Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Nanocellulose from Preparation to Application: A Mini Review

Author(s): Licheng Song, Chaoying Yan, Xinpeng Che, Shuangquan Yao, Shuangxi Nie and Huanfei Xu*

Volume 19, Issue 4, 2023

Published on: 03 November, 2022

Page: [459 - 472] Pages: 14

DOI: 10.2174/1573413718666220513114001

Price: $65

Open Access Journals Promotions 2
Abstract

In this paper, the advanced preparation methods of nanocellulose are reviewed and their advantages and disadvantages are compared, especially the application of using a eutectic solvent to prepare nanocellulose instead of strong acid and strong base solvent is listed. In this paper, the wide application of nanocellulose in medicine, sewage treatment, electrochemistry, gas absorption and other fields is summarized, such as drug transport as a drug carrier and the construction of biological tissue scaffolds for the medical field. Further research is needed, and the expectation of more green and efficient preparation of nanocellulose and its application prospect in more fields is expressed.

Keywords: Nanocellulose, preparation, application, biomass, strong acid, strong base.

Next »
[1]
Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. Engl., 2011, 50(24), 5438-5466.
[http://dx.doi.org/10.1002/anie.201001273] [PMID: 21598362]
[2]
Zhu, H.; Zhu, S.; Jia, Z.; Parvinian, S.; Li, Y.; Vaaland, O.; Hu, L.; Li, T. Anomalous scaling law of strength and toughness of cellulose nanopaper. Proc. Natl. Acad. Sci. USA, 2015, 112(29), 8971-8976.
[http://dx.doi.org/10.1073/pnas.1502870112] [PMID: 26150482]
[3]
Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev., 2011, 40(7), 3941-3994.
[http://dx.doi.org/10.1039/c0cs00108b] [PMID: 21566801]
[4]
Wang, J.; Tavakoli, J.; Tang, Y. Bacterial cellulose production, properties and applications with different culture methods - A review. Carbohydr. Polym., 2019, 219, 63-76.
[http://dx.doi.org/10.1016/j.carbpol.2019.05.008] [PMID: 31151547]
[5]
de Oliveira Barud, H.G.; da Silva, R.R.; Borges, M.A.C.; Castro, G.R.; Ribeiro, S.J.L.; da Silva Barud, H. Bacterial nanocellulose in dentistry: Perspectives and challenges. Molecules, 2020, 26(1), E49.
[http://dx.doi.org/10.3390/molecules26010049] [PMID: 33374301]
[6]
Vanzetto, A.B.; Beltrami, L.V.R.; Zattera, A.J. Textile waste as precursors in nanocrystalline cellulose synthesis. Cellulose, 2021, 28(11), 6967-6981.
[http://dx.doi.org/10.1007/s10570-021-03982-9]
[7]
Du, H.; Liu, C.; Zhang, Y.; Yu, G.; Si, C.; Li, B. Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization. Ind. Crops Prod., 2016, 94, 736-745.
[http://dx.doi.org/10.1016/j.indcrop.2016.09.059]
[8]
Wang, H.; Du, H.; Liu, K.; Liu, H.; Xu, T.; Zhang, S.; Chen, X.; Zhang, R.; Li, H.; Xie, H.; Zhang, X.; Si, C. Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohydr. Polym., 2021, 266, 118107.
[http://dx.doi.org/10.1016/j.carbpol.2021.118107] [PMID: 34044925]
[9]
Bäckström, M.; Bolivar, S.; Paltakari, J. Effect of ionic form on fibrillation and the development of the fibre network strength during the refining of the kraft pulps. O Papel, 2012, 7, 57-65.
[10]
Tian, C.; Yi, J.; Wu, Y.; Wu, Q.; Qing, Y.; Wang, L. Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments. Carbohydr. Polym., 2016, 136, 485-492.
[http://dx.doi.org/10.1016/j.carbpol.2015.09.055] [PMID: 26572379]
[11]
Delgado-Aguilar, M.; Gonzalez, I.; Tarres, Q.; Alcala, M.; Pelach, M.A.; Mutje, P. Approaching a low-cost production of cellulose nanofibers for papermaking applications. BioResources, 2015, 10(3), 5345-5355.
[http://dx.doi.org/10.15376/biores.10.3.5345-5355]
[12]
Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale, 2011, 3(1), 71-85.
[http://dx.doi.org/10.1039/C0NR00583E] [PMID: 20957280]
[13]
Jiang, J.; Carrillo-Enríquez, N.C.; Oguzlu, H.; Han, X.; Bi, R.; Saddler, J.N.; Sun, R.C.; Jiang, F. Acidic deep eutectic solvent assisted isolation of lignin containing nanocellulose from thermomechanical pulp. Carbohydr. Polym., 2020, 247, 116727.
[http://dx.doi.org/10.1016/j.carbpol.2020.116727] [PMID: 32829849]
[14]
Hong, S.; Song, Y.D.; Yuan, Y.; Lian, H.L.; Liimatainen, H. Production and characterization of lignin containing nanocellulose from luffa through an acidic deep eutectic solvent treatment and systematic fractionation. Ind. Crops Prod., 2020, 143, 143.
[http://dx.doi.org/10.1016/j.indcrop.2019.111913]
[15]
Suopajarvi, T.; Ricci, P.; Karvonen, V.; Ottolina, G.; Liimatainen, H. Acidic and alkaline deep eutectic solvents in delignification and nanofibrillation of corn stalk, wheat straw, and rapeseed stem residues. Ind. Crops Prod., 2020, 145, 145.
[http://dx.doi.org/10.1016/j.indcrop.2019.111956]
[16]
De, D.; Sai, M.S.N.; Aniya, V.; Satyavathi, B. Strategic biorefinery platform for green valorization of agro-industrial residues: A sustainable approach towards biodegradable plastics. J. Clean. Prod., 2021, 290, 290.
[http://dx.doi.org/10.1016/j.jclepro.2020.125184]
[17]
Ling, Z.; Tang, W.; Su, Y.; Shao, L.; Wang, P.; Ren, Y.; Huang, C.; Lai, C.; Yong, Q. Promoting enzymatic hydrolysis of aggregated bamboo crystalline cellulose by fast microwave-assisted dicarboxylic acid deep eutectic solvents pretreatments. Bioresour. Technol., 2021, 333, 125122.
[http://dx.doi.org/10.1016/j.biortech.2021.125122] [PMID: 33878500]
[18]
Jiang, J.G.; Zhu, Y.L.; Zargar, S.; Wu, J.; Oguzlu, H.; Baldelli, A.; Yu, Z.Y.; Saddler, J.; Sun, R.C.; Tu, Q.S.; Jiang, F. Rapid, high-yield production of lignin-containing cellulose nanocrystals using recyclable oxalic acid dihydrate. Ind. Crops Prod., 2021, 173, 173.
[http://dx.doi.org/10.1016/j.indcrop.2021.114148]
[19]
Liu, C.; Li, M.C.; Chen, W.; Huang, R.; Hong, S.; Wu, Q.; Mei, C. Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement. Carbohydr. Polym., 2020, 246, 116548.
[http://dx.doi.org/10.1016/j.carbpol.2020.116548] [PMID: 32747235]
[20]
Li, X.; Ning, C.; Li, L.; Liu, W.; Ren, Q.; Hou, Q. Fabricating lignin-containing cellulose nanofibrils with unique properties from agricultural residues with assistance of deep eutectic solvents. Carbohydr. Polym., 2021, 274, 118650.
[http://dx.doi.org/10.1016/j.carbpol.2021.118650] [PMID: 34702469]
[21]
Hong, S.; Yuan, Y.; Li, P.P.; Zhang, K.T.; Lian, H.L.; Liimatainen, H. Enhancement of the nanofibrillation of birch cellulose pretreated with natural deep eutectic solvent. Ind. Crops Prod., 2020, 154, 154.
[http://dx.doi.org/10.1016/j.indcrop.2020.112677]
[22]
Hong, S.; Yuan, Y.; Yang, Q.; Chen, L.; Deng, J.; Chen, W.; Lian, H.; Mota-Morales, J.D.; Liimatainen, H. Choline chloride-zinc chloride deep eutectic solvent mediated preparation of partial O-acetylation of chitin nanocrystal in one step reaction. Carbohydr. Polym., 2019, 220, 211-218.
[http://dx.doi.org/10.1016/j.carbpol.2019.05.075] [PMID: 31196542]
[23]
Jordan, J.H.; Easson, M.W.; Dien, B.; Thompson, S.; Condon, B.D. Extraction and characterization of nanocellulose crystals from cotton gin motes and cotton gin waste. Cellulose, 2019, 26(10), 5959-5979.
[http://dx.doi.org/10.1007/s10570-019-02533-7]
[24]
Sun, Y.; Chu, Y.; Wu, W.; Xiao, H. Nanocellulose-based lightweight porous materials: A review. Carbohydr. Polym., 2021, 255, 117489.
[http://dx.doi.org/10.1016/j.carbpol.2020.117489] [PMID: 33436249]
[25]
Rana, S.S.; Gupta, M.K. Isolation of nanocellulose from hemp (Cannabis sativa) fibers by chemo-mechanical method and its characterization. Polym. Compos., 2020, 41(12), 5257-5268.
[http://dx.doi.org/10.1002/pc.25791]
[26]
Wang, Q.Q.; Zhu, J.Y.; Gleisner, R.; Kuster, T.A.; Baxa, U.; McNeil, S.E. Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose, 2012, 19(5), 1631-1643.
[http://dx.doi.org/10.1007/s10570-012-9745-x]
[27]
Iwamoto, S.; Nakagaito, A.N.; Yano, H. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl. Phys., A Mater. Sci. Process., 2007, 89(2), 461-466.
[http://dx.doi.org/10.1007/s00339-007-4175-6]
[28]
Suryanto, H.; Muhajir, M.; Susilo, B.D.; Pradana, Y.R.A.; Wijaya, H.W.; Ansari, A.; Yanuhar, U. Nanofibrillation of bacterial cellulose using high-pressure homogenization and its films characteristics. J. Renew. Mater., 2021, 9(10), 1717-1728.
[http://dx.doi.org/10.32604/jrm.2021.015312]
[29]
Xie, J.; Hse, C.; Li, C.; Shupe, T.F.; Hu, T.; Qi, J.; De Hoop, C.F. Characterization of microwave liquefied bamboo residue and its potential use in the generation of nanofibrillated cellulosic fiber. ACS Sustain. Chem.& Eng., 2002, 4(6), 6017-6020.
[30]
Nechyporchuk, O.; Belgacem, M.N.; Bras, J. Production of cellulose nanofibrils: A review of recent advances. Ind. Crops Prod., 2016, 93, 2-25.
[http://dx.doi.org/10.1016/j.indcrop.2016.02.016]
[31]
Martins, L.S.; dos Santos, R.G.; Spinace, M.A.S. Properties of cellulose nanofibers extracted from eucalyptus and their emulsifying role in the oil-in-water pickering emulsions. Int. J. Electrochem., 2021, 2021, 1-29.
[http://dx.doi.org/10.1007/s12649-021-01498-8]
[32]
Chen, W.; Yu, H.; Liu, Y. Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80nm from bamboo fibers. Carbohydr. Polym., 2011, 86(2), 453-461.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.061]
[33]
Chen, W.; Yu, H.; Liu, Y.; Chen, P.; Zhang, M.; Hai, Y. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr. Polym., 2011, 83(4), 1804-1811.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.040]
[34]
Janardhnan, S.; Sain, M.M. Isolation of cellulose microfibrils–an enzymatic approach. BioResources, 2006, 1(2), 176-188.
[http://dx.doi.org/10.15376/biores.1.2.176-188]
[35]
Nogi, M.; Iwamoto, S.; Nakagaito, A.N.; Yano, H. Optically transparent nanofiber paper. Adv. Mater., 2009, 21(16), 1595-1598.
[http://dx.doi.org/10.1002/adma.200803174]
[36]
Huang, J.; Zhu, H.; Chen, Y.; Preston, C.; Rohrbach, K.; Cumings, J.; Hu, L. Highly transparent and flexible nanopaper transistors. ACS Nano, 2013, 7(3), 2106-2113.
[http://dx.doi.org/10.1021/nn304407r] [PMID: 23350951]
[37]
Zhu, H.; Fang, Z.; Wang, Z.; Dai, J.; Yao, Y.; Shen, F.; Preston, C.; Wu, W.; Peng, P.; Jang, N.; Yu, Q.; Yu, Z.; Hu, L. Extreme light management in mesoporous wood cellulose paper for optoelectronics. ACS Nano, 2016, 10(1), 1369-1377.
[http://dx.doi.org/10.1021/acsnano.5b06781] [PMID: 26673796]
[38]
Wu, J.; Che, X.; Hu, H-C.; Xu, H.; Li, B.; Liu, Y.; Li, J.; Ni, Y.; Zhang, X.; Ouyang, X. Organic solar cells based on cellulose nanopaper from agroforestry residues with an efficiency of over 16% and effectively wide-angle light capturing. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(11), 5442-5448.
[http://dx.doi.org/10.1039/C9TA14039E]
[39]
Zhu, H.; Xiao, Z.; Liu, D.; Li, Y.; Weadock, N.; Fang, Z.; Hwang, I.; Hu, L. Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ. Sci., 2013, 6(7), 6.
[http://dx.doi.org/10.1039/c3ee40492g]
[40]
Yang, W.; Zhao, Z.; Wu, K.; Huang, R.; Liu, T.; Jiang, H.; Chen, F.; Fu, Q. Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2017, 5(15), 3748-3756.
[http://dx.doi.org/10.1039/C7TC00400A]
[41]
Li, X.; Li, M.; Xu, J.; You, J.; Yang, Z.; Li, C. Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation. Nat. Commun., 2019, 10(1), 3514.
[http://dx.doi.org/10.1038/s41467-019-11466-5] [PMID: 31383861]
[42]
Cao, W-T.; Chen, F-F.; Zhu, Y-J.; Zhang, Y-G.; Jiang, Y-Y.; Ma, M-G.; Chen, F. Binary strengthening and toughening of mxene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano, 2018, 12(5), 4583-4593.
[http://dx.doi.org/10.1021/acsnano.8b00997] [PMID: 29709183]
[43]
Laaksonen, P.; Walther, A.; Malho, J-M.; Kainlauri, M.; Ikkala, O.; Linder, M.B. Genetic engineering of biomimetic nanocomposites: Diblock proteins, graphene, and nanofibrillated cellulose. Angew. Chem. Int. Ed. Engl., 2011, 50(37), 8688-8691.
[http://dx.doi.org/10.1002/anie.201102973] [PMID: 21887760]
[44]
Tang, A.M.; Wang, Q.W.; Zhao, S.; Liu, W.Y. Fabrication of nanocellulose/PEGDA hydrogel by 3D printing. Rapid Prototyping J., 2018, 24(8), 1265-1271.
[http://dx.doi.org/10.1108/RPJ-03-2016-0049]
[45]
Valentini, F.; Dorigato, A.; Rigotti, D.; Pegoretti, A. Polyhydroxyalkanoates/fibrillated nanocellulose composites for additive manufacturing. J. Polym. Environ., 2019, 27(6), 1333-1341.
[http://dx.doi.org/10.1007/s10924-019-01429-8]
[46]
Müller, M.; Öztürk, E.; Arlov, Ø.; Gatenholm, P.; Zenobi-Wong, M. Alginate sulfate-nanocellulose bioinks for cartilage bioprinting applications. Ann. Biomed. Eng., 2017, 45(1), 210-223.
[http://dx.doi.org/10.1007/s10439-016-1704-5] [PMID: 27503606]
[47]
Mohan, D.; Khairullah, N.F.; How, Y.P.; Sajab, M.S.; Kaco, H. 3D printed laminated CaCO3-nanocellulose films as controlled-release 5-Fluorouracil. Polymers (Basel), 2020, 12(4), E986.
[http://dx.doi.org/10.3390/polym12040986] [PMID: 32340327]
[48]
Tang, A.; Liu, Y.; Wang, Q.; Chen, R.; Liu, W.; Fang, Z.; Wang, L. A new photoelectric ink based on nanocellulose/CdS quantum dots for screen-printing. Carbohydr. Polym., 2016, 148, 29-35.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.034] [PMID: 27185112]
[49]
Xu, X.; Zhou, J.; Jiang, Y.; Zhang, Q.; Shi, H.; Liu, D. 3D printing process of oxidized nanocellulose and gelatin scaffold. J. Biomater. Sci. Polym. Ed., 2018, 29(12), 1498-1513.
[http://dx.doi.org/10.1080/09205063.2018.1472450] [PMID: 29716440]
[50]
Wang, Z.G.; Xu, J.F.; Lu, Y.Z.; Hu, L.J.; Fan, Y.M.; Ma, J.X.; Zhou, X.F. Preparation of 3D printable micro/nanocellulose-polylactic acid (MNC/PLA) composite wire rods with high MNC constitution. Ind. Crops Prod., 2017, 109, 889-896.
[http://dx.doi.org/10.1016/j.indcrop.2017.09.061]
[51]
Rees, A.; Powell, L.C.; Chinga-Carrasco, G.; Gethin, D.T.; Syverud, K.; Hill, K.E.; Thomas, D.W. 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. BioMed Res. Int., 2015, 2015, 925757.
[52]
Seol, M.L.; Han, J.W.; Moon, D.I.; Yoon, K.J.; Hwang, C.S.; Meyyappan, M. All-printed triboelectric nanogenerator. Nano Energy, 2018, 44, 82-88.
[http://dx.doi.org/10.1016/j.nanoen.2017.11.067]
[53]
Li, Y.Y.; Zhu, H.L.; Wang, Y.B.; Ray, U.; Zhu, S.Z.; Dai, J.Q.; Chen, C.J.; Fu, K.; Jang, S.H.; Henderson, D.; Li, T.; Hu, L.B. Cellulose-Nanofiber-Enabled 3D printing of a Carbon-Nanotube microfiber network. Small Methods, 2017, 1(10), 1700222.
[http://dx.doi.org/10.1002/smtd.201700222]
[54]
Jiang, Y.N.; Zhou, J.P.; Yang, Z.; Liu, D.F.; Xv, X.D.; Zhao, G.Q.; Shi, H.C.; Zhang, Q. Dialdehyde cellulose nanocrystal/gelatin hydrogel optimized for 3D printing applications. J. Mater. Sci., 2018, 53(16), 11883-11900.
[http://dx.doi.org/10.1007/s10853-018-2407-0]
[55]
Bisla, V.; Rattan, G.; Singhal, S.; Kaushik, A. Green and novel adsorbent from rice straw extracted cellulose for efficient adsorption of Hg (II) ions in an aqueous medium. Int. J. Biol. Macromol., 2020, 161, 194-203.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.035] [PMID: 32522542]
[56]
Lu, P.; Yang, Y.; Liu, R.; Liu, X.; Ma, J.; Wu, M.; Wang, S. Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging. Carbohydr. Polym., 2020, 249, 116831.
[http://dx.doi.org/10.1016/j.carbpol.2020.116831] [PMID: 32933676]
[57]
Kolakovic, R.; Peltonen, L.; Laukkanen, A.; Hellman, M.; Laaksonen, P.; Linder, M.B.; Hirvonen, J.; Laaksonen, T. Evaluation of drug interactions with nanofibrillar cellulose. Eur. J. Pharm. Biopharm., 2013, 85(3 Pt B), 1238-1244.
[http://dx.doi.org/10.1016/j.ejpb.2013.05.015] [PMID: 23774185]
[58]
Ferreira-Gonçalves, T.; Constantin, C.; Neagu, M.; Reis, C.P.; Sabri, F.; Simón-Vázquez, R. Safety and efficacy assessment of aerogels for biomedical applications. Biomed. Pharmacother., 2021, 144, 112356.
[http://dx.doi.org/10.1016/j.biopha.2021.112356] [PMID: 34710839]
[59]
Kang, Y.; Bansal, P.; Realff, M.J.; Bommarius, A.S. SO2 -catalyzed steam explosion: The effects of different severity on digestibility, accessibility, and crystallinity of lignocellulosic biomass. Biotechnol. Prog., 2013, 29(4), 909-916.
[http://dx.doi.org/10.1002/btpr.1751] [PMID: 23749425]
[60]
Abouzeid, R.E.; Khiari, R.; Salama, A.; Diab, M.; Beneventi, D.; Dufresne, A. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing. Int. J. Biol. Macromol., 2020, 160, 538-547.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.181] [PMID: 32470581]
[61]
Ciekot, J.; Psurski, M.; Jurec, K.; Boratyński, J. Hydroxyethylcellulose as a methotrexate carrier in anticancer therapy. Invest. New Drugs, 2021, 39(1), 15-23.
[http://dx.doi.org/10.1007/s10637-020-00972-9] [PMID: 32643014]
[62]
Venturi, D.; Chrysanthou, A.; Dhuiège, B.; Missoum, K.; Giacinti Baschetti, M. Arginine/nanocellulose membranes for carbon capture applications. Nanomaterials (Basel), 2019, 9(6), E877.
[http://dx.doi.org/10.3390/nano9060877] [PMID: 31185688]
[63]
Maliha, M.; Herdman, M.; Brammananth, R.; McDonald, M.; Coppel, R.; Werrett, M.; Andrews, P.; Batchelor, W. Bismuth phosphinate incorporated nanocellulose sheets with antimicrobial and barrier properties for packaging applications. J. Clean. Prod., 2020, 246, 246.
[http://dx.doi.org/10.1016/j.jclepro.2019.119016]
[64]
Durairaj, V.; Li, P.; Liljeström, T.; Wester, N.; Etula, J.; Leppänen, I.; Ge, Y.; Kontturi, K.S.; Tammelin, T.; Laurila, T.; Koskinen, J. Functionalized nanocellulose/multiwalled carbon nanotube composites for electrochemical applications. ACS Appl. Nano Mater., 2021, 4(6), 5842-5853.
[http://dx.doi.org/10.1021/acsanm.1c00774]
[65]
Liu, J.; Shi, Y.; Cheng, L.; Sun, J.; Yu, S.; Lu, X.; Biranje, S.; Xu, W.; Zhang, X.; Song, J. wang, Q.; Han, W.; Zhang, Z. Growth factor functionalized biodegradable nanocellulose scaffolds for potential wound healing application. Cellulose, 2021, 28(9), 5643-5656.
[http://dx.doi.org/10.1007/s10570-021-03853-3]
[66]
Langari, M.M.; Nikzad, M.; Ghoreyshi, A.A.; Mohammadi, M. Isolation of nanocellulose from broomcorn stalks and its application for nanocellulose/xanthan film preparation. ChemistrySelect, 2019, 4(41), 11987-11994.
[http://dx.doi.org/10.1002/slct.201902533]
[67]
Yuen, J.D.; Shriver-Lake, L.C.; Walper, S.A.; Zabetakis, D.; Breger, J.C.; Stenger, D.A. Microbial nanocellulose printed circuit boards for medical sensing. Sensors (Basel), 2020, 20(7), E2047.
[http://dx.doi.org/10.3390/s20072047] [PMID: 32268471]
[68]
Sriruangrungkamol, A.; Chonkaew, W. Modification of nanocellulose membrane by impregnation method with sulfosuccinic acid for direct methanol fuel cell applications. Polym. Bull., 2020, 78(7), 3705-3728.
[http://dx.doi.org/10.1007/s00289-020-03289-y]
[69]
Zhong, T.; Dhandapani, R.; Liang, D.; Wang, J.; Wolcott, M.P.; Van Fossen, D.; Liu, H. Nanocellulose from recycled indigo-dyed denim fabric and its application in composite films. Carbohydr. Polym., 2020, 240, 116283.
[http://dx.doi.org/10.1016/j.carbpol.2020.116283] [PMID: 32475567]
[70]
Ren, J.; Zhang, S.; Yan, B.; Yao, G.; Lin, Y.; Zhou, M.; Gu, Y.; Chen, S. Solution-processable core/shell structured nanocellulose/poly(o-Methoxyaniline) nanocomposites for electrochromic applications. Cellulose, 2020, 27(16), 9467-9478.
[http://dx.doi.org/10.1007/s10570-020-03424-y]
[71]
Klochko, N.P.; Barbash, V.A.; Klepikova, K.S.; Kopach, V.R.; Yashchenko, O.V.; Zhadan, D.O.; Petrushenko, S.I.; Dukarov, S.V.; Sukhov, V.M.; Khrypunova, A.L. Nanostructured CuI thin films on biodegradable nanocellulose flexible substrates for UV-shielding applications. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2021, 717(1), 80-91.
[http://dx.doi.org/10.1080/15421406.2020.1860532]
[72]
Alipour, A.; Zarinabadi, S.; Azimi, A.; Mirzaei, M. Adsorptive removal of Pb(II) ions from aqueous solutions by thiourea-functionalized magnetic ZnO/nanocellulose composite: Optimization by response surface methodology (RSM). Int. J. Biol. Macromol., 2020, 151, 124-135.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.109] [PMID: 32068056]
[73]
Ibrahim, H.; Sazali, N.; Salleh, W.N.W.; Ismail, A.F. Nanocellulose-based materials and recent application for heavy metal removal. Water Air Soil Pollut., 2021, 232(7), 305.
[http://dx.doi.org/10.1007/s11270-021-05245-6]
[74]
Mo, L.; Pang, H.; Lu, Y.; Li, Z.; Kang, H.; Wang, M.; Zhang, S.; Li, J. Wood-inspired nanocellulose aerogel adsorbents with excellent selective pollutants capture, superfast adsorption, and easy regeneration. J. Hazard. Mater., 2021, 415, 125612.
[http://dx.doi.org/10.1016/j.jhazmat.2021.125612] [PMID: 33730646]
[75]
Mo, L.; Pang, H.; Tan, Y.; Zhang, S.; Li, J. 3D multi-wall perforated nanocellulose-based polyethylenimine aerogels for ultrahigh efficient and reversible removal of Cu(II) ions from water. Chem. Eng. J., 2019, 378, 378.
[http://dx.doi.org/10.1016/j.cej.2019.122157]
[76]
Luo, J.; Huang, K.; Zhou, X.; Xu, Y. Preparation of highly flexible and sustainable lignin-rich nanocellulose film containing xylonic acid (XA), and its application as an antibacterial agent. Int. J. Biol. Macromol., 2020, 163, 1565-1571.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.281] [PMID: 32777427]
[77]
Wu, J.; Zhu, W.; Shi, X.; Li, Q.; Huang, C.; Tian, Y.; Wang, S. Acid-free preparation and characterization of kelp (Laminaria japonica) nanocelluloses and their application in Pickering emulsions. Carbohydr. Polym., 2020, 236, 115999.
[http://dx.doi.org/10.1016/j.carbpol.2020.115999] [PMID: 32172833]
[78]
Ahmadi-Asoori, S.; Tazikeh-Lemeski, E.; Mirabi, A.; Babanezhad, E.; Juybari, M.H. Preparation of nanocellulose modified with dithizone for separation, extraction and determination of trace amounts of manganese ions in industrial wastewater samples. Microchem. J., 2021, 160, 160.
[http://dx.doi.org/10.1016/j.microc.2020.105737]
[79]
Shao, H.; He, L.; Xiang, L.; Tang, K.; Li, X.; Qi, J.; Xie, J. Transparent and UV-absorbing nanocellulose films prepared by directly dissolving microwave liquefied bamboo in TBAA/DMSO co-solvent system. Ind. Crops Prod., 2021, 171, 171.
[http://dx.doi.org/10.1016/j.indcrop.2021.113899]
[80]
R, R.; Madhavan, A.; Philip, E.; Paul, S.A.; Sindhu, R.; Binod, P.; Pugazhendhi, A.; Sirohi, R.; Pandey, A. Sugarcane bagasse derived nanocellulose reinforced with frankincense (Boswellia serrata): Physicochemical properties, biodegradability and antimicrobial effect for controlling microbial growth for food packaging application. Environ. Technol. Innovat., 2021, 21, 101335.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy