Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Review Article

Using Bacteria and Fungi as Plant Biostimulants for Sustainable Agricultural Production Systems

Author(s): Mohamad Hesam Shahrajabian, Qi Cheng and Wenli Sun*

Volume 17, Issue 3, 2023

Published on: 09 December, 2022

Page: [206 - 244] Pages: 39

DOI: 10.2174/1872208316666220513093021

Price: $65

Abstract

Different compounds with bioactive constituents can be applied as biostimulants to increase plant growth and development under both normal and stressful conditions. Biostimulant utilization can be considered a sustainable and beneficial nutritional crop management, and may decrease the negative impacts of excessive chemical fertilization. Google scholar, Science Direct, CAB Direct, Springer Link, Scopus, Web of Science, Taylor and Francis, and Wiley Online Library have been checked. The search was done to all manuscript sections according to the terms "Glomus intraradices", "Trichoderma atroviride", "Trichoderma reesei", "Heteroconium chaetospira", "Arthrobacter spp.", "Acintobacter spp.", "Enterobacer spp.", "Pseudomonas spp.", "Ochrobactrum spp.", "Bacilus spp.", "Rhodococcus spp.", "Biostimulants", and "Plant growth promotion". On the basis of the initial check, Titles and Abstracts were reviewed based on online literature, and then articles were read carefully. Within the framework of sustainable crop management, this review article aimed to provide an overview of the application of the most common fungi and bacteria as plant biostimulants on various crops.

Keywords: Biostimulant, fungi, bacteria, Arthrobacter spp., Bacilus spp., plant growth promotion.

Graphical Abstract
[1]
Soleymani A, Shahrajabian MH, Khoshkharam M. The impact of barley residue management and tillage on forage maize. Rom Agric Res 2016; 33: 161-7.
[2]
Sun W, Shahrajabian MH, Cheng Q. Nitrogen fixation and diazotrophs - a review. Rom Biotechnol Lett 2021; 26(4): 2834-45.
[http://dx.doi.org/10.25083/rbl/26.4/2834-2845]
[3]
Sun W, Shahrajabian MH, Cheng Q. Archaea, bacteria and termite, nitrogen fixation and sustainable plants production. Not Bot Horti Agrobot Cluj-Napoca 2021; 49(2): 1-32.
[http://dx.doi.org/10.15835/nbha49212172]
[4]
Ogbaji PO, Shahrajabian MH, Xue X. Changes in germination and primarily growth of three cultivars of tomato under diatomite and soil materials in auto-irrigation system. Int J Biol 2013; 5(3): 80-4.
[http://dx.doi.org/10.5539/ijb.v5n3p80]
[5]
Shahrajabian MH, Soleymani A. Responses of physiological indices of forage sorghum under different plant populations in various nitrogen fertilizer treatments. Int J Plant Soil Sci 2017; 15(2): 1-8.
[http://dx.doi.org/10.9734/IJPSS/2017/32460]
[6]
Yong Y, Hu Y-G, Shahrajabian MH, et al. Changes in dry matter, protein percentage and organic matter of soybean-oat and groundnut-oat intercropping in different growth stages in Jilin province, China. Acta Agric Slov 2018; 111(1): 33-9.
[http://dx.doi.org/10.14720/aas.2018.111.1.04]
[7]
Khoshkharam M, Shahrajabian MH, Esfandiary M. The effects of methanol and amino acid glycine betaine on qualitative characteristics and yield of sugar beet (Beta vulgaris l.) cultivars. Not Sci Biol 2021; 13(2): 1-13.
[http://dx.doi.org/10.15835/nsb13210949]
[8]
Shahrajabian MH, Chaski C, Polyzos N, Petropoulos SA. Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules 2021; 11(5): 698.
[http://dx.doi.org/10.3390/biom11050698] [PMID: 34067181]
[9]
Shahrajabian MH, Chaski C, Polyzos N, Tzortzakis N, Petropoulos SA. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules 2021; 11(6): 819.
[http://dx.doi.org/10.3390/biom11060819] [PMID: 34072781]
[10]
Daniela NM, Soledad PS, Hernan GO. Effect of Arbuscular mycorrhizal fungi Glomus spp. inoculation on Alfalfa growth soils with copper. Chil J Agric Res 2010; 70(2): 259-65.
[http://dx.doi.org/10.4067/S0718-58392010000200009]
[11]
Mota I, Sanchez-Sanchez J, Pedro LG, Sousa MJ. Composition variation of the essential oil from Ocimum basilicum l. cv. Genovese Gigante in response to Glomus intraradices and mild water stress at different stages of growth. Biochem Syst Ecol 2020; 90: 104021.
[http://dx.doi.org/10.1016/j.bse.2020.104021]
[12]
Kucukyumuk Z, Ozgonen H, Erdal I, Eraslan F. Effect of zinc and Glomus intraradices on control of Pythium deliense, plant growth parameters and nutrient concentrations of cucumber. Not Bot Horti Agrobot Cluj-Napoca 2014; 42(1): 138-42.
[http://dx.doi.org/10.15835/nbha4219346]
[13]
Jimenez-Moreno MJ, Moreno-Marquez MDC, Moreno-Alias I, Rapoport H, Fernandez-Escobar R. Interaction between mycorrhization with Glomus intraradices and phosphorus in nursery olive plants. Sci Hortic (Amsterdam) 2018; 233: 249-55.
[http://dx.doi.org/10.1016/j.scienta.2018.01.057]
[14]
Marro N, Lax P, Cabello M, Doucet ME, Becerra AG. Use of the Arbuscular mycorrhizal fungus Glomus intraradices as biological control agent of the nematode Nacobbus aberrans parasitizing tomato. Braz Arch Biol Technol 2014; 57(5): 668-74.
[http://dx.doi.org/10.1590/S1516-8913201402200]
[15]
Ruano-Rosa D, Arjona-Girona I, Lopez-Herrera CJ. Integrated control of avocado white root rot combining low concentrations of fluazinam and Trichoderma spp. Crop Prot 2018; 112: 363-70.
[http://dx.doi.org/10.1016/j.cropro.2017.06.024]
[16]
Karuppiah V, Li Y, Sun J, Vallikkannu M, Chen J. Vel1 regulates the growth of Trichoderma atroviride during co-cultivation with Bacillus amyloliquefaciens and is essential for wheat root rot control. Biol Control 2020; 151: 104374.
[http://dx.doi.org/10.1016/j.biocontrol.2020.104374]
[17]
Linu MS, Asok AK, Thampi M, Sreekumar J, Jisha MS. Plant growth promoting traits of indigenous phosphate solubilizing Pseudomonas aeruginosa isolates from chilli (Capsicum annuum l.) rhizosphere. Commun Soil Sci Plant Anal 2019; 50(4): 444-57.
[http://dx.doi.org/10.1080/00103624.2019.1566469]
[18]
Andreolli M, Zapparoli G, Angelini E, Lucchetta G, Lampis S, Vallini G. Pseudomonas protegens MP12: A plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens. Microbiol Res 2019; 219: 123-31.
[http://dx.doi.org/10.1016/j.micres.2018.11.003] [PMID: 30642463]
[19]
Khan MR, Mohidin FA, Khan U, Ahamad F. Native Pseudomonas spp. suppressed the root-knot nematode in in vitro and in vivo, and promoted the nodulation and grain yield in the field grown mungbean. Biol Control 2016; 101: 159-68.
[http://dx.doi.org/10.1016/j.biocontrol.2016.06.012]
[20]
Siddiqui ZA, Qureshi A, Akhtar MS. Biocotrol of root-knot nematode Meloidogyne incognita by Pseudomonas and Bacillus isolates on Pisum sativum. Arch Phytopathol Pflanzenschutz 2009; 42(12): 1154-64.
[http://dx.doi.org/10.1080/03235400701650890]
[21]
Mohammed AF, Oloyede AR, Odeseye AO. Biological control of bacterial wilt of tomato caused by Ralstonia solanacearum using Pseudomonas species isolated from the rhizosphere of tomato plants. Arch Phytopathol Pflanzenschutz 2020; 53(1-2): 1-16.
[http://dx.doi.org/10.1080/03235408.2020.1715756]
[22]
Zhao J, Wang S, Zhu X, et al. Isolation and characterization of nodules endophytic bacteria Pseudomonas protegens Sneb1997 and Serratia plymuthica Sneb2001 for the biological control of root-knot nematode. Appl Soil Ecol 2021; 164: 103924.
[http://dx.doi.org/10.1016/j.apsoil.2021.103924]
[23]
Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A. Arbuscular mycorrhizal colonization of tomato by Gigaspora and Glomus species in the presence of root flavonoids. J Plant Physiol 2005; 162(6): 625-33.
[http://dx.doi.org/10.1016/j.jplph.2004.08.010] [PMID: 16008085]
[24]
Albertsen A, Ravnskov S, Green H, Jensen DF, Larsen J. Interactions between the external mycelium of the Mycorrhizal fungus Glomus intraradices and other soil microorganisms as affected by organic matter. Soil Biol Biochem 2006; 38(5): 1008-14.
[http://dx.doi.org/10.1016/j.soilbio.2005.08.015]
[25]
Eisenhauer N, Konig S, Sabais ACW, Renker C, Buscot F, Scheu S. Impacts of earthworms and Arbuscylar mycorrhizal fungi (Glomus intraradices) on plant performance are not interrelated. Soil Biol Biochem 2009; 41(3): 561-7.
[http://dx.doi.org/10.1016/j.soilbio.2008.12.017]
[26]
Porcel R, Aroca R, Cano C, Bago A, Ruiz-Lozano JM. A gene from the Arbuscular mycorrhizal fungus Glomus intraradices encoding a binding protein is up-regulated by drought stress in some mycorrhizal plants. Environ Exp Bot 2007; 60(2): 251-6.
[http://dx.doi.org/10.1016/j.envexpbot.2006.11.001]
[27]
Subramanian KS, Tenshia V, Jayalakshmi K, Ramachandran V. Biochemical changes and zinc fractions in Arbuscular mycorrhizal fungus (Glomus intraradices) inoculated and uninoculated soils under differential zinc fertilization. Appl Soil Ecol 2009; 43(1): 32-9.
[http://dx.doi.org/10.1016/j.apsoil.2009.05.009]
[28]
Castillo OS, Dasgupta-Schubert N, Alvarado CJ, Zaragoza EM, Villegas HJ. The effect of the symbiosis between Tagetes erecta l. (marigold) and Glomus intraradices in the uptake of copper(II) and its implications for phytoremediation. N Biotechnol 2011; 29(1): 156-64.
[http://dx.doi.org/10.1016/j.nbt.2011.05.009] [PMID: 21664993]
[29]
Martin SL, Mooney SJ, Dickinson MJ, West HM. The effects of simultaneous root colonization by three Glomus species on soil pore characteristics. Soil Biol Biochem 2012; 49: 167-73.
[http://dx.doi.org/10.1016/j.soilbio.2012.02.036]
[30]
Colla G, Rouphael Y, Di Mattia E, El-Nakhel C, Cardarelli M. Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. J Sci Food Agric 2015; 95(8): 1706-15.
[http://dx.doi.org/10.1002/jsfa.6875] [PMID: 25123953]
[31]
Liu M, Sun J, Li Y, Xiao Y. Nitrogen fertilizer enhances growth and nutrient uptake of Medicago sativa inoculated with Glomus tortuosum grown in Cd-contaminated acidic soil. Chemosphere 2017; 167: 204-11.
[http://dx.doi.org/10.1016/j.chemosphere.2016.09.145] [PMID: 27721131]
[32]
Jafari M, Yari M, Ghabooli M, Sepehri M, Ghasemi E, Jonker A. Inoculation and co-inoculation of Alfalfa seedlings with root growth promoting microorganisms (Piriformospora indica, Glomus intraradices and Sinorhizobium meliloti) affect molecular structures, nutrient profiles and availability of hay for ruminants. Anim Nutr 2018; 4(1): 90-9.
[http://dx.doi.org/10.1016/j.aninu.2017.08.008] [PMID: 30167490]
[33]
Li Y, Peng J, Shi P, Zhao B. The effect of Cd on mycorrhizal development and enzyme activity of Glomus mosseae and Glomus intraradices in Astragalus sinicus l. Chemosphere 2009; 75(7): 894-9.
[http://dx.doi.org/10.1016/j.chemosphere.2009.01.046] [PMID: 19232430]
[34]
Redon P-O, Beguiristain T, Leyval C. Influence of Glomus intraradices on Cd partitioning in a pot experiment with Medicago truncatula in four contaminated soils. Soil Biol Biochem 2008; 40(10): 2710-2.
[http://dx.doi.org/10.1016/j.soilbio.2008.07.018]
[35]
Recorbet G, Valot B, Robert F. Gianinazzi-Pearson, Dumas-Gaudot E. Identification of in planta-expressed Arbuscular mycorrhizal fungal proteins upon comparison of the root proteomes of Medicago truncatula colonized with two Glomus species. Fungal Genet Biol 2010; 47(7): 608-18.
[http://dx.doi.org/10.1016/j.fgb.2010.03.003] [PMID: 20226871]
[36]
Bharti N, Barnawal D, Wasnik K, Tewari SK, Kalra A. Co-inoculation of Dietzia natronolimnaea and Glomus intraradices with vermicopost positively influences Ocimum basilicum growth and resident microbial community structure in salt affected low fertility soils. Appl Soil Ecol 2016; 100: 211-25.
[http://dx.doi.org/10.1016/j.apsoil.2016.01.003]
[37]
Dutra PV, Abad M, Almela V, Agusti M. Auxin interaction with the vesicular-Arbuscular mycorrhizal fungus Glomus intraradices Schneck & Smith improves vegetative growth of two citrus rootstocks. Sci Hortic 1996; 66(1-2): 77-83.
[http://dx.doi.org/10.1016/0304-4238(96)00887-4]
[38]
Oliveira RS, Castro PML, Dodd JC, Vosátka M. Synergistic effect of Glomus intraradices and Frankia spp. on the growth and stress recovery of Alnus glutinosa in an alkaline anthropogenic sediment. Chemosphere 2005; 60(10): 1462-70.
[http://dx.doi.org/10.1016/j.chemosphere.2005.01.038] [PMID: 16054916]
[39]
Selvaraj A, Thangavel K, Uthandi S. Arbuscular mycorrhizal fungi (Glomus intraradices) and diazotrophic bacterium (Rhizobium BMBS) primed defense in blackgram against herbivorous insect (Spodoptera litura) infestation. Microbiol Res 2020; 231: 126355.
[http://dx.doi.org/10.1016/j.micres.2019.126355] [PMID: 31704544]
[40]
Carretero CL, Cantos M, Garcia JL, Azcon R, Troncoso A. Growth responses of micropropagated cassava clones as affected by Glomus intraradices colonization. J Plant Nutr 2009; 32(2): 261-73.
[http://dx.doi.org/10.1080/01904160802608601]
[41]
Akhtar MS, Siddiqui ZA. Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas straita. Crop Prot 2008; 27(3-5): 410-7.
[http://dx.doi.org/10.1016/j.cropro.2007.07.009]
[42]
Tajini F, Trabelsi M, Drevon J-J. Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris l.). Saudi J Biol Sci 2012; 19(2): 157-63.
[http://dx.doi.org/10.1016/j.sjbs.2011.11.003] [PMID: 23961175]
[43]
Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW. A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 2009; 58(4): 568-77.
[http://dx.doi.org/10.1111/j.1365-313X.2009.03803.x] [PMID: 19154225]
[44]
Weisany W. Glomus intraradices (N.C. Schenck & G.S. Sm.) C. Walker & A. Schuessle enhances nutrients uptake, chlorophyll and essential oil contents and composition in Anethum graveolens l. Acta Agric Slov 2018; 111(2): 303-13.
[http://dx.doi.org/10.14720/aas.2018.111.2.06]
[45]
Dudhane M, Borde M, Jite PK. Effect of aluminium toxicity on growth responses and antioxidant activities in Gmelina arborea roxb. inoculated with AM fungi. Int J Phytoremediation 2012; 14(7): 643-55.
[http://dx.doi.org/10.1080/15226514.2011.619230] [PMID: 22908633]
[46]
Pawar PB, Khadilkar JP, Kulkarni MV, Melo JS. An approach to enhance nutritive quality of groundnut (Arachis hypogaea l.) seed oil through endo mycorrhizal fertigation. Biocatal Agric Biotechnol 2018; 14: 18-22.
[http://dx.doi.org/10.1016/j.bcab.2018.01.012]
[47]
Rostamikia Y, Tabari KM, Asgharzadeh A, Rahmani A. Biomass allocation, leaf gas exchange and nutrient uptake of hazelnut seedlings in response to Trichoderma harzianum and Glomus intraradices inoculation. J For Sci 2017; 63(5): 219-26.
[http://dx.doi.org/10.17221/99/2016-JFS]
[48]
Evelin H, Giri B, Kapoor R. Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 2012; 22(3): 203-17.
[http://dx.doi.org/10.1007/s00572-011-0392-0] [PMID: 21695577]
[49]
Ghasemi SN, Fallah S, Pokhrel LR, Rostamnejadi A. Natural amelioration of zinc oxide nanoparticle toxicity in fenugreek (Trigonella foenum-gracum) by Arbuscular mycorrhizal (Glomus intraradices) secretion of glomalin. Plant Physiol Biochem 2017; 112: 227-38.
[http://dx.doi.org/10.1016/j.plaphy.2017.01.001] [PMID: 28107731]
[50]
Vaingankar JD, Rodrigues BF. Effect of Arbuscular mycorrhizal (AM) inoculation on growth and flowering in Crossandra infundibuliformis (L.) Nees. J Plant Nutr 2015; 38(10): 1478-88.
[http://dx.doi.org/10.1080/01904167.2014.957398]
[51]
Caruso T, Mafrica R, Bruno M, Vescio R, Sorgona A. Root architectural traits of rooted cuttings of two fig cultivars: Treatments with Arbuscular mycorrhizal fungi formulation. Sci Hortic (Amsterdam) 2021; 283: 110083.
[http://dx.doi.org/10.1016/j.scienta.2021.110083]
[52]
Amna M, Masood S, Syed JH, Munis MF, Chaudhary HJ. Phyto-extraction of nickel by Linum usitatissimum in association with Glomus intraradices. Int J Phytoremediation 2015; 17(10): 981-7.
[http://dx.doi.org/10.1080/15226514.2014.989311] [PMID: 25763643]
[53]
Tian L, Shi S, Ma L, et al. The effect of Glomus intraradices on the physiological properties of Panax ginseng and on rhizospheric microbial diversity. J Ginseng Res 2019; 43(1): 77-85.
[http://dx.doi.org/10.1016/j.jgr.2017.08.005] [PMID: 30662296]
[54]
Visen A, Bohra M, Singh PN, et al. Two pseudomonas strains facilitate AMF mycorrhization of litchi (Litchi chinensis Sonn.) and improving phosphorus uptake. Rhizosphere 2017; 3(1): 196-202.
[http://dx.doi.org/10.1016/j.rhisph.2017.04.006]
[55]
Fries LLM, Pacovsky BS, Safir GR. Expression of isoenzymes altered by both Glomus intraradices colonization and formononetin application in corn (Zea mays l.) roots. Soil Biol Biochem 1996; 28(8): 981-8.
[http://dx.doi.org/10.1016/0038-0717(96)00115-0]
[56]
Bidondo LF, Bompadre K, Pergola M, et al. Differential interaction between two Glomus intraradices strains and a phosphate solubilizing bacterium in maize rhizosphere. Pedobiologia 2012; 55(4): 227-32.
[http://dx.doi.org/10.1016/j.pedobi.2012.04.001]
[57]
Adriano-Anays ML, Salvador-Figueroa M, Ocampo JA, Garcia-Romera I. Hydrolytic enzyme activities in maize (Zea mays) and sorghum (Sorghum bicolor) roots inoculated with Gluconacetobacter diazotrophicus and Glomus intraradices. Soil Biol Biochem 2006; 38(5): 879-86.
[http://dx.doi.org/10.1016/j.soilbio.2005.08.004]
[58]
Mechri B, Manga AGB, Tekaya M, et al. Changes in microbial communities and carbohydrate profiles induced by the Mycorrhizal fungus (Glomus intraradices) in rhizosphere of olive trees (Olea europaea l.). Appl Soil Ecol 2014; 75: 124-33.
[http://dx.doi.org/10.1016/j.apsoil.2013.11.001]
[59]
Yadav RS, Singh V, Pal S, et al. Seed bio-priming of baby corn emerged as a viable strategy for reducing mineral fertilizer use and increasing productivity. Sci Hortic 2018; 241: 93-9.
[http://dx.doi.org/10.1016/j.scienta.2018.06.096]
[60]
Jaime MDLA, Hsiang T, McDonald MR. Effects of Glomus intraradices and onion cultivar on Allium white rot development in organic soils in Ontario. Can J Plant Pathol 2008; 30(4): 543-53.
[http://dx.doi.org/10.1080/07060660809507554]
[61]
Wamberg C, Christensen S, Jakobsen I, Muller AK, Sorensen SJ. The Mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biol Biochem 2003; 35(10): 1349-57.
[http://dx.doi.org/10.1016/S0038-0717(03)00214-1]
[62]
Yolanda N-G, Ferrera-Cerrato R, Santamaria JM. Glomus intraradices attenuates the negative effect of low Pi supply on photosynthesis and growth of Papaya maradol plants. J Bot (Egypt) 2012; 2012: 1-8.
[http://dx.doi.org/10.1155/2012/129591]
[63]
Cesaro P, van Tuinen D, Copetta A, et al. Preferential colonization of Solanum tuberosum l. roots by the fungus Glomus intraradices in arable soil of a potato farming area. Appl Environ Microbiol 2008; 74(18): 5776-83.
[http://dx.doi.org/10.1128/AEM.00719-08] [PMID: 18676711]
[64]
Herdler S, Kreuzer K, Scheu S, Bonkowski M. Interactions between Arbuscular mycorrhizal fungi (Glomus intraradices, Glomeromycota) and amoebae (Acanthamoeba castellanii, Protozoa) in the rhizosphere of rice (Oryza sativa). Soil Biol Biochem 2008; 40(3): 660-8.
[http://dx.doi.org/10.1016/j.soilbio.2007.09.026]
[65]
Li H, Ye ZH, Chan WF, et al. Can Arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grown under aerobic conditions? Environ Pollut 2011; 159(10): 2537-45.
[http://dx.doi.org/10.1016/j.envpol.2011.06.017] [PMID: 21737190]
[66]
Bahonar A, Mehrafarin A, Abdousi V, Radmanesh E, Moghadam L, Naghdi BH. Quantitative and qualitative changes of rosemary (Rosemarinus officinalis l.) in response to Mycorrhizal fungi (Glomus intraradices) inoculation under saline environments. Faslnamah-i Giyahan-i Daruyi 2016; 15(57): 25-37.
[67]
Plenchette C, Duponnois R. Growth response of the saltbush Atriplex nummularia l. to inoculation with the Arbuscular mycorrhizal fungus Glomus intraradices. J Arid Environ 2005; 61(4): 535-40.
[http://dx.doi.org/10.1016/j.jaridenv.2004.10.003]
[68]
Petit E, Gubler WD. Influence of Glomus intraradices on black foot disease caused by Cylindrocarpon macrodidymum on Vitis rupestris under controlled conditions. Plant Dis 2006; 90(12): 1481-4.
[http://dx.doi.org/10.1094/PD-90-1481] [PMID: 30780965]
[69]
Duponnois R, Colombet A, Hien V, Thioulouse J. The Mycorrhizal fungus Glomus intraradices and rock phosphate amendment influence plant growth and microbial activity in the rhisozphere of Acacia holosericea. Soil Biol Biochem 2005; 37(8): 1460-8.
[http://dx.doi.org/10.1016/j.soilbio.2004.09.016]
[70]
Abdel-Fattah GM, Mohamedin AH. Interactions between a vesicular-Arbuscular mycorrhizal fungus (Glomus intraradices) and Streptomyces colelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales. Biol Fertil Soils 2000; 32(5): 401-9.
[http://dx.doi.org/10.1007/s003740000269]
[71]
Koegel S, Brule D, Wiemken A, Boller T, Courty P-E. The effect of different nitrogen sources on the symbiotic interaction between Sorghum bicolor and Glomus intraradices: Expression of plant and fungal genes involved in nitrogen assimilation. Soil Biol Biochem 2015; 86: 159-63.
[http://dx.doi.org/10.1016/j.soilbio.2015.03.003]
[72]
Bidondo LF, Silvani V, Colombo R, Pergola M, Bompadre J, Godeas A. Pre-symbiotic and symbiotic interactiosn between Glomus intraradices and two Paenibacillus species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biol Biochem 2011; 43(9): 1866-72.
[http://dx.doi.org/10.1016/j.soilbio.2011.05.004]
[73]
Suri VK, Choudhary AK. Glycine-glomus-phosphate solubilizing bacteria interactions lead to fertilizer phosphorus economy in soybean in a Himalayan acid alfisol. Commun Soil Sci Plant Anal 2013; 44(20): 3020-9.
[http://dx.doi.org/10.1080/00103624.2013.829085]
[74]
Palencia P, Martinez F, Pestana M, Oliveira JA, Correira PJ. Effect of Bacillus velezensis and Glomus intraradices on fruit quality and growth parameters in strawberry soilless growing system. Hortic J 2015; 84(2): 122-30.
[http://dx.doi.org/10.2503/hortj.MI-002]
[75]
Sudova R, Pavlikova D, Macek T, Vosatka M. The effect of EDDS chelate and inoculation with the Arbuscular mycorrhizal fungus Glomus intraradices on the efficacy of lead phytoextraction by two tobacco clones. Appl Soil Ecol 2007; 35(1): 163-73.
[http://dx.doi.org/10.1016/j.apsoil.2006.04.004]
[76]
Datnoff LE, Nemec S, Pernezny K. Biological control of fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol Control 1995; 5(3): 427-31.
[http://dx.doi.org/10.1006/bcon.1995.1051]
[77]
Nemec S. Longevity of microbial biocontrol agents in a planting mix amended with Glomus intraradices. Biocontrol Sci Technol 1997; 7(2): 183-92.
[http://dx.doi.org/10.1080/09583159730884]
[78]
Bago B, Azcon-Aguilar C, Piche Y. Architecture and developmental dynamics of the external mycelium of the Arbuscular mycorrhizal fungus Glomus intraradices grown under monoxenic conditions. Mycologia 1998; 90(1): 52-62.
[http://dx.doi.org/10.2307/3761011]
[79]
Rumbos C, Reimann S, Kiewnick S, Sikora RA. Interactions of Paecilomyces lilacinus strain 251 with the Mycorrhizal fungus Glomus intraradices: Implications for Meloidogyne incognita control on tomato. Biocontrol Sci Technol 2006; 16(9): 981-6.
[http://dx.doi.org/10.1080/09583150600937667]
[80]
Lira-Saldivar RH, Hernandez A, Valdez LA, et al. Azospirillum brasilense and Glomus intraradices co-inoculation stimulates growth and yield of cherry tomato under shadehouse conditions. Phyton (B Aires) 2014; 83(1): 133-8.
[http://dx.doi.org/10.32604/phyton.2014.83.133]
[81]
Mohammad A, Mitra B, Khan AG. Effects of sheared-root inoculums of Glomus intraradices on wheat grown at different phosphorus levels in the field. Agric Ecosyst Environ 2004; 103(1): 245-9.
[http://dx.doi.org/10.1016/j.agee.2003.09.017]
[82]
Heidarian A, Tohidi-Moghadam H-R, Kasraie P. Effect of Glomus intraradices on physiological and biochemical traits of wheat grown in nickel contaminated soil. Commun Soil Sci Plant Anal 2017; 48(15): 1804-12.
[http://dx.doi.org/10.1080/00103624.2017.1395453]
[83]
Ponce MA, Scervino JM, Erra-Balsells R, Ocampo JA, Godeas AM. Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the Arbuscular mycorrhizal fungus Glomus intraradices. Phytochemistry 2004; 65(13): 1925-30.
[http://dx.doi.org/10.1016/j.phytochem.2004.06.005] [PMID: 15279999]
[84]
Bharti N, Barnawal D, Shukla S, Tewari SK, Katiyar RS, Kalra A. Integrated application of Exiguobacterium oxidotolerans, Glomus fasciculatum, and vermicompost improves growth, yield and quality of Mentha arvensis in salt-stressed soils. Ind Crops Prod 2016; 83: 717-28.
[http://dx.doi.org/10.1016/j.indcrop.2015.12.021]
[85]
Scagel CF. Soil pasteurization and inoculation with Glomus intraradices alters flower production and bulb composition of Zephyranthes spp. J Hortic Sci Biotechnol 2003; 78(6): 798-812.
[http://dx.doi.org/10.1080/14620316.2003.11511702]
[86]
Schubert M, Mourad S, Fink S, Schwarze FWMR. Ecophysiological responses of the biocontrol agent Trichoderma atroviride (T-15603.1) to combined environmental parameters. Biol Control 2005; 49(1): 84-90.
[http://dx.doi.org/10.1016/j.biocontrol.2008.12.015]
[87]
Oskiera M, Szczech M, Stepowska A, Smolinska U, Bartoszewski G. Monitoring of Trichoderma species in agricultural soil in response to application of biopreparations. Biol Control 2017; 113: 65-72.
[http://dx.doi.org/10.1016/j.biocontrol.2017.07.005]
[88]
Reiter B, Sessitsch A. Bacterial endophytes of the wildflower Crocus albiflorus analyzed by characterization of isolates and by a cultivation-independent approach. Can J Microbiol 2006; 52(2): 140-9.
[http://dx.doi.org/10.1139/w05-109] [PMID: 16541150]
[89]
Macías-Rodríguez L, Contreras-Cornejo HA, Adame-Garnica SG, Del-Val E, Larsen J. The interactions of Trichoderma at multiple trophic levels: Inter-kingdom communication. Microbiol Res 2020; 240: 126552.
[http://dx.doi.org/10.1016/j.micres.2020.126552] [PMID: 32659716]
[90]
Niznansky L, Varecka L, Krystofova S. Disruption of GABA shunt affects Trichoderma atroviride response to nutritional and environmental stimuli. Acta Chim Slov 2016; 9(2): 109-13.
[http://dx.doi.org/10.1515/acs-2016-0019]
[91]
Blaszczyk L, Siwulski M, Sobieralski K, Lisiecka J, Jedryczka M. Trichoderma spp.- application and prospects for use in organic farming and industry. J Plant Prot Res 2014; 54(4): 309-17.
[http://dx.doi.org/10.2478/jppr-2014-0047]
[92]
Mukhopadhyay R, Kumar D. Trichoderma: A beneficial antifungal agent and insights into its mechanisms of biocontrol potential. Egypt J Biol Pest Control 2020; 30(1): 133.
[http://dx.doi.org/10.1186/s41938-020-00333-x]
[93]
Wuczkowski M, Druzhinina I, Gherbawy Y, Klug B, Prillinger H, Kubicek CP. Species pattern and genetic diversity of Trichoderma in a mid-European, primeval floodplain-forest. Microbiol Res 2003; 158(2): 125-33.
[http://dx.doi.org/10.1078/0944-5013-00193] [PMID: 12906385]
[94]
Huang Y, Mijiti G, Wang Z, et al. Functional analysis of the class II hydrophobin gene HFB2-6 from the biocontrol agent Trichoderma asperellum ACCC30536. Microbiol Res 2015; 171: 8-20.
[http://dx.doi.org/10.1016/j.micres.2014.12.004] [PMID: 25644947]
[95]
Sood M, Kapoor D, Kumar V, et al. Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants 2020; 9(6): 1-25.
[http://dx.doi.org/10.3390/plants9060762] [PMID: 32570799]
[96]
Zin NA, Badaluddin NA. Biological functions of Trichoderma spp. for agriculture applications. Ann Agric Sci 2020; 65(2): 168-78.
[http://dx.doi.org/10.1016/j.aoas.2020.09.003]
[97]
Kandula DRW, Jones EE, McLean ASKL, Hampton JG. Trichoderma species for biocontrol of soil-borne plant pathogens of pasture species. Biocontrol Sci Technol 2015; 25(9): 1052-69.
[http://dx.doi.org/10.1080/09583157.2015.1028892]
[98]
Yazdani M, Yap CK, Abdullah F, Tan SG. Trichoderma atroviride as a bioremediator of Cu pollution: A in vitro study. Toxicol Environ Chem 2009; 91(7): 1305-14.
[http://dx.doi.org/10.1080/02772240802616510]
[99]
De Lima FB, Felix C, Osorio N, et al. Secretome analysis of Trichoderma atroviride T17 biocontrol of Guignardia citricarpa. Biol Control 2016; 99: 38-46.
[http://dx.doi.org/10.1016/j.biocontrol.2016.04.009]
[100]
McLean KL, Hunt JS, Stewart A, Wite D, Porter IJ, Villata O. Compatibility of a Trichoderma atroviride biocontrol agent with management practices of Allium crops. Crop Prot 2012; 33: 94-100.
[http://dx.doi.org/10.1016/j.cropro.2011.11.018]
[101]
Błaszczyk L, Basińska-Barczak A, Ćwiek- Kupczyńska H, Gromadzka K, Popiel D, Stępień Ł. Suppressive effect of Trichoderma spp. on toxigenic Fusarium species. Pol J Microbiol 2017; 66(1): 85-100.
[http://dx.doi.org/10.5604/17331331.1234996] [PMID: 29359702]
[102]
Xue F, Li W, Wubie AJ, et al. Biological control of Ascosphaera apis in honey bees using restricted enzyme mediated integration (REMI) transformed Trichoderma atroviride mutants. Biol Control 2015; 83: 46-50.
[http://dx.doi.org/10.1016/j.biocontrol.2014.12.015]
[103]
Bae S-J, Mohanta TK, Chung JY, et al. Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol Control 2016; 92: 128-38.
[http://dx.doi.org/10.1016/j.biocontrol.2015.10.005]
[104]
Wei H, Wu M, Fan A, Su H. Recombinant protein production in the filamentous fungus Trichoderma. Chin J Chem Eng 2021; 29(2): 74-81.
[http://dx.doi.org/10.1016/j.cjche.2020.11.006]
[105]
Pellegrini A, Prodorutti D, Pertot I. Use of bark mulch pre-inoculated with Trichoderma atroviride to control Armillaria root rot. Crop Prot 2014; 64: 104-9.
[http://dx.doi.org/10.1016/j.cropro.2014.06.007]
[106]
Rosa DR, Herrera CJL. Evaluation of Trichoderma spp. as biocontrol agents against avocado white root rot. Biol Control 2009; 51(1): 66-71.
[http://dx.doi.org/10.1016/j.biocontrol.2009.05.005]
[107]
Szczech M, Nawrocka J, Felczynski K, et al. Trichoderma atroviride TRS25 isolate reduces downy mildew and induces systemic defence responses in cucumber in field conditions. Sci Hortic 2017; 224: 17-26.
[http://dx.doi.org/10.1016/j.scienta.2017.05.035]
[108]
Wang M, Ma J, Fan L, et al. Biological control of Southern corn leaf blight by Trichoderma atroviride SG3403. Biocontrol Sci Technol 2015; 25(10): 1133-46.
[http://dx.doi.org/10.1080/09583157.2015.1036005]
[109]
Contreras-Cornejo HA, Del-Val EK, Macias-Rodriguez L, Alarcon A, Gonzalez-Esquivel CE, Larsen J. Trichoderma atroviride, a maize root associated fungus, increases the parasitism rate of the fall armyworm Spodoptera frugiperda by its natural enemy Campoletis sonorensis. Soil Biol Biochem 2018; 122: 196-202.
[http://dx.doi.org/10.1016/j.soilbio.2018.04.013]
[110]
Cao L, Jiang M, Zeng Z, Du A, Tan H, Liu Y. Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) in Cd, Ni contaminated soils. Chemosphere 2008; 71(9): 1769-73.
[http://dx.doi.org/10.1016/j.chemosphere.2008.01.066] [PMID: 18342911]
[111]
Bunbury-Blanchette AL, Walker AK. Trichoderma species show biocontrol potential in dual culture and greenhouse bioassays against Fusarium basal rot of onion. Biol Control 2019; 130: 127-35.
[http://dx.doi.org/10.1016/j.biocontrol.2018.11.007]
[112]
Sanchez AD, Ousset MJ, Sosa MC. Biological control of Phytophthora collar rot of pear using regional Trichoderma strains with multiple mechanisms. Biol Control 2019; 135: 124-34.
[http://dx.doi.org/10.1016/j.biocontrol.2019.05.012]
[113]
Nandini B, Geetha N, Prakash HS, Hariparsad P. Natural uptake of anti-oomycetes Trichoderma produced secondary metabolites from pear millet seedlings- A new mechanism of biological control of downy mildew disease. Biol Control 2021; 156: 104550.
[http://dx.doi.org/10.1016/j.biocontrol.2021.104550]
[114]
Wu J, Ming Q, Zhai X, et al. Structure of a polysaccharide from Trichoderma atroviride and its promotion on tanshinones production in Salvia miltiorrhiza hairy roots. Carbohydr Polym 2019; 223: 115125.
[http://dx.doi.org/10.1016/j.carbpol.2019.115125] [PMID: 31426969]
[115]
Arellano ADV, Sa Silva GM, Guatimosim E, Dorneles KDR, Moreira LG, Dallagnol LJ. Seeds coated with Trichoderma atroviride and soil amended with silicon improve the ressitance of Lolium multiflorum against Pyricularia oryzae. Biol Control 2021; 154: 104499.
[http://dx.doi.org/10.1016/j.biocontrol.2020.104499]
[116]
Robinson-Boyer L, Jeger MJ, Xu X-M, Jeffries P. Management of strawberry grey moud using mixtures of biocontrol agents with different mechanisms of action. Biocontrol Sci Technol 2009; 19(10): 1051-65.
[http://dx.doi.org/10.1080/09583150903289105]
[117]
Natesan K, Pnmurugan P, Gnanamangai BM, et al. Biosynthesis of silica and copper nanoparticles from Trichoderma, Streptomyces and Pseudomonas spp. evaluated against collar canker and red root-rot disease of tea plants. Arch Phytopathol Pflanzenschutz 2021; 54(1-2): 56-85.
[http://dx.doi.org/10.1080/03235408.2020.1817258]
[118]
Gravel V, Martinez C, Antoun H, Tweddell RJ. Control of greenhouse tomato root rot (Pythium ultimum) in hydroponic systems, suing plant-growth-promoting microorganisms. Can J Plant Pathol 2006; 28(3): 475-83.
[http://dx.doi.org/10.1080/07060660609507322]
[119]
Savazzini F, Longa CMO, Pertot I. Impact of the biocontrol agent Trichoderma atroviride SC1 on soil microbial communities of a vineyard in northern Italy. Soil Biol Biochem 2009; 41(7): 1457-65.
[http://dx.doi.org/10.1016/j.soilbio.2009.03.027]
[120]
Lucini L, Colla G, Miras Moreno MB, et al. Inoculation of rhizoglomus irregulare or Trichoderma atroviride differentially modulates metabolite profiling of wheat root exudates. Phytochemistry 2019; 157: 158-67.
[http://dx.doi.org/10.1016/j.phytochem.2018.10.033] [PMID: 30408729]
[121]
Benyahia FB, Kthiri Z, Hamada W, Boureghda H. Trichoderma atroviride infuces biochemical markers assoiated with resistance to Fusarium culmorum, the main crown rot pathogen of wheat in Algeria. Biocontrol Sci Technol 2021; 31(4): 357-72.
[http://dx.doi.org/10.1080/09583157.2020.1853676]
[122]
Katenkamp U, Jacob H-E, Kerns G, Dalchow E. Hybridization of Trichoderma reesei protoplasts by electrofusion. Bioelectrochem Bioenerg 1989; 22(1): 57-67.
[http://dx.doi.org/10.1016/0302-4598(89)85030-5]
[123]
Keshavarz B, Khalesi M. Trichoderma reesi, a superior cellulose source for industrial applications. Biofuels 2016; 7(6): 713-21.
[http://dx.doi.org/10.1080/17597269.2016.1192444]
[124]
Panda SK, Maiti SK. An approach for simultaneous detoxification and increment of cellulose enzyme production by Trichoderma reesei using rice straw. Energy Sources A Recovery Util Environ Effects 2019; 41(22): 2691-703.
[http://dx.doi.org/10.1080/15567036.2019.1568641]
[125]
Ikram M, Ali N, Jan G, et al. Trichoderma reesei improved the nutrition status of wheat crop under salt stress. J Plant Interact 2019; 14(1): 590-602.
[http://dx.doi.org/10.1080/17429145.2019.1684582]
[126]
Singh SP, Pandey S, Mishra N, et al. Supplementation of Trichoderma improves the alteration of nutrient allocation and transporter genes expression in rice under nutrient deficiencies. Plant Physiol Biochem 2019; 143: 351-63.
[http://dx.doi.org/10.1016/j.plaphy.2019.09.015] [PMID: 31541990]
[127]
Ng I-S, Wu X, Yang X, Xie Y, Lu Y, Chen C. Synergistic effect of Trichoderma reesei cellulases on agricultural tea waste for adsorption of heavy metal Cr(VI). Bioresour Technol 2013; 145: 297-301.
[http://dx.doi.org/10.1016/j.biortech.2013.01.105] [PMID: 23419991]
[128]
Yonezawa M, Takahashi J, Hashiba T, Usuki F, Narisawa K. Anatomical study on the interaction between the root endophytic fungus Heteroconium chaetospira and Chinese cabbage. Mycoscience 2004; 45(6): 367-71.
[http://dx.doi.org/10.1007/S10267-004-0201-0]
[129]
Hashiba T, Narisawa K. The development and endophytic nature of the fungus Heteroconium chaetospira. FEMS Microbiol Lett 2005; 252(2): 191-6.
[http://dx.doi.org/10.1016/j.femsle.2005.08.039] [PMID: 16168582]
[130]
Ohki T, Yonezawa M, Hashiba T, et al. Colonization process of the root endophytic fungus Heteroconium chaetospira in roots of Chinese cabbage. Mycoscience 2002; 43(2): 191-4.
[http://dx.doi.org/10.1007/S102670200027]
[131]
Usuki F, Narisawa K. A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 2007; 99(2): 175-84.
[http://dx.doi.org/10.1080/15572536.2007.11832577] [PMID: 17682770]
[132]
Narisawa K, Tokumasu S, Hashiba T. Suppression of clubroot formation in Chinese cabbage by the root endophytic fungus, Heteroconium chaetospira. Plant Pathol 1998; 47(2): 206-10.
[http://dx.doi.org/10.1046/j.1365-3059.1998.00225.x]
[133]
Lahlali R, McGregor L, Song T, Gossen BD, Narisawa K, Peng G. Heteroconium chaetospira induces resistance to clubroot via upregulation of host genes involved in jasmonic acid, ethylene, and auxin biosynthesis. PLoS One 2014; 9(4): e94144.
[http://dx.doi.org/10.1371/journal.pone.0094144] [PMID: 24714177]
[134]
Narisawa K, Shimura M, Usuki F, Fukuhara S, Hashiba T. Effects of pathogen density, soil moisture and soil pH on biological control of clubroot in Chinese cabbage by Heteroconium chaetospira. Plant Dis 2005; 89(3): 285-90.
[http://dx.doi.org/10.1094/PD-89-0285] [PMID: 30795351]
[135]
Paściak M, Sanchez-Carballo P, Duda-Madej A, Lindner B, Gamian A, Holst O. Structural characterization of the major glycolipids from Arthrobacter globiformis and Arthrobacter scleromae. Carbohydr Res 2010; 345(10): 1497-503.
[http://dx.doi.org/10.1016/j.carres.2010.03.014] [PMID: 20381794]
[136]
Orlandini V, Maida I, Fondi M, et al. Genomic analysis of three sponge-associated Arthrobacter antarctic strains, inhibiting the growth of Burkholderia cepacia complex bacteria by synthesizing volatile organic compounds. Microbiol Res 2014; 169(7-8): 593-601.
[http://dx.doi.org/10.1016/j.micres.2013.09.018] [PMID: 24231161]
[137]
Eschbach M, Möbitz H, Rompf A, Jahn D. Members of the genus Arthrobacter grow anaerobically using nitrate ammonification and fermentative processes: Anaerobic adaptation of aerobic bacteria abundant in soil. FEMS Microbiol Lett 2003; 223(2): 227-30.
[http://dx.doi.org/10.1016/S0378-1097(03)00383-5] [PMID: 12829291]
[138]
Comi G, Cantoni C. Psycherotrophic bacteria/Arthrobacter spp Encyclopedia of Dairy Sciences Edition 2nd Amsterdam. Elsevier 2011; pp. 372-8.
[http://dx.doi.org/10.1016/B978-0-12-374407-4.00440-4]
[139]
Mukhia S, Khatri A, Acharya V, Kumar R. Comparative genomics and molecular adaptational analysis of Arthrobacter from Sikkim Himalaya provided insights into its survivability under multiple high-altitude stress. Genomics 2021; 113(1 Pt 1): 151-8.
[http://dx.doi.org/10.1016/j.ygeno.2020.12.001] [PMID: 33279649]
[140]
Cacciari I, Lippi D. Arthrobacters: Successful arid soil bacteria: A review. Arid Soil Res Rehabil 1987; 1(1): 1-30.
[http://dx.doi.org/10.1080/15324988709381125]
[141]
Dey S, Paul AK. Influence of metal ions on biofilm formation by Arthrobacter sp. SUK 1205 and evaluation of their Cr(VI) removal efficacy. Int Biodeterior Biodegradation 2018; 132: 122-31.
[http://dx.doi.org/10.1016/j.ibiod.2018.02.015]
[142]
Field EK, Blaskovich JP, Peyton BM, Gerlach R. Carbon-dependent chromate toxicity mechanism in an environmental Arthrobacter isolate. J Hazard Mater 2018; 355: 162-9.
[http://dx.doi.org/10.1016/j.jhazmat.2018.05.020] [PMID: 29800910]
[143]
Wang XS. Cd (II) removal by marine Arthrobacter protophormiae biomss: Mechanism characterization and adsorption performance. Desalination Water Treat 2013; 51(40-42): 7710-20.
[http://dx.doi.org/10.1080/19443994.2013.781964]
[144]
Li F, Tang K, Cai C, Xu X. Phytolacca acinosa roxb. with Arthrobacter echigonensis MN1405 enhances heavy metal phytoremediation. Int J Phytoremediation 2016; 18(10): 956-65.
[http://dx.doi.org/10.1080/15226514.2016.1183573] [PMID: 27159623]
[145]
Stassinos PM, Rossi M, Borromeo I, Capo C, Beninati S, Forni C. Amelioration of salt stress tolerance in rapeseed (Brassica napus) cultivars by seed inoculation with Arthrobacter globiformis. Plant Biosyst- Int J Deal Aspects. Plant Biosyst 2021; 1-14.
[http://dx.doi.org/10.1080/11263504.2020.1857872]
[146]
Hernandez-Soberano C, Ruiz-Herrera LF, Valencia-Cantero E. Endophytic bacteria Arthrobacter agilis UMCV2 and Bacillus methylotrophicus M4-96 stimulate achene germination, in vitro growth, and greenhouse yield of strawberry (Fragaria × ananassa). Sci Hortic 2020; 261: 109005.
[http://dx.doi.org/10.1016/j.scienta.2019.109005]
[147]
Getenga Z, Dörfler U, Iwobi A, Schmid M, Schroll R. Atrazine and terbuthylazine mineralization by an Arthrobacter sp. isolated from a sugarcane-cultivated soil in Kenya. Chemosphere 2009; 77(4): 534-9.
[http://dx.doi.org/10.1016/j.chemosphere.2009.07.031] [PMID: 19674769]
[148]
Banerjee S, Palit R, Sengupta C, Standing D. Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Asutralian J Crop Sci 2010; 4(6): 378-83.
[149]
Fan P, Chen D, He Y, Zhou Q, Tian Y, Gao L. Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline-alkaline lands. Int J Phytoremediation 2016; 18(11): 1113-21.
[http://dx.doi.org/10.1080/15226514.2016.1183583] [PMID: 27196364]
[150]
Cao D, He S, Li X, et al. Characterization, genome functional analysis, and detoxification of atrazine by Arthrobacter sp. C2. Chemosphere 2021; 264(Pt 2): 128514.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128514] [PMID: 33045503]
[151]
Wu H-G, Liu W-S, Zhu M, Li X-X. Research and analysis of 74 bloodstream infection cases of Acinetobacter baumannii and drug resistance. Eur Rev Med Pharmacol Sci 2018; 22(6): 1782-6.
[PMID: 29630127]
[152]
Koizumi Y, Sakanashi D, Ohno T, et al. The clinical characteristics of Acinetobacter bacteremia differ among genomospecies: A hospital-based retrospective comparative analysis of genotypically identified strains. J Microbiol Immunol Infect 2019; 52(6): 966-72.
[http://dx.doi.org/10.1016/j.jmii.2019.09.007] [PMID: 31813733]
[153]
Benoit T, Cloutier M, Schop R, Lowerison MW, Khan IUH. Comparative assessment of growth media and incubation conditions for enhanced recovery and isolation of Acinetobacter baumannii from aquatic matrices. J Microbiol Methods 2020; 176: 106023.
[http://dx.doi.org/10.1016/j.mimet.2020.106023] [PMID: 32795636]
[154]
Gallagher P, Baker S. Developing new therapeutic approaches for treating infections caused by multi-drug resistant Acinetobacter baumannii: Acinetobacter baumannii therapeutics. J Infect 2020; 81(6): 857-61.
[http://dx.doi.org/10.1016/j.jinf.2020.10.016] [PMID: 33115656]
[155]
Khaksar G, Treesubsuntorn C, Thiravetyan P. Impact of endophytic colonization patterns on Zamioculcas zamiifolia stress response and in regulating ROS, tryptophan and IAA levels under airborne formaldehyde and formaldehyde-contaminated soil conditions. Plant Physiol Biochem 2017; 114: 1-9.
[http://dx.doi.org/10.1016/j.plaphy.2017.02.016] [PMID: 28246037]
[156]
Ho MT, Li MSM, McDowell T, MacDonald J, Yuan Z-C. Characterization and genomic analysis of a diesel-degrading bacterium, Acinetobacter calcoaceticus CA16, isolated from Canadian soil. BMC Biotechnol 2020; 20(1): 39.
[http://dx.doi.org/10.1186/s12896-020-00632-z] [PMID: 32711499]
[157]
Rokhbakhsh-Zamin F, Sachdev D, Kazemi-Pour N, et al. Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J Microbiol Biotechnol 2011; 21(6): 556-66.
[http://dx.doi.org/10.4014/jmb.1012.12006] [PMID: 21715961]
[158]
Lin H-R, Shu H-Y, Lin G-H. Biological roles of indole-3-acetic acid in Acinetobacter baumannii. Microbiol Res 2018; 216: 30-9.
[http://dx.doi.org/10.1016/j.micres.2018.08.004] [PMID: 30269854]
[159]
Jung J, Park W. Acinetobacter species as model microorganisms in environmental microbiology: Current state and perspectives. Appl Microbiol Biotechnol 2015; 99(6): 2533-48.
[http://dx.doi.org/10.1007/s00253-015-6439-y] [PMID: 25693672]
[160]
Almasaudi SB. Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features. Saudi J Biol Sci 2018; 25(3): 586-96.
[http://dx.doi.org/10.1016/j.sjbs.2016.02.009] [PMID: 29686523]
[161]
Joe MM, Devaraj S, Benson A, Sa T. Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarus schum & thonn: Evaluation of plant growth promotion an antioxidant activity under salt stress. J Appl Res Med Aromat Plants 2016; 3(2): 71-7.
[http://dx.doi.org/10.1016/j.jarmap.2016.02.003]
[162]
Sun S, Bi X, Yang B, et al. Nitrite removal by Acinetobacter sp.TX: A candidate of curbing N2O emission. Environ Technol 2022; 43(15): 2300-9.
[http://dx.doi.org/10.1080/09593330.2021.1874543] [PMID: 33427603]
[163]
Guerra FQS, Mendes JM, Sousa JP, et al. Increasing antibiotic activity against a multidrug-resistant Acinetobacter spp by essential oils of Citrus limon and Cinnamomum zeylanicum. Nat Prod Res 2012; 26(23): 2235-8.
[http://dx.doi.org/10.1080/14786419.2011.647019] [PMID: 22191514]
[164]
Karn SK, Pan X. Role of Acinetobacter sp. in arsenite As(III) oxidation and reducing its mobility in soil. Chem Ecol 2016; 32(5): 460-71.
[http://dx.doi.org/10.1080/02757540.2016.1157174]
[165]
Prashant S, Makarand R, Bhushan C, Sudhir C. Siderophoregenic Acineotobacter calcoaceticus isolated from wheat rhizosphere with strong PGPR activity. Malays J Microbiol 2009; 5(1): 6-12.
[http://dx.doi.org/10.21161/mjm.13508]
[166]
Kang S-M, Khan AL, Hamayun M, et al. Acinetobacter calcoaceticus amerliorated plant growth and influenced gibberellins and functional biochemicals. Pak J Bot 2012; 44(1): 365-72.
[167]
Vaid SK, Kumar B, Sharma A, Shukla AK, Srivastava PC. Effect of zinc solubilizing bacteria on growth promotion and zinc nutrition of rice. J Soil Sci Plant Nutr 2014; 14(4): 889-910.
[http://dx.doi.org/10.4067/S0718-95162014005000071]
[168]
Betoudji F, Abd El Rahman T, Miller MJ, et al. A siderophore analog of fimsbactin from Acinetobacter hinders growth of the phytopathogen Pseudomonas syringae and induces systemic priming of immunity in Arabidopsis thaliana. Pathogens 2020; 9(10): 1-12.
[http://dx.doi.org/10.3390/pathogens9100806] [PMID: 33007866]
[169]
Reyes-Castillo A, Gerding M, Oyarzua P, Zagal E, Gerding J, Fischer S. Plant growth-promoting rhizobacteria able to improve NPK availability: Selection, identification and effects on tomato growth. Chil J Agric Res 2019; 79(3): 473-85.
[http://dx.doi.org/10.4067/S0718-58392019000300473]
[170]
Sachdev D, Nema P, Dhakephalkar P, Zinjarde S, Chopade B. Assessment of 16S rRNA gene-based phylogenetic diversity and promising plant growth-promoting traits of Acinetobacter community from the rhizosphere of wheat. Microbiol Res 2010; 165(8): 627-38.
[http://dx.doi.org/10.1016/j.micres.2009.12.002] [PMID: 20116982]
[171]
Patel P, Shah R, Modi K. Isolation and characterization of plant growth promoting potential of Acinetobacter sp. RSC7 isolated from Saccharum officinarum cultivar Co 671. J Exp Biol Agric Sci 2017; 5(4): 483-91.
[http://dx.doi.org/10.18006/2017.5(4).483.491]
[172]
Zhao L, Xu Y, Lai X. Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max l.) and plant growth-promoting properties. Braz J Microbiol 2018; 49(2): 269-78.
[http://dx.doi.org/10.1016/j.bjm.2017.06.007] [PMID: 29117917]
[173]
Xue Q-Y, Chen Y, Li S-M, et al. Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biol Control 2009; 48(3): 22-8.
[http://dx.doi.org/10.1016/j.biocontrol.2008.11.004]
[174]
Abbas S, Javed MT, Shahid M, et al. Acinetobacter sp. SG-5 inoculation alleviates cadmium toxicity in differentially Cd tolerant maize cultivars as deciphered by improved physio-biochemical attributes, antioxidants and nutrient physiology. Plant Physiol Biochem 2020; 155: 815-27.
[http://dx.doi.org/10.1016/j.plaphy.2020.08.024] [PMID: 32882619]
[175]
Gao X, Zhou Y, Zhu X, et al. Enterobacter cloacae: A probable etiological agent associated with slow growth in the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 2021; 530: 735826.
[http://dx.doi.org/10.1016/j.aquaculture.2020.735826]
[176]
Xiao M, Fu X, Wei X, et al. Structural characterization of fucose-containing disaccharides prepared from exopolysaccharides of Enterobacter sakazakii. Carbohydr Polym 2021; 252: 117139.
[http://dx.doi.org/10.1016/j.carbpol.2020.117139] [PMID: 33183598]
[177]
Shi K, Dai X, Fan X, Zhang Y, Chen Z, Wang G. Simultaneous removal of chromate and arsenite by the immobilized Enterobacter bacterium in combination with chemical reagents. Chemosphere 2020; 259: 127428.
[http://dx.doi.org/10.1016/j.chemosphere.2020.127428] [PMID: 34883557]
[178]
Brust FR, Boff L, da Silva Trentin D, Pedrotti Rozales F, Barth AL, Macedo AJ. Macrocolony of NDM-1 producing Enterobacter hormaechei subsp. oharae generates subpopulations with different features regarding the response of antimicrobial agents and biofilm formation. Pathogens 2019; 8(2): 1-16.
[http://dx.doi.org/10.3390/pathogens8020049] [PMID: 31014001]
[179]
Abiala MA, Odebode AC. Rhizospheric Enterobacter enhanced maize seedling health and growth. Biocontrol Sci Technol 2015; 25(4): 359-72.
[http://dx.doi.org/10.1080/09583157.2014.981248]
[180]
Mowafy AM, Fawzy MM, Gebreil A, Elsayed A. Endophytic Bacillus, Enterobacter, and Klebsiella enhance the growth and yield of maize. Acta Agric Scand B Soil Plant Sci 2021; 71(4): 237-46.
[http://dx.doi.org/10.1080/09064710.2021.1880621]
[181]
Yasmeen S, Bano A. Microorganisms, Rhizobium and Enterobacter on root nodulation and physiology of soybean (Glycine max l.). Commun Soil Sci Plant Anal 2014; 45(18): 2373-84.
[http://dx.doi.org/10.1080/00103624.2014.939192]
[182]
García-González T, Sáenz-Hidalgo HK, Silva-Rojas HV, et al. Enterobacter cloacae, an emerging plant-pathogenic bacterium affecting chili pepper seedlings. Plant Pathol J 2018; 34(1): 1-10.
[http://dx.doi.org/10.5423/PPJ.OA.06.2017.0128] [PMID: 29422783]
[183]
Ren Y, Ren Y, Zhou Z, et al. Complete genome sequence of Enterobacter cloacae subsp. cloacae type strain ATCC 13047. J Bacteriol 2010; 192(9): 2463-4.
[http://dx.doi.org/10.1128/JB.00067-10] [PMID: 20207761]
[184]
Taghavi S, van der Lelie D, Hoffman A, et al. Genome sequence of the plant growth promoting Endophytic bacterium enterobacter sp. 638. PLoS Genet 2010; 6(5): e1000943.
[http://dx.doi.org/10.1371/journal.pgen.1000943] [PMID: 20485560]
[185]
Mayak S, Tirosh T, Glick BR. Stimulation of the growth of tomato, pepper and mung bean plants by the plant growth-promoting bacterium Enterobacter cloacae CAL3. Biol Agric Hortic 2001; 19(3): 261-74.
[http://dx.doi.org/10.1080/01448765.2001.9754929]
[186]
Khalifa AYZ, Alsyeeh A-M, Almalki MA, Saleh FA. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa. Saudi J Biol Sci 2016; 23(1): 79-86.
[http://dx.doi.org/10.1016/j.sjbs.2015.06.008] [PMID: 26858542]
[187]
Bhattacharya A, Naik SN, Khare SK. Efficacy of ureolytic Enterobacter cloacae EMB19 mediated calcite precipitation in remediation of Zn(II). J Environ Sci Health Part A Tox Hazard Subst Environ Eng 2019; 54(6): 526-32.
[http://dx.doi.org/10.1080/10934529.2019.1567184] [PMID: 30729861]
[188]
Ullah A, Farooq M, Hussain M. Improving the productivity, profitability and grain quality of Kabuli chickpea with co-application of zinc and endophyte bacteria Enterobacter sp. MN17. Arch Agron Soil Sci 2020; 66(7): 897-912.
[http://dx.doi.org/10.1080/03650340.2019.1644501]
[189]
Pattnaik S, Dash D, Mohapatra S, et al. Improvement of rice plant productivity by native Cr(VI) reducing and plant growth promoting soil bacteria Enterobacter cloacae. Chemosphere 2020; 240: 124895.
[http://dx.doi.org/10.1016/j.chemosphere.2019.124895] [PMID: 31550588]
[190]
Ahmed T, Ren H, Noman M, et al. Green synthesis and characterization of zirconium oxide nanoparticles by using a native Enterobacter sp. and its antifungal activity against bayberry twig blight disease pathogen Pestalotiopsis versicolor. NanoImpact 2021; 21: 100281.
[http://dx.doi.org/10.1016/j.impact.2020.100281]
[191]
Shabbir I, Abd Samad MY, Othman R, et al. Evaluation of bioformulation of Enterobacter sp. UPMSSB7 and Mycorrhizae with silicon for white root rot disease suppression and growth promotion of rubber seedlings inoculated with Rigidoporus microporus. Biol Control 2021; 152: 104467.
[http://dx.doi.org/10.1016/j.biocontrol.2020.104467]
[192]
Xu Z, Wang D, Tang W, et al. Phytoremediation of cadmium-polluted soil assisted by D-gluconate-enhanced Enterobacter cloacae colonization in the Solanum nigrum l. rhizosphere. Sci Total Environ 2020; 732: 139265.
[http://dx.doi.org/10.1016/j.scitotenv.2020.139265] [PMID: 32416401]
[193]
Sabir A, Naveed M, Bashir MA, et al. Cadmium mediated phytotoxic impacts in Brassica napus: Managing growth, physiological and oxidative disturbances through combined use of biochar and Enterobacter sp. MN17. J Environ Manage 2020; 265: 110522.
[http://dx.doi.org/10.1016/j.jenvman.2020.110522] [PMID: 32275244]
[194]
Gupta P, Kumar V, Usmani Z, Rani R, Chandra A, Gupta VK. A comparative evaluation towards the potential of Klebsiella sp. and Enterobacter sp. in plant growth promotion, oxidative stress tolerance and chromium uptake in Helianthus annuus (L.). J Hazard Mater 2019; 377: 391-8.
[http://dx.doi.org/10.1016/j.jhazmat.2019.05.054] [PMID: 31173990]
[195]
Pramanik K, Mitra S, Sarkar A, Maiti TK. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. J Hazard Mater 2018; 351: 317-29.
[http://dx.doi.org/10.1016/j.jhazmat.2018.03.009] [PMID: 29554529]
[196]
Sarkar A, Ghosh PK, Pramanik K, et al. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 2018; 169(1): 20-32.
[http://dx.doi.org/10.1016/j.resmic.2017.08.005] [PMID: 28893659]
[197]
Zhang K, Li A, Wang Y, et al. Investigation of the presence of Ochrobactrum spp. and Brucella spp. in Haemaphysalis longicornis. Ticks Tick Borne Dis 2021; 12(1): 101588.
[http://dx.doi.org/10.1016/j.ttbdis.2020.101588] [PMID: 33075731]
[198]
Ludueña LM, Anzuay MS, Angelini JG, et al. Genome sequence of the endophytic strain Enterobacter sp. J49, a potential biofertilizer for peanut and maize. Genomics 2019; 111(4): 913-20.
[http://dx.doi.org/10.1016/j.ygeno.2018.05.021] [PMID: 29857118]
[199]
Bendaha MEA, Belaouni HA. Effect of the endophytic plant growth promoting Enterobacter ludwigii EB4B on tomato growth. Hell Plant Prot J 2020; 13(2): 54-65.
[http://dx.doi.org/10.2478/hppj-2020-0006]
[200]
Prajapati K, Modi HA. Growth promoting effect of potassium solubilizing Enterobacter hormaechei (KSB-8) on cucumber (Cucumis sativus) under hydroponic conditions. Int J Adv Res Biol Sci 2016; 3(5): 168-73.
[http://dx.doi.org/10.1007/978-81-322-2776-2_3]
[201]
Guo D-J, Singh RK, Singh P, et al. Complete genome sequence of Enterobacter roggenkampii ED5, a nitrogen fixing plant growth promoting Endophytic bacterium with biocontrol and strss tolerance properties isolated from sugarcane root. Front Microbiol 2020; 11: 580081.
[http://dx.doi.org/10.3389/fmicb.2020.580081] [PMID: 33072048]
[202]
Onal N, Avsar C, Aras ES. Detection of multidrug-resistant Pseudomonas isolates and distribution of denitrifying functional genes. Int J Environ Health Res 2020.
[http://dx.doi.org/10.1080/09603123.2020.1720619] [PMID: 31994901]
[203]
Nazirkar A, Wagh M, Qureshi A, Bodade R, Kutty R. Development of tracking tool for p-nitrophenol monooxygenase genes from soil augmented with pnitrophenol degrading isolates: Bacillus, Pseudomonas and Arthrobacter. Bioremediation J 2020; v24(1): 71-9.
[http://dx.doi.org/10.1080/10889868.2019.1672620]
[204]
Samarzija D, Zamberlin S. Psychrotrophic bacteria: Pseudomonas spp. Encyloped Dairy Sci 2022; pp. 375-83.
[http://dx.doi.org/10.1016/B978-0-08-100596-5.23045-X]
[205]
Alymanesh MR, Taheri P, Tarighi S. Pseudomonas as a frequent and important quorum quenching bacterium with biocontrol capability against many phytopathogens. Biocontrol Sci Technol 2016; 26(12): 1719-35.
[http://dx.doi.org/10.1080/09583157.2016.1239065]
[206]
Iglesias MB, Abadias M, Anguera M, Viñas I. Efficacy of Pseudomonas graminis CPA-7 against Salmonella spp. and Listeria monocytogenes on fresh-cut pear and setting up of the conditions for its commercial application. Food Microbiol 2018; 70: 103-12.
[http://dx.doi.org/10.1016/j.fm.2017.09.010] [PMID: 29173616]
[207]
Subhashini DV, Padmaja K. Potential of phosphate solubilising Pseudomonas as biofungicide. Arch Phytopathol Pflanzenschutz 2011; 44(11): 1041-5.
[http://dx.doi.org/10.1080/03235401003672962]
[208]
Rajkumar M, Bruno LB, Bansu R. Alleviation of environmental stress in plants: The role of beneficial Pseudomonas spp. Crit Rev Environ Sci Technol 2017; 47(6): 372-407.
[http://dx.doi.org/10.1080/10643389.2017.1318619]
[209]
Zohara F, Akanda M, Paul NC, Rahman M, Islam MT. Inhibitory effects of Pseudomonas spp. on plant pathogen Phytophthora capsici in vitro and in planta. Biocatal Agric Biotechnol 2016; 5: 69-77.
[http://dx.doi.org/10.1016/j.bcab.2015.12.009]
[210]
Patil S, Nikam M, Anokhina T, Kochetkov V, Chaudhari A. Multi-stress tolerant plant growth promoting Pseudomonas spp. MCC 3145 producing cytostatis and fungicidal pigment. Biocatal Agric Biotechnol 2017; 10: 53-63.
[http://dx.doi.org/10.1016/j.bcab.2017.02.006]
[211]
Nordstedt NP, Chapin LJ, Taylor CG, Jones ML. Identification of Pseudomonas spp. that increase ornamental crop quality during abiotic stress. Front Plant Sci 2020; 10: 1754.
[http://dx.doi.org/10.3389/fpls.2019.01754] [PMID: 32047507]
[212]
Ojaghian S, Wang L, Xie G-L, Zhang J-Z. Effect of volatiles produced by Trichoderma spp. on expression of glutathione transferase genes in Sclerotinia sclerotiorum. Biol Control 2019; 136: 103999.
[http://dx.doi.org/10.1016/j.biocontrol.2019.103999]
[213]
Misko AL, Germida JJ. Taxonomic and functional diversity of pseudomonads isolated from the roots of field-grown canola. FEMS Microbiol Ecol 2002; 42(3): 399-407.
[http://dx.doi.org/10.1111/j.1574-6941.2002.tb01029.x] [PMID: 19709299]
[214]
Park MS, Jung SR, Lee MS, et al. Isolation and characterization of bacteria associated with two sand dune plant species, Calystegia soldanella and Elymus mollis. J Microbiol 2005; 43(3): 219-27.
[PMID: 15995638]
[215]
Lacava PT, Andreote FD, Araujo WL, Azevedo JL. Characterization of the endophytic bacterial community from citrus by isolation, specific PCR and DGGE. Pesqui Agropecu Bras 2006; 41: 637-42.
[http://dx.doi.org/10.1590/S0100-204X2006000400013]
[216]
Vega FE, Pava-Ripoll M, Posada F, Buyer JS. Endophytic bacteria in Coffea arabica l. J Basic Microbiol 2005; 45(5): 371-80.
[http://dx.doi.org/10.1002/jobm.200410551] [PMID: 16187260]
[217]
Reithner B, Schuhmacher R, Stoppacher N, Pucher M, Brunner K, Zeilinger S. Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk 1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol 2007; 44(11): 1123-33.
[http://dx.doi.org/10.1016/j.fgb.2007.04.001] [PMID: 17509915]
[218]
Surette MA, Sturz AV, Lada RR, Nowak J. Bacterial endophytes in processing carrots (Daucus carota l. var. sativus): Their localization, population density, biodiversity and their effects on plant growth. Plant Soil 2003; 253(2): 381-90.
[http://dx.doi.org/10.1023/A:1024835208421]
[219]
Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 2004; 6(12): 1244-51.
[http://dx.doi.org/10.1111/j.1462-2920.2004.00658.x] [PMID: 15560822]
[220]
McInroy JA, Kloepper JW. Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 1995; 173(2): 337-42.
[http://dx.doi.org/10.1007/BF00011472]
[221]
Adhikari TB, Joseph CM, Yang G, Phillips DA, Nelson LM. Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can J Microbiol 2001; 47(10): 916-24.
[http://dx.doi.org/10.1139/w01-097] [PMID: 11718545]
[222]
Mocali S, Bertelli E, Di Cello F, et al. Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs. Res Microbiol 2003; 154(2): 105-14.
[http://dx.doi.org/10.1016/S0923-2508(03)00031-7] [PMID: 12648725]
[223]
Bell CR, Dickie GA, Chan JWYF. Variable response of bacteria isolated from grapevine xylem to control grape crown gal disease in planta. Am J Enol Vitic 1995; 46: 499-508.
[224]
Gamez R, Cardinale M, Montes M, Ramirez S, Schnell S, Rodriguez F. Screening, plant growth promotion and root colonization pattern of two rhizobacteria (Pseudomonas fluorescens Ps006 and Bacillus amyloliquefaciens Bs006) on banana cv. Williams (Musa acuminata colla). Microbiol Res 2019; 220: 12-20.
[http://dx.doi.org/10.1016/j.micres.2018.11.006] [PMID: 30744815]
[225]
Karthikeyan G, Doraisamy S, Rabindran R. Pseudomonas fluorescens mediated systemic resistance against urdbean leaf crinkle virus in blackgram (Vigna mungo). Arch Phytopathol Pflanzenschutz 2009; 42(3): 21-212.
[http://dx.doi.org/10.1080/03235400600982519]
[226]
Al-Sman M, Abo-Elyousr KAM, Eraky A, El-Zawahry A. Efficiency of Pseudomonas spp.-based formulation for controlling root rot disease of black cumin under greenhouse and field conditions. Arch Phytopathol Pflanzenschutz 2019; 15(19-20): 1313-25.
[http://dx.doi.org/10.1080/03235408.2019.1707384]
[227]
Fuloria A, Saraswat S, Rai JPN. Effect of Pseudomonas fluorescens on metal phytoextraction from contaminated soil by Brassica juncea. Chem Ecol 2009; 25(6): 385-96.
[http://dx.doi.org/10.1080/02757540903325096]
[228]
Kurniawan O, Wilson K, Mohamed R, Avis TJ. Bacillus and Pseudomonas spp. provide antifungal activity against gray mold and Alternaria rot on blueberry fruit. Biol Control 2018; 126: 136-41.
[http://dx.doi.org/10.1016/j.biocontrol.2018.08.001]
[229]
Sandilya SP, Bhuyan PM, Nageshappa V, Gogoi DK, Kardong D. Impact of Pseudomonas aeruginosa MAJ PIA-3 affecting the growth and phytonutrient production of castor, a primary host-plant of Samia ricini. J Soil Sci Plant Nutr 2017; 17(2): 499-515.
[http://dx.doi.org/10.4067/S0718-95162017005000036]
[230]
Saikia R, Srivastava AK, Singh K, Arora DK, Lee M-W. Effect of iron availability on induction systemic resistance to Fusarium wilt of chickpea by Pseudomonas spp. Mycobiology 2005; 33(1): 35-40.
[http://dx.doi.org/10.4489/MYCO.2005.33.1.035] [PMID: 24049472]
[231]
Adhikary A, Kumar R, Pandir R, Bhardwaj P, Wusirika R, Kumar S. Pseudomonas citronellolis; a multi-metal resistant and potential plant growth promoter against arsenic(V) stress in chickpea. Plant Physiol Biochem 2019; 142: 179-92.
[http://dx.doi.org/10.1016/j.plaphy.2019.07.006] [PMID: 31299600]
[232]
Sandani HBP, Ranathunge NP, Lakshman PLN, Weerakoon WMW. Biocontrol potential of five Burkholderia and Pseudomonas strains against Colletotrichum truncatum infecting chilli pepper. Biocontrol Sci Technol 2019; 29(8): 727-45.
[http://dx.doi.org/10.1080/09583157.2019.1597331]
[233]
Yasmin S, Hafeez FY, Rasul G. Evaluation of Pseudomonas aeruginosa Z5 for biocontrol of cotton seedlings disease caused by Fusarium oxysporum. Biocontrol Sci Technol 2014; 24(11): 1227-42.
[http://dx.doi.org/10.1080/09583157.2014.932754]
[234]
Kafi SA, Arabhosseini S, Karimi E, Koobaz P, Mohammadi A, Sadeghi A. Pseudomonas putida P3-57 induces cucumber (Cucumis sativus l.) defense responses and improves fruit quality characteristics under commercial greenhouse conditions. Sci Hortic 2021; 280: 109942.
[http://dx.doi.org/10.1016/j.scienta.2021.109942]
[235]
Ran LX, Liu CY, Wu GJ, van Loon LC, Bakker PAHM. Suppression of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China. Biol Control 2005; 32(1): 111-20.
[http://dx.doi.org/10.1016/j.biocontrol.2004.08.007]
[236]
Amijee F, Allans EJ, Waterhouse RN, Glover LA, Paton AM. Non-pathogenic association of L-form bacteria (Pseudomonas syringae pv. phaseolicola) with bean plants (Phaseolus vulgaris l.) and its potential for biocontrol of halo blight disease. Biocontrol Sci Technol 1992; 2(3): 203-14.
[http://dx.doi.org/10.1080/09583159209355234]
[237]
Zermane N, Souissi T, Kroschel J, Sikora R. Biocontrol of broomrape (Orobanche crenata forsk. and Orobanche foetida poir.) by Pseudomonas fluorescens isolate Bf7-9 from the faba bean rhizosphere. Biocontrol Sci Technol 2007; 17(5): 483-97.
[http://dx.doi.org/10.1080/09583150701309535]
[238]
Chandra D, Srivastava R, Glick BR, Sharma AK. Drought-tolerant Pseudomonas spp. improve the growth performance of finger millet (Eleusine coracana (l.) Gaertn.) under non-stressed and drought-stressed conditions. Pedosphere 2018; 28(2): 227-40.
[http://dx.doi.org/10.1016/S1002-0160(18)60013-X]
[239]
Sendhilvel V, Marimuthu T, Samiappan R. Talc-based formulation of Pseudomonas fluorescens-induced defense genes against powdery mildew of grapevine. Arch Phytopathol Pflanzenschutz 2007; 40(2): 81-9.
[http://dx.doi.org/10.1080/03235400500321677]
[240]
Tiyagi SA, Mahmood I, Khan Z, Ahmad H. Biological control of soil-pathogenic nematodes infecting mungbean using Pseudomonas fluorescens. Arch Phytopathol Pflanzenschutz 2011; 44(18): 1770-8.
[http://dx.doi.org/10.1080/03235401003633840]
[241]
Jin S, Liu L, Liu Z, Long X, Shao H, Chen J. Characterization of marine Pseudomonas spp. antagonist towards three tuber-rotting fungi from Jerusalem artichoke, a new industrial crop. Ind Crops Prod 2013; 43: 556-61.
[http://dx.doi.org/10.1016/j.indcrop.2012.07.038]
[242]
Hatami M, Khanizadeh P, Bovand F, Aghaee A. Silicon nanoparticle-mediated seed priming and Pseudomonas spp. inoculation augment growth, physiology and antioxidant metabolic status in Melissa officinalis l. plants. Ind Crops Prod 2021; 162: 113238.
[http://dx.doi.org/10.1016/j.indcrop.2021.113238]
[243]
Mishra PK, Bisht SC, Ruwari P, et al. Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum-PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris l.). Eur J Soil Biol 2011; 47(1): 35-43.
[http://dx.doi.org/10.1016/j.ejsobi.2010.11.005]
[244]
Shaharoona B, Arshad M, Zahir ZA, Khalid A. Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays l.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 2006; 38(9): 2971-5.
[http://dx.doi.org/10.1016/j.soilbio.2006.03.024]
[245]
Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 2010; 62(1): 21-30.
[http://dx.doi.org/10.1007/s10725-010-9479-4]
[246]
Mercado-Blanco J, Rodriguez-Jurado D, Hervas A, Jimenez-Diaz RM. Suppression of verticillium wilt in olive planting stocks by root-associated fluorescent Pseudomonas spp. Biol Control 2004; 30(2): 474-86.
[http://dx.doi.org/10.1016/j.biocontrol.2004.02.002]
[247]
Shetty K, Curtis OF, Levin RE, Witkowsky R, Ang W. Prevention of vitrification associated with in vitro shoot culture of oregano (Origanum vulgare) by Pseudomonas spp. J Plant Physiol 1995; 147(3-4): 447-51.
[http://dx.doi.org/10.1016/S0176-1617(11)82181-4]
[248]
Shetty K, Carpenter TL, Curtis OF, Potter T. Reduction of hyperhydricity tissue cultures of oregano (Origanum vulgare) by extracellular polysaccharide isolated from Pseudomonas spp. Plant Sci 1996; 120(2): 175-83.
[http://dx.doi.org/10.1016/S0168-9452(96)04482-2]
[249]
Arshad M, Shaharoona B, Mahmood T. Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth yield, and ripening of pea (Pisum sativum l.). Pedosphere 2008; 18(5): 611-20.
[http://dx.doi.org/10.1016/S1002-0160(08)60055-7]
[250]
Mishra PK, Bisht SC, Mishra S, Selvakumar G, Bisht JK, Gupta HS. Coinoculation of Rhizobium leguminosarum-PR1 with a cold tolerant Pseudomonas sp. improves iron acquisition, nutrient uptake and growth of field pea (Pisum sativum l.). J Plant Nutr 2012; 35(2): 243-56.
[http://dx.doi.org/10.1080/01904167.2012.636127]
[251]
Gupta V, Kumar GN, Buch A. Colonization by multi-potential Pseudomonas aeruginosa P4 stimulates peanut (Arachis hypogaea l.) growth, defence physiology and root system functioning to benefit the root-rhizobacterial interface. J Plant Physiol 2020; 248: 153144.
[http://dx.doi.org/10.1016/j.jplph.2020.153144] [PMID: 32172097]
[252]
Raj SN, Shetty NP, Shetty HS. Seed bio-priming with Pseudomonas fluorescens isolates enhances growth of pearl millet plants and induces resistance against downy mildew. Int J Pest Manage 2004; 50(1): 41-8.
[http://dx.doi.org/10.1080/09670870310001626365]
[253]
Nakkeeran S, Kavitha K, Chandrasekar G, Renukadevi P, Fernando WGD. Induction of plant defense compounds by Pseudomonas chlororaphis PA23 and Bacillus subtilis BSCBE4 in controlling damping-off of hot pepper caused by Pythium aphanidermatum. Biocontrol Sci Technol 2006; 16(4): 403-16.
[http://dx.doi.org/10.1080/09583150500532196]
[254]
Samaddar S, Chatterjee P, Roy CA, Ahmed S, Sa T. Interactions between Pseudomonas spp. and their role in improving the red pepper plant growth under salinity stress. Microbiol Res 2019; 219: 66-73.
[http://dx.doi.org/10.1016/j.micres.2018.11.005] [PMID: 30642468]
[255]
Kumar GP, Desai S, Reddy G, et al. Seed bacterization with fluorescent Pseudomonas spp. enhances nutrient uptake and growth of Cajanus cajan l. Commun Soil Sci Plant Anal 2015; 46(5): 652-65.
[http://dx.doi.org/10.1080/00103624.2015.1005219]
[256]
Khatamidoost Z, Jamali S, Moradi M, Riseh RS. Effect of Iranian strains of Pseudomonas spp. on the control of root-knot nematodes on Pistachios. Biocontrol Sci Technol 2015; 25(3): 291-301.
[http://dx.doi.org/10.1080/09583157.2014.973369]
[257]
Mishra PK, Bisht SC, Jeevanandan K, Kumar S, Bisht JK, Bhatt JC. Synergistic effect of inoculating plant growth-promoting Pseudomonas spp. and Rhizobium leguminosarum-FB1 on growth and nutrient uptake of rajmash (Phaseolus vulgaris l.). Arch Agron Soil Sci 2014; 60(6): 799-815.
[http://dx.doi.org/10.1080/03650340.2013.843773]
[258]
Seenivasan N, David PMM, Vivekanandan P, Samiyappan R. Biological control of rice root-knot nematode, Meloidogyne graminicola through mixture of Pseudmonas fluorescens strains. Biocontrol Sci Technol 2012; 22(6): 611-32.
[http://dx.doi.org/10.1080/09583157.2012.675052]
[259]
Deshwal VK, Kumar P. Plant growth promoting activity of Pseudomonads in rice crop. Int J Curr Microbiol Appl Sci 2013; 2(11): 152-7.
[http://dx.doi.org/10.1007/s00284-020-02032-0]
[260]
Sabannavar SJ, Lakshman HC. Synergistic interactions among Azotobacter, Pseudomonas, and Arbuscular mycorrhizal fungi on two varieties of Sesamum indicum l. Commun Soil Sci Plant Anal 2011; 42(17): 2122-33.
[http://dx.doi.org/10.1080/00103624.2011.596241]
[261]
Praveen KG, Desai S, Leo DAD, Ahmed MHSK, Reddy G. Plant growth promoting Pseudomonas spp. from diverse agro-ecosystems of India for Sorghum bicolor l. J Biofertil Biopestic 2012; S7(001): 1-8.
[http://dx.doi.org/10.4172/2155-6202.S7-001]
[262]
Shim J, Babu AG, Velmurugan P, Shea PJ, Oh B-T. Pseudomonas fluorescens JH 70-4 promotes Pb stabilization and early seedling growth of Sudan grass in contaminated mining site soil. Environ Technol 2014; 35(17-20): 2589-96.
[http://dx.doi.org/10.1080/09593330.2014.913691] [PMID: 25145215]
[263]
Ehteshamul-Haque S, Sultana V, Ara J, Athar M. Cultivar response against root-infecting fungi and efficacy of Pseudomonas aeruginosa in controlling soybean root rot. Plant Biosyst 2007; 141(1): 51-5.
[http://dx.doi.org/10.1080/11263500601153529]
[264]
Viswanathan R, Samiyappan R. Bio-formulation of fluorescent Pseudomonas spp. induces systemic resistance against red rot disease and enhances commercial sugar yield in sugarcane. Arch Phytopathol Pflanzenschutz 2008; 41(5): 377-88.
[http://dx.doi.org/10.1080/03235400600796737]
[265]
Sandhya V, Ali SKZ, Minakshi G, Reddy G, Venkateswarlu B. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 2009; 46: 17-26.
[http://dx.doi.org/10.1007/s00374-009-0401-z]
[266]
Majeed A, Kaleem AM, Hameed S, et al. Pseudomonas sp. AF-54 containing multiple plant beneficial traits acts as growth enhancer of Helianthus annuus l. under reduced fertilizer input. Microbiol Res 2018; 216: 56-69.
[http://dx.doi.org/10.1016/j.micres.2018.08.006] [PMID: 30269857]
[267]
Fatima T, Arora NK. Pseudomonas entomophila PE3 and its exopolysaccharides as biostimulants for enhancing growth, yield and tolerance responses of sunflower under saline conditions. Microbiol Res 2021; 244: 126671.
[http://dx.doi.org/10.1016/j.micres.2020.126671] [PMID: 33360750]
[268]
Chu TN, Tran BTH, Van Bui L, Hoang MTT. Plant growth-promoting Rhizobacterium Pseudomonas PS01 induces salt tolerance in Arabidopsis thaliana. BMC Res Notes 2019; 12(1): 11.
[http://dx.doi.org/10.1186/s13104-019-4046-1] [PMID: 30635071]
[269]
Singh P, Siddiqui ZA. Biocontrol of root-knot nematode Meloidogyne incognita by the isolates of Pseudomonas on tomato. Arch Phytopathol Pflanzenschutz 2010; 43(14): 1423-34.
[http://dx.doi.org/10.1080/03235400802536857]
[270]
Mukherjee A, Babu SPS. Pseudomonas fluorescens mediated suppression of Meloidogyne incognita infection of cowpea and tomato. Arch Phytopathol Pflanzenschutz 2013; 46(5): 607-16.
[http://dx.doi.org/10.1080/03235408.2012.749694]
[271]
Olanya OM, Taylor J, Ukuku DO, Malik NSA. Inactivation of Salmonella serovars by Pseudomonas chlororaphis and Pseudomonas fluorescens strains on tomatoes. Biocontrol Sci Technol 2015; 25(4): 399-413.
[http://dx.doi.org/10.1080/09583157.2014.982513]
[272]
Win KT, Tanaka F, Okazaki K, Ohwaki Y. The ACC deaminase expressing endophyte Pseudomonas spp. Enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. Plant Physiol Biochem 2018; 127: 599-607.
[http://dx.doi.org/10.1016/j.plaphy.2018.04.038] [PMID: 29730579]
[273]
Karnwal A. Pseudomonas spp., a zinc-solubilizing vermicompost bacteria with plant growth-promoting activity moderates zinc biofortification in tomato. Int J Veg Sci 2021; 27(4): 398-412.
[http://dx.doi.org/10.1080/19315260.2020.1812143]
[274]
Oksinska MP, Wright SAI, Pietr SJ. Colonization of wheat seedlings (Triticum aestivum l.) by strains of Pseudomonas spp. with respect to their nutrient utilization profiles. Eur J Soil Biol 2011; 47(6): 364-73.
[http://dx.doi.org/10.1016/j.ejsobi.2011.08.005]
[275]
Kwak Y-S, Bonsall RF, Okubara PA, Paulitz TC, Thomashow LS, Weller DM. Factors impacting the activity of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens against take-all of wheat. Soil Biol Biochem 2012; 54: 48-56.
[http://dx.doi.org/10.1016/j.soilbio.2012.05.012]
[276]
Afzal A, Saleem S, Iqbal Z, Jan G, Malik MFA, Asad SA. Interaction of Rhizobium and Pseudomonas with wheat (Triticum aestivum l.) in potted soil with or without P2O5. J Plant Nutr 2014; 37(13): 2144-56.
[http://dx.doi.org/10.1080/01904167.2014.920374]
[277]
Gohil K, Rajput V, Dharne M. Pan-genomics of Ochrobactrum species from clinical and environmental origins reveals distinct populations and possible links. Genomics 2020; 112(5): 3003-12.
[http://dx.doi.org/10.1016/j.ygeno.2020.04.030] [PMID: 32428556]
[278]
Sigida EN, Kargapolova KY, Shashkov AS, et al. Structure, gene cluster of the O antigen and biological activity of the lipopolysaccharide from the rhizospheric bacterium Ochrobactrum cytisi IPA7.2. Int J Biol Macromol 2020; 154: 1375-81.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.017] [PMID: 31730968]
[279]
Szpakowska N, Kowalczyk A, Jafra S, Kaczyński Z. The chemical structure of polysaccharides isolated from the Ochrobactrum rhizosphaerae PR17T. Carbohydr Res 2020; 497: 108136.
[http://dx.doi.org/10.1016/j.carres.2020.108136] [PMID: 32889436]
[280]
Aujoulat F, Pagès S, Masnou A, et al. The population structure of Ochrobactrum isolated from entomopathogenic nematodes indicates interactions with the symbiotic system. Infect Genet Evol 2019; 70: 131-9.
[http://dx.doi.org/10.1016/j.meegid.2019.02.016] [PMID: 30790700]
[281]
Bezza FA, Beukes M, Chirwa EMN. Application of biosurfactant produced by Ochrobactrum intermedium CN3 for enhancing petroleum sludge bioremediation. Process Biochem 2015; 50(11): 1911-22.
[http://dx.doi.org/10.1016/j.procbio.2015.07.002]
[282]
Kumar CG, Sujitha P, Mamidyala SK, Usharani P, Das B, Reddy CR. Ochrosin, a new biosurfactant produced by halophilic Ochrobactrum sp. strain BS-206 (MTCC 5720): Purification, characterization and its biological evaluation. Process Biochem 2014; 49(10): 1708-17.
[http://dx.doi.org/10.1016/j.procbio.2014.07.004]
[283]
Zonaro E, Piacenza E, Presentato A, et al. Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles. Microb Cell Fact 2017; 16(1): 215.
[http://dx.doi.org/10.1186/s12934-017-0826-2] [PMID: 29183326]
[284]
Lei X, Jia Y, Chen Y, Hu Y. Simultaneous nitrification and denitrification without nitrite accumulation by a novel isolated Ochrobactrum anthropic LJ81. Bioresour Technol 2019; 272: 442-50.
[http://dx.doi.org/10.1016/j.biortech.2018.10.060] [PMID: 30388582]
[285]
Villagrasa E, Ballesteros B, Obiol A, Millach L, Esteve I, Solé A. Multi-approach analysis to assess the chromium(III) immobilization by Ochrobactrum anthropi DE2010. Chemosphere 2020; 238: 124663.
[http://dx.doi.org/10.1016/j.chemosphere.2019.124663] [PMID: 31472343]
[286]
Peng H, Xie W, Li D, et al. Copper-resistant mechanism of Ochrobactrum MT180101 and its application in membrane bioreactor for treating electroplating wastewater. Ecotoxicol Environ Saf 2019; 168: 17-26.
[http://dx.doi.org/10.1016/j.ecoenv.2018.10.066] [PMID: 30384163]
[287]
Abraham J, Silambarasan S. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: A proposal of its metabolic pathway. Pestic Biochem Physiol 2016; 126: 13-21.
[http://dx.doi.org/10.1016/j.pestbp.2015.07.001] [PMID: 26778429]
[288]
Zhao L, Teng S, Liu Y. Characterization of a versatile rhizospheric organism from cucumber identified as Ochrobactrum haematophilum. J Basic Microbiol 2012; 52(2): 232-44.
[http://dx.doi.org/10.1002/jobm.201000491] [PMID: 22460914]
[289]
Imran A, Hafeez FY, Frühling A, Schumann P, Malik KA, Stackebrandt E. Ochrobactrum ciceri sp. nov., isolated from nodules of Cicer arietinum. Int J Syst Evol Microbiol 2010; 60(Pt 7): 1548-53.
[http://dx.doi.org/10.1099/ijs.0.013987-0] [PMID: 19684324]
[290]
Zurdo-Piñeiro JL, Rivas R, Trujillo ME, et al. Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 2007; 57(Pt 4): 784-8.
[http://dx.doi.org/10.1099/ijs.0.64613-0] [PMID: 17392207]
[291]
Li L, Li YQ, Jiang Z, et al. Ochrobactrum endophyticum sp. nov., isolated from roots of Glycyrrhiza uralensis. Arch Microbiol 2016; 198(2): 171-9.
[http://dx.doi.org/10.1007/s00203-015-1170-8] [PMID: 26615404]
[292]
Lebuhn M, Achouak W, Schloter M, et al. Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots, and description of Ochrobactrum tritici sp. nov. and Ochrobactrum grignonense sp. nov. Int J Syst Evol Microbiol 2000; 50(Pt 6): 2207-23.
[http://dx.doi.org/10.1099/00207713-50-6-2207] [PMID: 11155998]
[293]
Trujillo ME, Willems A, Abril A, et al. Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 2005; 71(3): 1318-27.
[http://dx.doi.org/10.1128/AEM.71.3.1318-1327.2005] [PMID: 15746334]
[294]
Gazolla VC, Hayashi SF, Ambrosini A, Brito LB, Kayser VL, Passaglia LMP. Reclassification of Ochrobactrum lupini as a later heterotypic synonym of Ochrobactrum anthropi based on whole-genome sequence analysis. Int J Syst Evol Microbiol 2019; 69(8): 2312-4.
[http://dx.doi.org/10.1099/ijsem.0.003465] [PMID: 31120414]
[295]
Tripathi AK, Verma SC, Chowdhury SP, Lebuhn M, Gattinger A, Schloter M. Ochrobactrum oryzae sp. nov., an endophytic bacterial species isolated from deep-water rice in India. Int J Syst Evol Microbiol 2006; 56(Pt 7): 1677-80.
[http://dx.doi.org/10.1099/ijs.0.63934-0] [PMID: 16825649]
[296]
Kämpfer P, Sessitsch A, Schloter M, Huber B, Busse HJ, Scholz HC. Ochrobactrum rhizosphaerae sp. nov. and Ochrobactrum thiophenivorans sp. nov., isolated from the environment. Int J Syst Evol Microbiol 2008; 58(Pt 6): 1426-31.
[http://dx.doi.org/10.1099/ijs.0.65407-0] [PMID: 18523190]
[297]
Krzyżanowska DM, Maciąg T, Ossowicki A, et al. Ochrobactrum quorumnocens sp. nov., a quorum quenching bacterium from the potato rhizosphere, and comparative genome analysis with related type strains. PLoS One 2019; 14(1): e0210874.
[http://dx.doi.org/10.1371/journal.pone.0210874] [PMID: 30668584]
[298]
Ham MS, Park YM, Sung HR, et al. Characterization of shiozbacteria isolated from family Solanaceae plants in Dokdo Island. Kor J Microbiol Biotechnol 2009; 37: 110-7.
[299]
Hahm MS, Sumayo M, Hwang YJ, et al. Biological control and plant growth promoting capacity of rhizobacteria on pepper under greenhouse and field conditions. J Microbiol 2012; 50(3): 380-5.
[http://dx.doi.org/10.1007/s12275-012-1477-y] [PMID: 22752900]
[300]
Imran A, Saadalla MJA, Khan S-U, Mirza MS, Malik KA, Hafeez FY. Ochrobactrum sp. Pv2Z2 exhibits multiple traits of plant growth promotion, biodegradation and N-acyl-homoserine-lactone quorum sensing. Ann Microbiol 2014; 64(4): 1797-806.
[http://dx.doi.org/10.1007/s13213-014-0824-0]
[301]
Xu S, Liu Y, Wang J, et al. Isolation and potential of Ochrobactrum sp. NW-3 to increase the growth of cucumber. Int J Agric Policy Res 2015; 3(9): 341-50.
[302]
Meng X, Yan D, Long X, Wang C, Liu Z, Rengel Z. Colonization by endophytic Ochrobactrum anthropi Mn1 promotes growth of Jerusalem artichoke. Microb Biotechnol 2014; 7(6): 601-10.
[http://dx.doi.org/10.1111/1751-7915.12145] [PMID: 25073416]
[303]
Sipahutar MK, Vangnai AS. Role of plant growth-promoting Ochrobactrum sp. MC22 on triclocarban degradation and toxicity mitigation to legume plants. J Hazard Mater 2017; 329: 38-48.
[http://dx.doi.org/10.1016/j.jhazmat.2017.01.020] [PMID: 28122276]
[304]
Mishra SK, Khan MH, Misra S, et al. Drought tolerant Ochrobactrum sp. inoculation performs multiple roles in maintaining the homeostasis in Zea mays l. subjected to deficit water stress. Plant Physiol Biochem 2020; 150: 1-14.
[http://dx.doi.org/10.1016/j.plaphy.2020.02.025] [PMID: 32097873]
[305]
De Souza R, Meyer J, Schoenfeld R, da Costa PB, Passaglia LMP. Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. Ann Microbiol 2015; 65(2): 951-64.
[http://dx.doi.org/10.1007/s13213-014-0939-3]
[306]
Waranusantigul P, Lee H, Kruatrachue M, Pokethitiyook P, Auesukaree C. Isolation and characterization of lead-tolerant Ochrobactrum intermedium and its role in enhancing lead accumulation by Eucalyptus camaldulensis. Chemosphere 2011; 85(4): 584-90.
[http://dx.doi.org/10.1016/j.chemosphere.2011.06.086] [PMID: 21764101]
[307]
Liu T, Wei L, Qiao M, Zou D, Yang X, Lin A. Mineralization of pyrene induced by interaction between Ochrobactrum sp. PW and ryegrass in spiked soil. Ecotoxicol Environ Saf 2016; 133: 290-6.
[http://dx.doi.org/10.1016/j.ecoenv.2016.07.032] [PMID: 27479773]
[308]
Yu X, Li Y, Cui Y, et al. An indoleacetic acid-producing Ochrobactrum sp. MGJ11 counteracts cadmium effect on soybean by promoting plant growth. J Appl Microbiol 2017; 122(4): 987-96.
[http://dx.doi.org/10.1111/jam.13379] [PMID: 27995689]
[309]
Hassan MN, Afghan S, Hassan Z, Hafeez FY. Biopesticide activity of sugarcane associated rhizobacteria: Ochrobactrum intermedium strain NH-5 and Stenotrophomonas maltophilia strain NH-300 against red rot under field conditions. Phytopathol Mediterr 2014; 53: 229-39.
[http://dx.doi.org/10.1002/ps.2165] [PMID: 21495154]
[310]
Sumayo M, Hahm M-S, Ghim S-Y. Determinants of plant growth-promoting Ochrobactrum lupini KUDC1013 involved in induction of systemic resistance against Pectobacterium carotovorum subsp. carotovorum in tobacco leaves. Plant Pathol J 2013; 29(2): 174-81.
[http://dx.doi.org/10.5423/PPJ.SI.09.2012.0143] [PMID: 25288944]
[311]
Rasul M, Yasmin S, Yahya M, Breitkreuz C, Tarkka M, Reitz T. The wheat growth-promoting traits of Ochrobactrum and Pantoea species, responsible for solubilization of different P sources, are ensured by genes encoding enzymes of multiple P-releasing pathways. Microbiol Res 2021; 246: 126703.
[http://dx.doi.org/10.1016/j.micres.2021.126703] [PMID: 33482437]
[312]
Idris EE, Iglesias DJ, Talon M, Borriss R. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 2007; 20(6): 619-26.
[http://dx.doi.org/10.1094/MPMI-20-6-0619] [PMID: 17555270]
[313]
Posada LF, Alvarez JC, Hu C-H, de-Bashan LE, Bashan Y. Construction of probe of the plant growth-promoting bacteria Bacillus subtilis useful for fluorescence in situ hybridization. J Microbiol Methods 2016; 128: 125-9.
[http://dx.doi.org/10.1016/j.mimet.2016.05.029] [PMID: 27263830]
[314]
Nanjundappa A, Bagyaraj DJ, Saxena AK, Kumar M, Chakdar H. Interaction between Arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants. Fungal Biol Biotechnol 2019; 6(23): 23.
[http://dx.doi.org/10.1186/s40694-019-0086-5] [PMID: 31798924]
[315]
Caamaño-Antelo S, Fernández-No IC, Böhme K, et al. Genetic discrimination of foodborne pathogenic and spoilage Bacillus spp. based on three housekeeping genes. Food Microbiol 2015; 46: 288-98.
[http://dx.doi.org/10.1016/j.fm.2014.08.013] [PMID: 25475298]
[316]
Alina SP, Constantinscu F, Petruta CC. Biodiversity of Bacillus subtilis group and beneficial traits of Bacillus species useful in plant protection. Rom Biotechnol Lett 2015; 20(5): 10737-50.
[http://dx.doi.org/10.1016/j.jbiotec.2015.06.351]
[317]
Aloo BN, Makumba BA, Mbega ER. The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol Res 2019; 219: 26-39.
[http://dx.doi.org/10.1016/j.micres.2018.10.011] [PMID: 30642464]
[318]
Raupach GS, Kloepper JW. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 1998; 88(11): 1158-64.
[http://dx.doi.org/10.1094/PHYTO.1998.88.11.1158] [PMID: 18944848]
[319]
Noell AC, Ely T, Bolser DK, et al. Spectroscopy and viability of Bacillus subtilis spores after ultraviolet irradiation: Implications for the detection of potential bacterial life on Europa. Astrobiology 2015; 15(1): 20-31.
[http://dx.doi.org/10.1089/ast.2014.1169] [PMID: 25590531]
[320]
Joshi R, McSpadden GBB. Identification and characterization of novel genetic markers associated with biological control activities in Bacillus subtilis. Phytopathology 2006; 96(2): 145-54.
[http://dx.doi.org/10.1094/PHYTO-96-0145] [PMID: 18943917]
[321]
Tahir HA, Gu Q, Wu H, et al. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front Microbiol 2017; 8: 171.
[http://dx.doi.org/10.3389/fmicb.2017.00171] [PMID: 28223976]
[322]
Yi Y, Li Z, Song C, Kuipers OP. Exploring plant-microbe interactions of the rhizobacteria Bacillus subtilis and Bacillus mycoides by use of the CRISPR-Cas9 system. Environ Microbiol 2018; 20(12): 4245-60.
[http://dx.doi.org/10.1111/1462-2920.14305] [PMID: 30051589]
[323]
Dheeman S, Baliyan N, Dubey RC, Maheshwari DK, Kumar S, Chen L. Combined effects of rhizo-competitive rhizosphere and non-rhizosphere Bacillus in plant growth promotion and yield improvement of Eleusine coracana (Ragi). Can J Microbiol 2020; 66(2): 111-24.
[http://dx.doi.org/10.1139/cjm-2019-0103] [PMID: 31671281]
[324]
Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ. Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol 2002; 61(5): 289-98.
[http://dx.doi.org/10.1006/pmpp.2003.0443]
[325]
Harba M, Jawhar M, Arabi MIE. In vitro antagonistic activity of diverse Bacillus species against Fusarium culmorum and F. solani pathogens. Open Agric J 2020; 14(1): 157-63.
[http://dx.doi.org/10.2174/1874331502014010157]
[326]
Islam A, Kabir MDS, Khair A. Characterization and evaluation of Bacillus siamensis isolate for its growth promoting potential in tomato. Agriculture (Polnohospodarstvo) 2019; 65(2): 42-50.
[http://dx.doi.org/10.2478/agri-2019-0005]
[327]
Ferreira NC, Mazzuchelli RDLM, Pacheco AC, de Araujo FF, Antunes JEL, de Araujo ASF. Bacillus subtilis improves maize tolerance to salinity. Ciencia Rural, Santa Maria 2018; 48(8): e20170910.
[328]
Kang S-M, Hamayun M, Khan MA, Iqbal A, Lee I-J. Bacillus subtilis JW1 enhances plant growth and nutrient uptake of Chinese cabbage through gibberellins secretion. J Appl Bot Food Qual 2019; 92: 172-8.
[329]
Yanti Y, Habazar T, Reflinaldon R, Nasution CR, Felia S. Indigenous Bacillus spp. ability to growth promoting activities and control bacterial wilt disease (Ralstonia solanacearum). Biodiversitas (Surak) 2017; 18(4): 1562-7.
[http://dx.doi.org/10.13057/biodiv/d180434]
[330]
Bais HP, Fall R, Vivanco JM. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 2004; 134(1): 307-19.
[http://dx.doi.org/10.1104/pp.103.028712] [PMID: 14684838]
[331]
Wulff EG, Mguni CM, Mansfeld-Giese K, Fels J, Lubeck M, Hockenhull J. Biochemical and molecular characterization of Bacillus amyloliquefaciens, B. subtilis and B. Pumilus isolates with distinct antagonistic potential against Xanthomonas campestris pv. campestris. Plant Pathol 2002; 51(5): 574-84.
[http://dx.doi.org/10.1046/j.1365-3059.2002.00753.x]
[332]
Ji X, Lu G, Gai Y, Zheng C, Mu Z. Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiol Ecol 2008; 65(3): 565-73.
[http://dx.doi.org/10.1111/j.1574-6941.2008.00543.x] [PMID: 18631174]
[333]
Wang S, Wu H, Qiao J, et al. Molecular mechanism of plant growth promotion and induced systemic resistance to tobacco mosaic virus by Bacillus spp. J Microbiol Biotechnol 2009; 19(10): 1250-8.
[http://dx.doi.org/10.4014/jmb.0901.008] [PMID: 19884788]
[334]
Cazorla FM, Romero D, Pérez-García A, Lugtenberg BJJ, Vicente A, Bloemberg G. Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J Appl Microbiol 2007; 103(5): 1950-9.
[http://dx.doi.org/10.1111/j.1365-2672.2007.03433.x] [PMID: 17953605]
[335]
Krause MS, De Ceuster TJJ, Tiquia SM, Michel FC Jr, Madden LV Jr, Hoitink HAJ. Isolation and characterization of rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish. Phytopathology 2003; 93(10): 1292-300.
[http://dx.doi.org/10.1094/PHYTO.2003.93.10.1292] [PMID: 18944329]
[336]
Zehnder GW, Yao C, Murphy JF, Sikora ER, Kloepper JW. Induction of resistance in tomato against cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria. BioControl 2000; 45(1): 127-37.
[http://dx.doi.org/10.1023/A:1009923702103]
[337]
Murphy JF, Zehnder GW, Schuster DJ, Sikora EJ, Polston JE, Kloepper JW. Plant growth-promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Dis 2000; 84(7): 779-84.
[http://dx.doi.org/10.1094/PDIS.2000.84.7.779] [PMID: 30832108]
[338]
Lopez-Valenzuela BE, Armenta-Bojorquez AD, Hernandez-Verdugo S, Apodaca-Sanchez MA, Samaniego-Gaxiola JA, Valdez-Ortiz A. Trichoderma spp. and Bacillus spp. as growth promoters in maize (Zea mays l.). Phyton 2019; 88(1): 37-46.
[http://dx.doi.org/10.32604/phyton.2019.04621]
[339]
Samaniego-Gamez BY, Garruna R, Tun-Suarez JM, Kantun-Can J, Reyes-Ramirez A, Cervantes-Diaz L. Bacillus spp. inoculated improves photosystem II efficiency and enhances photosynthesis in pepper plants. Chil J Agric Res 2016; 76(4): 409-16.
[http://dx.doi.org/10.4067/S0718-58392016000400003]
[340]
Vardharajula S, Zulfikar SA, Grover M, Reddy G, Bandi V. Drought-tolerant plant growth promoting Bacillus spp.: Effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 2011; 6(1): 1-14.
[http://dx.doi.org/10.1080/17429145.2010.535178]
[341]
Abeer H, Abd-Allah EF, Al-Qarawi AA, et al. Impact of plant growth promoting Bacillus subtilis on growth and physiological parameters of Bassia Indica (Indian Bassia) grown under salt stress. Pak J Bot 2015; 47(5): 1735-41.
[342]
Pandey C, Bajpai VK, Negi YK, Rather IA, Maheshwari DK. Effect of plant growth promoting Bacillus spp. on nutritional properties of Amaranthus hypochondriacus grains. Saudi J Biol Sci 2018; 25(6): 1066-71.
[http://dx.doi.org/10.1016/j.sjbs.2018.03.003] [PMID: 30174503]
[343]
Lima EF, Costa Neto VPD, Araujo JMD, Alcantara Neto FD, Bonifacio A, Rodrigues AC. Varieties of lima bean shows different growth responses when inoculated with Bacillus sp., a plant growth-promoting bacteria. Biosci J, Uberlandia 2016; 32(5): 1221-33.
[http://dx.doi.org/10.14393/BJ-v32n5a2016-32932]
[344]
Jamal Q, Lee YS, Jeon HD, Kim KY. Effect of plant growth-promoting bacteria Bacillus amyloliquefaciens Y1 on soil properties, pepper seedling growth, rhizosphere bacterial flora and soil enzymes. Plant Prot Sci 2018; 54(3): 129-37.
[http://dx.doi.org/10.17221/154/2016-PPS]
[345]
Przemieniecki SW, Kurowski TP, Damszel M, Krawczyk K, Karwowska A. Effectiveness of the Bacillus sp. SP-A9 strain as a biological control agent for spring wheat (Triticum aestivum l.). J Agric Sci Technol 2019; 20: 609-19.
[http://dx.doi.org/10.2298/ABS141002029P]
[346]
Diaz PAE, Baron NC, Rigobelo EC. Bacillus spp. as plant growth-promoting bacteria in cotton under greenhouse conditions. Aust J Crop Sci 2019; 13(12): 2003-14.
[http://dx.doi.org/10.21475/ajcs.19.13.12.p2003]
[347]
Ding X, Peng XJ, Jin BS, et al. Spatial distribution of bacterial communities driven by multiple environmental factors in a beach wetland of the largest freshwater lake in China. Front Microbiol 2015; 6: 129.
[http://dx.doi.org/10.3389/fmicb.2015.00129] [PMID: 25767466]
[348]
Yousuf J, Thajudeen J, Rahiman M, Krishnankutty SP, Alikunj AA, Abdulla MH. Nitrogen fixing potential of various heterotrophic Bacillus strains from a tropical estuary and adjacent coastal regions. J Basic Microbiol 2017; 57(11): 922-32.
[http://dx.doi.org/10.1002/jobm.201700072] [PMID: 28787089]
[349]
Habibi S, Djedidi S, Prongjunthuek K, et al. Physiological and genetic characterization of rice nitrogen fixer PGPR isolated from rhizosphere soils of different crops. Plant Soil 2014; 379(1-2): 51-66.
[http://dx.doi.org/10.1007/s11104-014-2035-7]
[350]
Madhaiyan M, Poonguzhali S, Lee JS, Lee KC, Hari K. Bacillus rhizosphaerae sp. nov., an novel diazotrophic bacterium isolated from sugarcane rhizosphere soil. Antonie van Leeuwenhoek 2011; 100(3): 437-44.
[http://dx.doi.org/10.1007/s10482-011-9600-3] [PMID: 21671194]
[351]
Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj DJ. Bacillus species in soil as a natural resource for plant health and nutrition. J Appl Microbiol 2020; 128(6): 1583-94.
[http://dx.doi.org/10.1111/jam.14506] [PMID: 31705597]
[352]
Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2013; 2(1): 587.
[http://dx.doi.org/10.1186/2193-1801-2-587] [PMID: 25674415]
[353]
Panda B, Rahman H, Panda J. Phosphat solubilizing bacteria from the acidic soils of Eastern Himalayan region and their antagonistic effect on fungal pathogens. Rhizosphere 2016; 2: 62-71.
[http://dx.doi.org/10.1016/j.rhisph.2016.08.001]
[354]
Saeid A, Prochownik E, Dobrowolska-Iwanek J. Phosphorus solubilization by Bacillus species. Molecules 2018; 23(11): 2897.
[http://dx.doi.org/10.3390/molecules23112897] [PMID: 30404208]
[355]
Guang-Can TAO, Shu-Jun T, Miao-Ying CAI, Guang-Hui XIE. Phosphate-solubilizing and mineralizing abilities of bacteria isolated from soils. Pedosphere 2008; 18(4): 515-23.
[http://dx.doi.org/10.1016/S1002-0160(08)60042-9]
[356]
Farhat A, Chouayekh H, Ben Farhat M, Bouchaala K, Bejar S. Gene cloning and characterization of a thermostable phytase from Bacillus subtilis US417 and assessment of its potential as a feed additive in comparison with a commercial enzyme. Mol Biotechnol 2008; 40(2): 127-35.
[http://dx.doi.org/10.1007/s12033-008-9068-1] [PMID: 18543132]
[357]
Ibarra-Galeana JA, Castro-Martinez C, Fierro-Coronado RA, Armenta-Bojorquez AD, Maldonado-Mendoza IE. Characterization of phosphate-solubilizing bacteria exhibiting the potential for growth promoting and phosphorus nutrition improvement in maize (Zea mays l.) in calcareous soils of Sinaloa, Mexico. Ann Microbiol 2017; 67(12): 801-11.
[http://dx.doi.org/10.1007/s13213-017-1308-9]
[358]
Lim JH, Kim SD. Synergistic plant growth promotion by the indigenous auxins-producing PGPR Bacillus subtilis AH18 and Bacillus licheniformis K11. J Korean Soc Appl Biol Chem 2009; 52(5): 531-8.
[http://dx.doi.org/10.3839/jksabc.2009.090]
[359]
Xu M, Sheng J, Chen L, et al. Bacterial community compositions of tomato (Lycopersicum esculentum mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World J Microbiol Biotechnol 2014; 30(3): 835-45.
[http://dx.doi.org/10.1007/s11274-013-1486-y] [PMID: 24114316]
[360]
Radhakrishnan R, Lee IJ. Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiol Biochem 2016; 109: 181-9.
[http://dx.doi.org/10.1016/j.plaphy.2016.09.018] [PMID: 27721133]
[361]
Park YG, Mun BG, Kang SM, et al. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One 2017; 12(3): e0173203.
[http://dx.doi.org/10.1371/journal.pone.0173203] [PMID: 28282395]
[362]
Asari S, Tarkowská D, Rolčík J, et al. Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant. Planta 2017; 245(1): 15-30.
[http://dx.doi.org/10.1007/s00425-016-2580-9] [PMID: 27541497]
[363]
Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K. Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springerplus 2013; 2(1): 6.
[http://dx.doi.org/10.1186/2193-1801-2-6] [PMID: 23449812]
[364]
Goswami D, Dhandhukia P, Patel P, Thakker JN. Screening of PGPR from saline desert of Kutch: Growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 2014; 169(1): 66-75.
[http://dx.doi.org/10.1016/j.micres.2013.07.004] [PMID: 23896166]
[365]
Verma P, Yadav AN, Khannam KS, et al. Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 2015; 65(4): 1885-99.
[http://dx.doi.org/10.1007/s13213-014-1027-4]
[366]
Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A. Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic plains of India. Biocatal Agric Biotechnol 2016; 7: 202-9.
[http://dx.doi.org/10.1016/j.bcab.2016.06.007]
[367]
Shakeel M, Rais A, Hassan MN, Hafeez FY. Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Front Microbiol 2015; 6: 1286.
[http://dx.doi.org/10.3389/fmicb.2015.01286] [PMID: 26635754]
[368]
Singh D, Rajawat MVS, Kaushik R, Prasanna R, Saxena AK. Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn. Plant Soil 2017; 416(1-2): 107-16.
[http://dx.doi.org/10.1007/s11104-017-3189-x]
[369]
Freitas MA, Medeiros FH, Carvalho SP, et al. Augmenting iron accumulation in cassava by the beneficial soil bacterium Bacillus subtilis (GBO3). Front Plant Sci 2015; 6: 596.
[http://dx.doi.org/10.3389/fpls.2015.00596] [PMID: 26300897]
[370]
Berini F, Katz C, Gruzdev N, Casartelli M, Tettamanti G, Marinelli F. Microbial and viral chitinases: Attractive biopesticides for integrated pest management. Biotechnol Adv 2018; 36(3): 818-38.
[http://dx.doi.org/10.1016/j.biotechadv.2018.01.002] [PMID: 29305895]
[371]
Fira D, Dimkić I, Berić T, Lozo J, Stanković S. Biological control of plant pathogens by Bacillus species. J Biotechnol 2018; 285: 44-55.
[http://dx.doi.org/10.1016/j.jbiotec.2018.07.044] [PMID: 30172784]
[372]
Elkoca E, Kantar F, Sahin F. Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth and yield of chickpea. J Plant Nutr 2007; 31(1): 157-71.
[http://dx.doi.org/10.1080/01904160701742097]
[373]
Hayat R, Ali S, Amara U, Khalid R, Ahmed I. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann Microbiol 2010; 60(4): 579-98.
[http://dx.doi.org/10.1007/s13213-010-0117-1]
[374]
Vivas A, Marulanda A, Ruiz-Lozano JM, Barea JM, Azcón R. Influence of a Bacillus sp. on physiological activities of two Arbuscular Mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 2003; 13(5): 249-56.
[http://dx.doi.org/10.1007/s00572-003-0223-z] [PMID: 14593518]
[375]
Stefan M, Munteanu N, Mihasan M. Seed inoculation with plant growth promoting rhizobacteria enhances photosynthesis and yield of runner bean (Phaseolus coccineus L.). Sci Hortic 2013; 151: 22-9.
[http://dx.doi.org/10.1016/j.scienta.2012.12.006]
[376]
Zhang L, Zhang J, Christie P, Li X. Effect of inoculation with the Arbuscular mycorrhizal fungus Glomus intraradices on the root-knot nematode Meloidogyne Incognita in cucumber. J Plant Nutr 2009; 32(6): 967-79.
[http://dx.doi.org/10.1080/01904160902870739]
[377]
Blake C, Christensen MN, Kovács AT. Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Mol Plant Microbe Interact 2021; 34(1): 15-25.
[http://dx.doi.org/10.1094/MPMI-08-20-0225-CR] [PMID: 32986513]
[378]
Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 2005; 272(1-2): 201-9.
[http://dx.doi.org/10.1007/s11104-004-5047-x]
[379]
Ryu CM, Farag MA, Hu CH, et al. Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 2003; 100(8): 4927-32.
[http://dx.doi.org/10.1073/pnas.0730845100] [PMID: 12684534]
[380]
Xie SS, Wu HJ, Zang HY, Wu LM, Zhu QQ, Gao XW. Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol Plant Microbe Interact 2014; 27(7): 655-63.
[http://dx.doi.org/10.1094/MPMI-01-14-0010-R] [PMID: 24678831]
[381]
Tahir MM, Khurshid M, Khan MZ, Abbasi MK, Kazmi MH. Lignite-derived humic acid effect on growth of wheat plants in different soils. Pedosphere 2011; 21(1): 124-31.
[http://dx.doi.org/10.1016/S1002-0160(10)60087-2]
[382]
Woo OG, Kim H, Kim JS, et al. Bacillus subtilis strain GOT9 confers enhanced tolerance to drought and salt stresses in Arabidopsis thaliana and Brassica campestris. Plant Physiol Biochem 2020; 148: 359-67.
[http://dx.doi.org/10.1016/j.plaphy.2020.01.032] [PMID: 32018064]
[383]
Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 2008; 21(6): 737-44.
[http://dx.doi.org/10.1094/MPMI-21-6-0737] [PMID: 18624638]
[384]
Zhang H, Murzello C, Sun Y, et al. Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant Microbe Interact 2010; 23(8): 1097-104.
[http://dx.doi.org/10.1094/MPMI-23-8-1097] [PMID: 20615119]
[385]
Miljaković D, Marinković J, Balešević-Tubić S. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 2020; 8(7): 1-19.
[http://dx.doi.org/10.3390/microorganisms8071037] [PMID: 32668676]
[386]
Flores AC, Luna AAE, Portugal OP. Yield and quality enhancement of marigold flowers by inoculation with Bacillus subtilis and Glomus faciculatum. J Sustain Agric 2007; 31(1): 21-31.
[http://dx.doi.org/10.1300/J064v31n01_04]
[387]
Awasthi A, Bharti N, Nair P, et al. Synergistic effect of Glomus mosseae and nitrogen fixing Bacillus subtilis strain Daz26 on artemisin content in Artemisia annua l. Appl Soil Ecol 2011; 49: 125-30.
[http://dx.doi.org/10.1016/j.apsoil.2011.06.005]
[388]
Thilagar G, Bagyaraj DJ, Rao MS. Selected microbial consortia developed for chilly reduces application of chemical fertilizers by 50% under field conditions. Sci Hortic (Amsterdam) 2016; 198: 27-35.
[http://dx.doi.org/10.1016/j.scienta.2015.11.021]
[389]
Anuroopa N, Bagyaraj DJ. Inoculation with selected microbial consortia enhanced the growth and yield of Withania somnifera under polyhouse conditions. Imp J Interdiscip Res 2017; 3: 127-33.
[http://dx.doi.org/10.16943/ptinsa/2017/49127]
[390]
Desai S, Bagyaraj DJ, Ashwin R. Inoculation with microbial consortium promotes growth of tomato and capsicum seedlings raised in portrays. Proc Natl Acad Sci, India, Sect B Biol Sci 2019.
[http://dx.doi.org/10.1007/s40011-019-01078-w]
[391]
Jaizme-Vega MC, Rodriguez-Romero AS, Barroso LA. Effect of the combined inoculation of Arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria on papaya (Carica papaya l.) infected with the root-knot nematode Meloidogyne incognita. Fruits 2006; 61(3): 151-62.
[http://dx.doi.org/10.1051/fruits:2006013]
[392]
Serfoji P, Rajeshkumar S, Selvaraj T. Management of root-knot nematode, Meloidogyne incognita on tomato cv Pusa Ruby. by using vermicompost, AM fungus, Glomus aggregatum and Mycorrhiza helper bacterium, Bacillus coagulans. Agric Technol Thail 2010; 6: 37-45.
[http://dx.doi.org/10.15192/PSCP.SA.2015.12.1.5257]
[393]
Tahmatsidou V, Sullivan J, Cassells AC, Voyiatzis D, Paroussi G. Comparison of AMF and PGPR inoculants for the suppression of Verticillium wilt of strawberry (Fragaria × ananassa cv Selva). Appl Soil Ecol 2006; 32(3): 316-24.
[http://dx.doi.org/10.1016/j.apsoil.2005.07.008]
[394]
Szilagyi-Zecchin VJ, Ikeda AC, Hungria M, et al. Identification and characterization of endophytic bacteria from corn (Zea mays l.) roots with biotechnological potential in agriculture. AMB Express 2014; 4(1): 26.
[http://dx.doi.org/10.1186/s13568-014-0026-y] [PMID: 24949261]
[395]
Kuan KB, Othman R, Abdul Rahim K, Shamsuddin ZH. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilization of maize under greenhouse conditions. PLoS One 2016; 11(3): e0152478.
[http://dx.doi.org/10.1371/journal.pone.0152478] [PMID: 27011317]
[396]
Bahadir PS, Liaqat F, Eltem R. Plant growth promoting properties of phosphate solubilizing Bacillus species isolated from the Aegean region of Turkey. Turk J Bot 2018; 42(2): 1-14.
[http://dx.doi.org/10.3906/bot-1706-51]
[397]
Garcia-Lopez AM, Delgado A. Effect of Bacillus subtilis on phosphorus uptake by cucumber as affected by iron oxides and the solubility of the phosphorus source. Agric Food Sci 2016; 25(3): 216-24.
[http://dx.doi.org/10.23986/afsci.56862]
[398]
Nie P, Li X, Wang S, Guo J, Zhao H, Niu D. Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-dependent signaling pathway and activates pamp-triggered immunity in Arabidopsis. Front Plant Sci 2017; 8: 238.
[http://dx.doi.org/10.3389/fpls.2017.00238] [PMID: 28293243]
[399]
Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 2007; 31(4): 425-48.
[http://dx.doi.org/10.1111/j.1574-6976.2007.00072.x] [PMID: 17509086]
[400]
Choi HK, Song GC, Yi HS, Ryu CM. Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper. J Chem Ecol 2014; 40(8): 882-92.
[http://dx.doi.org/10.1007/s10886-014-0488-z] [PMID: 25149655]
[401]
Rais A, Jabeen Z, Shair F, Hafeez FY, Hassan MN. Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS One 2017; 12(11): e0187412.
[http://dx.doi.org/10.1371/journal.pone.0187412] [PMID: 29161274]
[402]
Jayapala N, Mallikarjunaiah N, Puttaswamy H, Gavirangappa H, Ramachandrappa NS. Rhizobacteria Bacillus spp. induce resistance against anthracnose disease in Chili (Capsicum annuum l.) through activating host defense response. Egypt J Biol Pest Control 2019; 29(1): 45.
[http://dx.doi.org/10.1186/s41938-019-0148-2]
[403]
Chen F, Wang M, Zheng Y, Luo J, Yang X, Wang X. Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber fusarium wilt by Bacillus subtilis B579. World J Microbiol Biotechnol 2010; 26(4): 675-84.
[http://dx.doi.org/10.1007/s11274-009-0222-0]
[404]
Nandeeshkumar P, Ramachandrakini K, Prakash HS, Niranjana SR, Shekar SH. Induction of resistance against downy mildew on sunflower by rhizobacteria. J Plant Interact 2008; 3(4): 255-62.
[http://dx.doi.org/10.1080/17429140802245697]
[405]
Hashem A, Tabassum B, Fathi AAE. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 2019; 26(6): 1291-7.
[http://dx.doi.org/10.1016/j.sjbs.2019.05.004] [PMID: 31516360]
[406]
Warhurst AM, Fewson CA. Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 1994; 14(1): 29-73.
[http://dx.doi.org/10.3109/07388559409079833] [PMID: 8187203]
[407]
Cereijo AE, Kuhn ML, Hernández MA, et al. Study of duplicated galU genes in Rhodococcus jostii and a putative new metabolic node for glucosamine-1P in rhodococci. Biochim Biophys Acta, Gen Subj 2021; 1865(1): 129727.
[http://dx.doi.org/10.1016/j.bbagen.2020.129727] [PMID: 32890704]
[408]
Francis IM, Stes E, Zhang Y, Rangel D, Audenaert K, Vereecke D. Mining the genome of Rhodococcus fascians, a plant growth-promoting bacterium gone astray. N Biotechnol 2016; 33 (5 Pt B): 706-17.
[http://dx.doi.org/10.1016/j.nbt.2016.01.009] [PMID: 26877150]
[409]
Savory EA, Fuller SL, Weisberg AJ, et al. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management. eLife 2017; 6(e30925): 1-28.
[http://dx.doi.org/10.7554/eLife.30925] [PMID: 29231813]
[410]
Dhaouadi S, Mougou AH, Wu CJ, Gleason ML, Rhouma A. Sequence analysis of 16S rDNA, gyrB and alkB genes of plant-associated Rhodococcus species from Tunisia. Int J Syst Evol Microbiol 2020; 70(12): 6491-507.
[http://dx.doi.org/10.1099/ijsem.0.004521] [PMID: 33095130]
[411]
Dhaouadi S, Hamdane AM, Rhouma A. Isolation and characterization of Rhodococcus spp. from pistachio and almond rootstocks and trees in Tunisia. Agronomy 2012; 11(355): 1-17.
[http://dx.doi.org/10.3390/agronomy11020355]
[412]
Trivedi P, Pandey A, Sa T. Chromate reducing and plant growth promoting activities of psychrotrophic Rhodococcus erythropolis MtCC 7,905. J Basic Microbiol 2007; 47(6): 513-7.
[http://dx.doi.org/10.1002/jobm.200700224] [PMID: 18072252]
[413]
Abraham J, Silambarasan S. Biodegradation of carbendazim by Rhodococcus erythropolis and its plant growth-promoting traits. Biol Environ 2018; 118B(2): 69-80.
[http://dx.doi.org/10.1353/bae.2018.0010]
[414]
Vereecke D, Zhang Y, Francis IM, et al. Functional genomics insights into the pathogenicity, habitat fitness, and mechanisms modifying plant development of Rhodococcus sp. PBTS1 and PBTS2. Front Microbiol 2020; 11(14): 14.
[http://dx.doi.org/10.3389/fmicb.2020.00014] [PMID: 32082278]
[415]
Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA. Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 2006; 42(3): 267-72.
[http://dx.doi.org/10.1007/s00374-005-0024-y]
[416]
Kuhl T, Felder M, Nussbaumer T, et al. De novo genome assembly of a plant-associated Rhodococcus qingshengii strain (RL1) isolated from Eruca sativa Mill. and showing plant growth-promoting properties. Microbiol Resour Announc 2019; 8(46): e01106-19.
[http://dx.doi.org/10.1128/MRA.01106-19] [PMID: 31727707]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy