Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Impact of Indazole Scaffold as Antibacterial and Antifungal Agent

Author(s): Sitansu Sekhar Nanda*, Dong Kee Yi*, Om Prakash Panda, Sridevi Chigurupati, Tapas Kumar Mohapatra and Md. Imran Hossain

Volume 22, Issue 14, 2022

Published on: 28 June, 2022

Page: [1152 - 1159] Pages: 8

DOI: 10.2174/1568026622666220512145646

Price: $65

Open Access Journals Promotions 2
Abstract

Heterocycles consisting of a nitrogen atom, Indazole, is a pungent, biological, heterocyclic, bicyclic compound possessing electron-rich portions. Indazole is composed of two nitrogen atoms put under the azoles family, further called isoindazolone. It is colorless solid nitrogen– containing heterocyclics with atomic formula-C7H6N2 are extraordinary scaffolds, still identified as isoindazole. Therefore, analogs of Indazole have experienced expert approaches in later times because of its special biological properties, such as anti-microbial, anti-inflammatory, anticancer, anti- HIV and antihypertensive actions. 1H-indazole and 2H-indazole are two toutomeric forms of Indazole. Sometimes, indazole produces three tautomeric forms that are 1H, 2H and 3H tautomers of indazole. 1H-indazole is reliable than 2H-indazole. We should note that a series of derivatives of indazole having 2H toutomers follow hybridization of cyclic systems and act as anti-inflammatory as well as anti-microbial compounds. It formed Indazole itself and derivatives of Indazole in natural products. A sequence of N-methyl-3-aryl inazoles has dominant against bacterial strains like xanthomon as campstris, Baillus cereus, Escherichia coli, Bacillus megaterium and a fungal strain candida albicans found by in-vitro anti-microbial study of indazole derivatives.

Keywords: Indazole, Antifungal, Antimicrobial, Chalcone, cox-1, cox-2.

Graphical Abstract
[1]
Shrivastava, A.; Chakraborty, A.K.; Upmanyu, N.; Singh, A. Recent progress in chemistry and biology of indazole and its derivatives: A brief review. Austin J. Anal. Pharm. Chem., 2016, 3(4), 1076.
[2]
King, F.D. 1H-indazole-3-carboxamide-N-2-azabicyclo[2,2,2]octanes useful for treating anxiety, psychosis, neuralgia, migraine and cluster headaches US Patent No: 5,034,398, July 23, 1991.
[3]
Baker, R.; Kulagowski, J.J.; Leeson, P.D.; Smith, A.L. Antipsychotic indazole derivatives. US Patent No: 5,780,475, July 14, 1998.
[4]
Mylari, B.L.; Zembrowski, W.J. 1H-indazole-3-acetic acids as aldose reductase inhibitors. US Patent No: 5,330,997, 19.07, 1994.
[5]
Zhang, D.; Kohlman, D.; Krushinski, J.; Liang, S.; Ying, B.P.; Reilly, J.E.; Dinn, S.R.; Wainscott, D.B.; Nutter, S.; Gough, W.; Nelson, D.L.; Schaus, J.M.; Xu, Y.C. Design, synthesis and evaluation of bicyclic benzamides as novel 5-HT1F receptor agonists. Bioorg. Med. Chem. Lett., 2004, 14(24), 6011-6016.
[http://dx.doi.org/10.1016/j.bmcl.2004.09.079] [PMID: 15546719]
[6]
Han, X.; Civiello, R.L.; Conway, C.M.; Cook, D.A.; Davis, C.D.; Degnan, A.P.; Jiang, X.J.; Macci, R.; Mathias, N.R.; Moench, P.; Pin, S.S.; Schartman, R.; Signor, L.J.; Thalody, G.; Tora, G.; Whiterock, V.; Xu, C.; Macor, J.E.; Dubowchik, G.M. The synthesis and SAR of calcitonin gene-related peptide (CGRP) receptor antagonists derived from tyrosine surrogates. Part 2. Bioorg. Med. Chem. Lett., 2013, 23(6), 1870-1873.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.011] [PMID: 23402880]
[7]
Liu, J.; Wen, Y.; Gao, L.; Gao, L.; He, F.; Zhou, J.; Wang, J.; Dai, R.; Chen, X.; Kang, D.; Hu, L. Design, synthesis and biological evaluation of novel 1H-1,2,4-triazole, benzothiazole and indazole-based derivatives as potent FGFR1 inhibitors viafragment-based virtual screening. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 72-84.
[http://dx.doi.org/10.1080/14756366.2019.1673745] [PMID: 31682465]
[8]
Furlotti, G.; Alisi, M.A.; Apicella, C.; Capezzone de Joannon, A.; Cazzolla, N.; Costi, R.; Cuzzucoli Crucitti, G.; Garrone, B.; Iacovo, A.; Magarò, G.; Mangano, G.; Miele, G.; Ombrato, R.; Pescatori, L.; Polenzani, L.; Rosi, F.; Vitiello, M.; Di Santo, R. Discovery and pharmacological profile of new 1H-indazole-3-carboxamide and 2H-pyrrolo[3,4-c]quinoline derivatives as selective serotonin 4 receptor ligands. J. Med. Chem., 2012, 55(22), 9446-9466.
[http://dx.doi.org/10.1021/jm300573d] [PMID: 23043420]
[9]
Dimmito, M.P.; Stefanucci, A.; Pieretti, S.; Minosi, P.; Dvorácskó, S.; Tömböly, C.; Zengin, G.; Mollica, A. Discovery of orexant and anorexant agents with indazole scaffold endowed with peripheral antiedema activity. Biomolecules, 2019, 9(9), 492.
[http://dx.doi.org/10.3390/biom9090492] [PMID: 31527522]
[10]
Wang, C.; Liu, X.W.; Xiao, T.; Xu, Z.Q.; Cao, S.; Wang, H.F.; Yan, Q.J.; Gu, S.X.; Zhu, Y.Y. Anticancer activity evaluation of indazolyl-substituted piperidin-4-yl-aminopyrimidines. Med. Chem. Res., 2020, 29(5), 910-915.
[http://dx.doi.org/10.1007/s00044-020-02531-6]
[11]
Cui, Y.J.; Ma, C.C.; Zhang, C.M.; Tang, L.Q.; Liu, Z.P. The discovery of novel indazole derivatives as tubulin colchicine site binding agents that displayed potent antitumor activity both in vitro and in vivo. Eur. J. Med. Chem., 2020, 187, 111968.
[http://dx.doi.org/10.1016/j.ejmech.2019.111968] [PMID: 31865012]
[12]
Köksal, Z.; Alim, Z. Lactoperoxidase, an antimicrobial enzyme, is inhibited by some indazoles. Drug Chem. Toxicol., 2020, 43(1), 22-26.
[http://dx.doi.org/10.1080/01480545.2018.1488861] [PMID: 30126312]
[13]
Reddy, B.V.; Prasanna, B.; Mukkanti, K. Synthesis and characterization of some novel indazole analogous thiazolidines for antifungal study. Heterocyclic Lett., 2017, 7(4), 1065-1071.
[14]
Martín-Escolano, R.; Aguilera-Venegas, B.; Marín, C.; Martín-Montes, Á.; Martín-Escolano, J.; Medina-Carmona, E.; Arán, V.J.; Sánchez-Moreno, M. Synthesis and Biological in vitro and in vivo evaluation of 2-(5-nitroindazol-1-yl)ethylamines and related compounds as potential therapeutic alternatives for chagas disease. ChemMedChem, 2018, 13(19), 2104-2118.
[http://dx.doi.org/10.1002/cmdc.201800512] [PMID: 30098232]
[15]
Rafique, R.; Khan, K.M. Arshia; Kanwal; Chigurupati, S.; Wadood, A.; Rehman, A.U.; Karunanidhi, A.; Hameed, S.; Taha, M.; Al-Rashida, M. Synthesis of new indazole based dual inhibitors of α-glucosidase and α-amylase enzymes, their in vitro, in silico and kinetics studies. Bioorg. Chem., 2020, 94, 103195.
[http://dx.doi.org/10.1016/j.bioorg.2019.103195] [PMID: 31451297]
[16]
Zhang, H.; Lapointe, B.T.; Anthony, N.; Azevedo, R.; Cals, J.; Correll, C.C.; Daniels, M.; Deshmukh, S.; van Eenenaam, H.; Ferguson, H.; Hegde, L.G.; Karstens, W.J.; Maclean, J.; Miller, J.R.; Moy, L.Y.; Simov, V.; Nagpal, S.; Oubrie, A.; Palte, R.L.; Parthasarathy, G.; Sciammetta, N.; van der Stelt, M.; Woodhouse, J.D.; Trotter, B.W.; Barr, K. Discovery of N-(Indazol-3-yl) piperidine-4-carboxylic acids as RORγt allosteric inhibitors for autoimmune diseases. ACS Med. Chem. Lett., 2020, 11(2), 114-119.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00431] [PMID: 32071676]
[17]
Xiao, T.; Tang, J.F.; Meng, G.; Pannecouque, C.; Zhu, Y.Y.; Liu, G.Y.; Xu, Z.Q.; Wu, F.S.; Gu, S.X.; Chen, F.E. Indazolyl-substituted piperidin-4-yl-aminopyrimidines as HIV-1 NNRTIs: Design, synthesis and biological activities. Eur. J. Med. Chem., 2020, 186, 111864.
[http://dx.doi.org/10.1016/j.ejmech.2019.111864] [PMID: 31767136]
[18]
Gao, M.; Xu, B. Transition metal-participated synthesis and utilization of N-containing heterocycles: Exploring for nitrogen sources. Chem. Rec., 2016, 16(3), 1701-1714.
[http://dx.doi.org/10.1002/tcr.201600020] [PMID: 27230734]
[19]
Teixeira, F.C.; Ramos, H.; Antunes, I.F.; Curto, M.J.; Duarte, M.T.; Bento, I. Synthesis and structural characterization of 1- and 2-substituted indazoles: Ester and carboxylic acid derivatives. Molecules, 2006, 11(11), 867-889.
[http://dx.doi.org/10.3390/11110867] [PMID: 18007393]
[20]
Bogonda, G.; Kim, H.Y.; Oh, K. Direct acyl radical addition to 2H-indazoles using Ag-catalyzed decarboxylative cross-coupling of α-keto acids. Org. Lett., 2018, 20(9), 2711-2715.
[http://dx.doi.org/10.1021/acs.orglett.8b00920] [PMID: 29672060]
[21]
Behrouz, S. Highly efficient one-pot three component synthesis of 2H-indazoles by consecutive condensation, C-N and N-N bond formations using Cu/Aminoclay/reduced grapheme oxide nanohybrid. J. Heterocycl. Chem., 2017, 54, 1863-1871.
[http://dx.doi.org/10.1002/jhet.2777]
[22]
Vidyacharan, S.; Murugan, A.; Sharada, D.S.C. (sp2)-H Functionalization of 2H-indazoles at C3-position via palladium(II)-catalyzed isocyanide insertion strategy leading to diverse heterocycles. J. Org. Chem., 2016, 81(7), 2837-2848.
[http://dx.doi.org/10.1021/acs.joc.6b00048] [PMID: 26954483]
[23]
Jayanthi, M.; Rajakumar, P. Synthesis, cell viability, and flow cytometric fluorescence pulse width analysis of dendrimers with indazoles surface unit. J. Heterocycl. Chem., 2017, 54, 3042-3050.
[http://dx.doi.org/10.1002/jhet.2913]
[24]
Shinde, A.H.; Vidyacharan, S.; Sharada, D.S. BF3•OEt2 mediated metal-free one-pot sequential multiple annulation cascade (SMAC) synthesis of complex and diverse tetrahydroisoquinoline fused hybrid molecules. Org. Biomol. Chem., 2016, 14(12), 3207-3211.
[http://dx.doi.org/10.1039/C6OB00253F] [PMID: 26935814]
[25]
Lavrard, H.; Popowycz, F. Regioselective late-stage C-3 functionalization of pyrazolo-[3,4-b]pyridines. Synthesis, 2018, 50, 998-1006.
[http://dx.doi.org/10.1055/s-0036-1589161]
[26]
Scott, L.J. Niraparib: First global approval. Drugs, 2017, 77(9), 1029-1034.
[http://dx.doi.org/10.1007/s40265-017-0752-y] [PMID: 28474297]
[27]
Baddam, S.R.; Kumar, N.U.; Reddy, A.P.; Bandichhor, R. Regioselective methylation of indazoles using methyl 2,2,2-trichloromethylacetimidate. Tetrahedron Lett., 2013, 54, 1661-1663.
[http://dx.doi.org/10.1016/j.tetlet.2013.01.030]
[28]
AI-Bogami A.S. Mechanochemical synthesis of cyclohexenones and indazoles as potential antimicrobial agents. Res. Chem. Intermed., 2016, 42, 5457-5477.
[http://dx.doi.org/10.1007/s11164-015-2379-5]
[29]
Wan, Y.; He, S.; Li, W.; Tang, Z. Indazole derivatives: Promising anti-tumor agents. Anticancer. Agents Med. Chem., 2018, 18(9), 1228-1234.
[http://dx.doi.org/10.2174/1871520618666180510113822] [PMID: 29745343]
[30]
Gaikwad, D.D.; Chapolikar, A.D.; Devkate, C.G.; Warad, K.D.; Tayade, A.P.; Pawar, R.P.; Domb, A.J. Synthesis of indazole motifs and their medicinal importance: An overview. Eur. J. Med. Chem., 2015, 90, 707-731.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.029] [PMID: 25506810]
[31]
Dong, J.; Zhang, Q.; Wang, Z.; Huang, G.; Li, S. Recent advances in the development of indazole-based anticancer agents. ChemMedChem, 2018, 13(15), 1490-1507.
[http://dx.doi.org/10.1002/cmdc.201800253] [PMID: 29863292]
[32]
Yager, K.; Chu, S.; Appelt, K.; Li, X. Preparation of thiazolylindazoles as inhibitors of bacterial DNA gyrase B inhibitors. US Patent 6984652 B2, 2005.
[33]
Rodríguez-Villar, K.; Hernández-Campos, A.; Yépez-Mulia, L.; Sainz-Espuñes, T.D.R.; Soria-Arteche, O.; Palacios-Espinosa, J.F.; Cortés-Benítez, F.; Leyte-Lugo, M.; Varela-Petrissans, B.; Quintana-Salazar, E.A.; Pérez-Villanueva, J. Design, synthesis and anticandidal evaluation of indazole and pyrazole derivatives. Pharmaceuticals (Basel), 2021, 14(3), 176.
[http://dx.doi.org/10.3390/ph14030176] [PMID: 33668364]
[34]
Sherer, B.A.; Hull, K.; Green, O.; Basarab, G.; Hauck, S.; Hill, P.; Loch, J.T., III; Mullen, G.; Bist, S.; Bryant, J.; Boriack-Sjodin, A.; Read, J.; DeGrace, N.; Uria-Nickelsen, M.; Illingworth, R.N.; Eakin, A.E. Pyrrolamide DNA gyrase inhibitors: Optimization of antibacterial activity and efficacy. Bioorg. Med. Chem. Lett., 2011, 21(24), 7416-7420.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.010] [PMID: 22041057]
[35]
McGarry, D.H.; Cooper, I.R.; Walker, R.; Warrilow, C.E.; Pichowicz, M.; Ratcliffe, A.J.; Salisbury, A.M.; Savage, V.J.; Moyo, E.; Maclean, J.; Smith, A.; Charrier, C.; Stokes, N.R.; Lindsay, D.M.; Kerr, W.J. Design, synthesis and antibacterial properties of pyrimido[4,5-b]indol-8-amine inhibitors of DNA gyrase. Bioorg. Med. Chem. Lett., 2018, 28(17), 2998-3003.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.049] [PMID: 30122228]
[36]
Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet, 2001, 358(9276), 135-138.
[37]
Sigurdsson, G.; Fleming, R.M.T.; Heinken, A.; Thiele, I. A systems biology approach to drug targets in Pseudomonas aeruginosa biofilm. PLoS One, 2012, 7(4), e34337.
[http://dx.doi.org/10.1371/journal.pone.0034337] [PMID: 22523548]
[38]
Bohm, B.A. Introduction to flavonoids; Harwood Academic Publishers: USA, 1998.
[39]
Shakil, N.A.; Singh, M.K.; Sathiyendiran, M.; Kumar, J.; Padaria, J.C. Microwave synthesis, characterization and bio-efficacy evaluation of novel chalcone based 6-carbethoxy-2-cyclohexen-1-one and 2H-indazol-3-ol derivatives. Eur. J. Med. Chem., 2013, 59, 120-131.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.038] [PMID: 23229055]
[40]
Adel, A.H.; Ahmed, E.S.; Hawata, M.A.; Kasem, E.R.; Shabaan, M.T. Synthesis and antimicrobial evaluation of some chalcones and their derived pyrazoles, pyrazolines, isoxazolines, and 5, 6-Dihydropyrimidine-2-(1 H)-thiones. Monatshefte für Chemie-Chemical Monthly, 2007, 138(9), 889-897.
[http://dx.doi.org/10.1007/s00706-007-0700-8]
[41]
Gol, R.M.; Khokhani, K.M.; Khatri, T.T.; Bhatt, J.J. Synthesis of novel pyrazolines of medicinal interest. J. Korean Chem. Soc., 2014, 58(1), 49-56.
[http://dx.doi.org/10.5012/jkcs.2014.58.1.49]
[42]
Maheta, J.G.; Gol, R.M.; Barot, V.M. Synthesis of novel (2H) indazole scaffold as an antimicrobial and anti-tubercular agent. Chem. Biol. Interact., 2016, 6(1), 27-37.
[43]
Desai, N.C.; Vaja, D.V.; Joshi, S.B.; Khedkar, V.M. Synthesis and molecular docking study of pyrazole clubbed oxazole as antibacterial agents. Res. Chem. Intermed., 2021, 47(2), 573-587.
[http://dx.doi.org/10.1007/s11164-020-04286-6]
[44]
Shakil, N.A.; Singh, M.K.; Kumar, J.; Sathiyendiran, M.; Kumar, G.; Singh, M.K.; Pandey, R.P.; Pandey, A.; Parmar, V.S. Microwave synthesis and antifungal evaluations of some chalcones and their derived diaryl-cyclohexenones. J. Environ. Sci. Health B, 2010, 45(6), 524-530.
[http://dx.doi.org/10.1080/03601234.2010.493482] [PMID: 20574873]
[45]
Solankee, A.; Patel, G.; Solankee, S. A convenient synthesis of chalcones, acetylpyrazolines and aminopyrimidine. Orient. J. Chem., 2008, 24(3), 1035.
[46]
Yakaiah, T.; Lingaiah, B.P.; Narsaiah, B.; Kumar, K.P.; Murthy, U.S. GdCl3 catalysed Grieco condensation: A facile approach for the synthesis of novel pyrimidine and annulated pyrimidine fused indazole derivatives in single pot under mild conditions and their anti-microbial activity. Eur. J. Med. Chem., 2008, 43(2), 341-347.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.031] [PMID: 17521778]
[47]
Sharma, M.; Chaturvedi, V.; Manju, Y.K.; Bhatnagar, S.; Srivastava, K.; Puri, S.K.; Chauhan, P.M. Substituted quinolinyl chalcones and quinolinyl pyrimidines as a new class of anti-infective agents. Eur. J. Med. Chem., 2009, 44(5), 2081-2091.
[http://dx.doi.org/10.1016/j.ejmech.2008.10.011] [PMID: 19028410]
[48]
House, H.O. Modern Synthetic Reactions, 2nd ed; W.A. Benjamin: Menlo Park, California, 1972.
[49]
Lin, W.; Hu, M.H.; Feng, X.; Cao, C.P.; Huang, Z.B.; Shi, D.Q. An efficient and convenient synthesis of heterocycle-fused indazoles via the N–N bond forming reaction of nitroarenes induced by low-valent titanium reagent. Tetrahedron, 2013, 69, 6721-6726.
[http://dx.doi.org/10.1016/j.tet.2013.05.074]
[50]
Lipunova, G.N.; Nosova, E.V.; Charushin, V.N.; Chupakhin, O.N. Fluorine-containing indazoles: Synthesis and biological activity. J. Fluor. Chem., 2016, 192, 1-21.
[http://dx.doi.org/10.1016/j.jfluchem.2016.10.007]
[51]
Pericherla, K.; Khedar, P.; Khungar, B.; Kumar, A. Click chemistry inspired structural modification of azole antifungal agents to synthesize novel ‘drug like’molecules. Tetrahedron Lett., 2012, 53(50), 6761-6764.
[http://dx.doi.org/10.1016/j.tetlet.2012.09.129]
[52]
Sehajpal, S.; Prasad, D.N.; Singh, R.K. Prodrugs of non-steroidal anti-inflammatory drugs (NSAIDs): A long march towards synthesis of safer NSAIDs. Mini Rev. Med. Chem., 2018, 18(14), 1199-1219.
[http://dx.doi.org/10.2174/1389557518666180330112416] [PMID: 29600762]
[53]
Radi, Z.A.; Khan, K.N. Cardio-renal safety of non-steroidal anti-inflammatory drugs. J. Toxicol. Sci., 2019, 44(6), 373-391.
[http://dx.doi.org/10.2131/jts.44.373] [PMID: 31168026]
[54]
Korbecki, J.; Baranowska-Bosiacka, I.; Gutowska, I.; Chlubek, D. Cyclooxygenase pathways. Acta Biochim. Pol., 2014, 61(4), 639-649.
[http://dx.doi.org/10.18388/abp.2014_1825] [PMID: 25343148]
[55]
Tortorella, M.D.; Zhang, Y.; Talley, J. Desirable properties for 3rd generation cyclooxygenase-2 inhibitors. Mini Rev. Med. Chem., 2016, 16(16), 1284-1289.
[http://dx.doi.org/10.2174/1389557515666160509125702] [PMID: 27156517]
[56]
Kumar, V.; Kaur, K.; Gupta, G.K.; Gupta, A.K.; Kumar, S. Developments in synthesis of the anti-inflammatory drug, celecoxib: A review. Recent Pat. Inflamm. Allergy Drug Discov., 2013, 7(2), 124-134.
[http://dx.doi.org/10.2174/1872213X11307020004] [PMID: 23565678]
[57]
Martina, S.D.; Vesta, K.S.; Ripley, T.L. Etoricoxib: A highly selective COX-2 inhibitor. Ann. Pharmacother., 2005, 39(5), 854-862.
[http://dx.doi.org/10.1345/aph.1E543] [PMID: 15827069]
[58]
Burnier, M. The safety of rofecoxib. Expert Opin. Drug Saf., 2005, 4(3), 491-499.
[http://dx.doi.org/10.1517/14740338.4.3.491] [PMID: 15934855]
[59]
Zhang, J.; Yang, Q.; Romero, J.A.C.; Cross, J.; Wang, B.; Poutsiaka, K.M.; Epie, F.; Bevan, D.; Wu, Y.; Moy, T.; Daniel, A.; Chamberlain, B.; Carter, N.; Shotwell, J.; Arya, A.; Kumar, V.; Silverman, J.; Nguyen, K.; Metcalf, C.A., III; Ryan, D.; Lippa, B.; Dolle, R.E. Discovery of indazole derivatives as a novel class of bacterial gyrase B inhibitors. ACS Med. Chem. Lett., 2015, 6(10), 1080-1085.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00266] [PMID: 26487916]
[60]
Pérez-Villanueva, J.; Yépez-Mulia, L.; González-Sánchez, I.; Palacios-Espinosa, J.F.; Soria-Arteche, O.; Sainz-Espuñes, T.D.R.; Cerbón, M.A.; Rodríguez-Villar, K.; Rodríguez-Vicente, A.K.; Cortés-Gines, M.; Custodio-Galván, Z.; Estrada-Castro, D.B. Synthesis and biological evaluation of 2H-indazole derivatives: Towards antimicrobial and anti-inflammatory dual agents. Molecules, 2017, 22(11), 1864.
[http://dx.doi.org/10.3390/molecules22111864] [PMID: 29088121]
[61]
Thangadurai, A.; Minu, M.; Wakode, S.; Agrawal, S.; Narasimhan, B. Indazole: A medicinally important heterocyclic moiety. Med. Chem. Res., 2012, 21, 1509-1523.
[http://dx.doi.org/10.1007/s00044-011-9631-3]
[62]
Srivastava, V.; Singh, S.P. A facile and regioselective 2H-indazol synthesis of t-butyl 4-(5-amino-6-methoxy-2H-indazol-2-yl) piperidine-1-carboxylate and its synthesized derivatives as an antiprotozoal activity. Chem. Biol. Interact., 2021, 11(2), 48-80.
[63]
Reddy, G.; Ivaturi, K.; Allaka, T. Design, synthesis and docking studies of new indazole derivatives as potent cytotoxic and antibacterial agents. Indian J. Heterocycl. Chem., 2019, 28, 467-476.
[64]
Vega, M.C.; Rolón, M.; Montero-Torres, A.; Fonseca-Berzal, C.; Escario, J.A.; Gómez-Barrio, A.; Gálvez, J.; Marrero-Ponce, Y.; Arán, V.J. Synthesis, biological evaluation and chemometric analysis of indazole derivatives. 1,2-Disubstituted 5-nitroindazo-linones, new prototypes of antichagasic drug. Eur. J. Med. Chem., 2012, 58, 214-227.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.009] [PMID: 23124218]
[65]
Park, J.S.; Yu, K.A.; Kang, T.H.; Kim, S.; Suh, Y.G. Discovery of novel indazole-linked triazoles as antifungal agents. Bioorg. Med. Chem. Lett., 2007, 17(12), 3486-3490.
[http://dx.doi.org/10.1016/j.bmcl.2007.03.074] [PMID: 17433670]
[66]
Chen, H.S.; Kuo, S.C.; Teng, C.M.; Lee, F.Y.; Wang, J.P.; Lee, Y.C.; Kuo, C.W.; Huang, C.C.; Wu, C.C.; Huang, L.J. Synthesis and antiplatelet activity of ethyl 4-(1-benzyl-1H-indazol-3-yl)benzoate (YD-3) derivatives. Bioorg. Med. Chem., 2008, 16(3), 1262-1278.
[http://dx.doi.org/10.1016/j.bmc.2007.10.070] [PMID: 17988878]
[67]
Aoyama, Y.; Yoshida, Y.; Sato, R. Yeast cytochrome P-450 catalyzing lanosterol 14 alpha-demethylation. II. Lanosterol metabolism by purified P-450(14)DM and by intact microsomes. J. Biol. Chem., 1984, 259(3), 1661-1666.
[http://dx.doi.org/10.1016/S0021-9258(17)43459-4] [PMID: 6420412]
[68]
Shi, Y.; Zhou, C.H. Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2011, 21(3), 956-960.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.059] [PMID: 21215620]
[69]
Saupe, S.M.; Steinmetzer, T. A new strategy for the development of highly potent and selective plasmin inhibitors. J. Med. Chem., 2012, 55(3), 1171-1180.
[http://dx.doi.org/10.1021/jm2011996] [PMID: 22276953]
[70]
Somagond, S.M.; Kamble, R.R.; Shaikh, S.K.J.; Bayannavar, P.K.; Joshi, S.D. Microwave-assisted synthesis of novel symmetric bis-1,2,4-triazolin-3-ones as potent inhibitors of cyp51: An antifungal activity study. ChemistrySelect, 2018, 3(29), 8529-8538.
[http://dx.doi.org/10.1002/slct.201801537]
[71]
Zhang, S.G.; Liang, C.G.; Zhang, W.H. Recent advances in indazole-containing derivatives: Synthesis and biological perspectives. Molecules, 2018, 23(11), 2783.
[http://dx.doi.org/10.3390/molecules23112783] [PMID: 30373212]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy