10.1002/chem.201900737] [PMID: 30883993]
[28]
Gokakakar, S.D.; Pavaskar, P.A.; Salker, A.V. Photo-catalytic studies of Mn and Fe tetraphenyl porphyrins in the degradation of Amido Black 10B dye with solar light. SN Appl. Sci., 2020, 2(2), 294.
[http://dx.doi.org/10.1007/s42452-020-1989-8]
[29]
Li, J.; Wei, J.; Gao, Z.; Yin, G.; Li, H. The oxidative reactivity of three manganese(III) porphyrin complexes with hydrogen peroxide and nitrite toward catalytic nitration of protein tyrosine. Metallomics, 2021, 13(3), mfab005.
[http://dx.doi.org/10.1093/mtomcs/mfab005]
[30]
Faria, A.L.; Mac Leod, T.O.C.; Barros, V.P.; Assis, M.D. Hydrocarbon oxidation catalyzed by iron and manganese porphyrins anchored on aminofunctionalized supports. J. Braz. Chem. Soc., 2009, 20(5), 895-906.
[http://dx.doi.org/10.1590/S0103-50532009000500014]
[31]
Tokuda, J.; Ohura, R.; Iwasaki, T.; Takeuchi, Y.; Kashiwada, A.; Nango, M. Decoloration of azo dyes by hydrogen peroxide catalyzed by water-soluble manganese porphyrins. Text. Res. J., 1999, 69(12), 956-960.
[http://dx.doi.org/10.1177/004051759906901212]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy