Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Protein Tyrosine Phosphatase Receptor-type Q: Structure, Activity, and Implications in Human Disease

Author(s): Wansi Zhang, Zhimin Tang, Shipan Fan, Dingjin Yao, Zhen Zhang, Chenxi Guan, Wenxin Deng and Ying Ying*

Volume 29, Issue 7, 2022

Published on: 24 June, 2022

Page: [567 - 573] Pages: 7

DOI: 10.2174/0929866529666220511141826

Price: $65

Open Access Journals Promotions 2
Abstract

Protein tyrosine phosphatase receptor-type Q (PTPRQ), a member of the type III tyrosine phosphatase receptor (R3 PTPR) family, is composed of three domains, including 18 extracellular fibronectin type III (FN3) repeats, a transmembrane helix, and a cytoplasmic phosphotyrosine phosphatase (PTP) domain. PTPRQ was initially identified as a transcript upregulated in glomerular mesangial cells in a rat model of glomerulonephritis. Subsequently, studies found that PTPRQ has phosphotyrosine phosphatase and phosphatidylinositol phosphatase activities and can regulate cell proliferation, apoptosis, differentiation, and survival. Further in vivo studies showed that PTPRQ is necessary for the maturation of cochlear hair bundles and is considered a potential gene for deafness. In the recent two decades, 21 mutations in PTPRQ have been linked to autosomal recessive hearing loss (DFNB84) and autosomal dominant hearing loss (DFNA73). Recent mutations, deletions, and amplifications of PTPRQ have been observed in many types of cancers, which indicate that PTPRQ might play an essential role in the development of many cancers. In this review, we briefly describe PTPRQ structure and enzyme activity and focus on the correlation between PTPRQ and human disease. A profound understanding of PTPRQ could be helpful in the identification of new therapeutic targets to treat associated diseases.

Keywords: Deafness, enzyme activity, PTPRQ, PTPs, cancer, transmembrane helix.

Next »
Graphical Abstract
[1]
Taddei, M.L.; Pardella, E.; Pranzini, E.; Raugei, G.; Paoli, P. Role of tyrosine phosphorylation in modulating cancer cell metabolism. Biochim. Biophys. Acta Rev. Cancer, 2020, 1874(2), 188442.
[http://dx.doi.org/10.1016/j.bbcan.2020.188442] [PMID: 33017632]
[2]
Welsh, C.L.; Pandey, P.; Ahuja, L.G. Protein tyrosine phosphatases: A new paradigm in an old signaling system? Adv. Cancer Res., 2021, 152, 263-303.
[http://dx.doi.org/10.1016/bs.acr.2021.06.001] [PMID: 34353440]
[3]
Wright, M.B.; Hugo, C.; Seifert, R.; Disteche, C.M.; Bowen-Pope, D.F. Proliferating and migrating mesangial cells responding to injury express a novel receptor protein-tyrosine phosphatase in experimental mesangial proliferative glomerulonephritis. J. Biol. Chem., 1998, 273(37), 23929-23937.
[http://dx.doi.org/10.1074/jbc.273.37.23929] [PMID: 9727007]
[4]
Kremer, H. Hereditary hearing loss; about the known and the unknown. Hear. Res., 2019, 376, 58-68.
[http://dx.doi.org/10.1016/j.heares.2019.01.003] [PMID: 30665849]
[5]
Vanniya, S.P.; Chandru, J.; Jeffrey, J.M.; Rabinowitz, T.; Brownstein, Z.; Krishnamoorthy, M.; Avraham, K.B. PNPT1, MYO15A, PTPRQ, and SLC12A2-associated genetic and phenotypic heterogeneity among hearing impaired assortative mating families in Southern India. Ann. Hum. Genet., 2021, 86(1), 1-13.
[http://dx.doi.org/10.1111/ahg.12442] [PMID: 34374074]
[6]
Mahmood, U.; Bukhari, S.A.; Ali, M.; Ahmed, Z.M.; Riazuddin, S. Identification of hearing loss-associated variants of PTPRQ, MYO15A, and SERPINB6 in Pakistani families. BioMed Res. Int., 2021, 2021, 5584788.
[http://dx.doi.org/10.1155/2021/5584788] [PMID: 33997018]
[7]
Chen, J.; Johnson, S.L.; Lewis, M.A.; Hilton, J.M.; Huma, A.; Marcotti, W.; Steel, K.P. A reduction in Ptprq associated with specific features of the deafness phenotype of the miR-96 mutant mouse diminuendo. Eur. J. Neurosci., 2014, 39(5), 744-756.
[http://dx.doi.org/10.1111/ejn.12484] [PMID: 24446963]
[8]
Du, Y.; Grandis, J.R. Receptor-type protein tyrosine phosphatases in cancer. Chin. J. Cancer, 2015, 34(2), 61-69.
[http://dx.doi.org/10.5732/cjc.014.10146] [PMID: 25322863]
[9]
Laczmanska, I.; Karpinski, P.; Kozlowska, J.; Bebenek, M.; Ramsey, D.; Sedziak, T.; Ziolkowski, P.; Sasiadek, M.M. Copy number alterations of chromosomal regions enclosing protein tyrosine phosphatase receptor-like genes in colorectal cancer. Pathol. Res. Pract., 2014, 210(12), 893-896.
[http://dx.doi.org/10.1016/j.prp.2014.07.010] [PMID: 25169130]
[10]
Egan, J.B.; Barrett, M.T.; Champion, M.D.; Middha, S.; Lenkiewicz, E.; Evers, L.; Francis, P.; Schmidt, J.; Shi, C.X.; Van Wier, S.; Badar, S.; Ahmann, G.; Kortuem, K.M.; Boczek, N.J.; Fonseca, R.; Craig, D.W.; Carpten, J.D.; Borad, M.J.; Stewart, A.K. Whole genome analyses of a well-differentiated liposarcoma reveals novel SYT1 and DDR2 rearrangements. PLoS One, 2014, 9(2), e87113.
[http://dx.doi.org/10.1371/journal.pone.0087113] [PMID: 24505276]
[11]
Seifert, R.A.; Coats, S.A.; Oganesian, A.; Wright, M.B.; Dishmon, M.; Booth, C.J.; Johnson, R.J.; Alpers, C.E.; Bowen-Pope, D.F. PTPRQ is a novel phosphatidylinositol phosphatase that can be expressed as a cytoplasmic protein or as a subcellularly localized receptor-like protein. Exp. Cell Res., 2003, 287(2), 374-386.
[http://dx.doi.org/10.1016/S0014-4827(03)00121-6] [PMID: 12837292]
[12]
Goodyear, R.J.; Legan, P.K.; Wright, M.B.; Marcotti, W.; Oganesian, A.; Coats, S.A.; Booth, C.J.; Kros, C.J.; Seifert, R.A.; Bowen-Pope, D.F.; Richardson, G.P. A receptor-like inositol lipid phosphatase is required for the maturation of developing cochlear hair bundles. J. Neurosci., 2003, 23(27), 9208-9219.
[http://dx.doi.org/10.1523/JNEUROSCI.23-27-09208.2003] [PMID: 14534255]
[13]
Jia, Z.; Barford, D.; Flint, A.J.; Tonks, N.K. Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science, 1995, 268(5218), 1754-1758.
[http://dx.doi.org/10.1126/science.7540771] [PMID: 7540771]
[14]
Yu, K.R.; Kim, Y.J.; Jung, S.K.; Ku, B.; Park, H.; Cho, S.Y.; Jung, H.; Chung, S.J.; Bae, K.H.; Lee, S.C.; Kim, B.Y.; Erikson, R.L.; Ryu, S.E.; Kim, S.J. Structural basis for the dephosphorylating activity of PTPRQ towards phosphatidylinositide substrates. Acta Crystallogr. D Biol. Crystallogr., 2013, 69(Pt 8), 1522-1529.
[http://dx.doi.org/10.1107/S0907444913010457] [PMID: 23897475]
[15]
Oganesian, A.; Poot, M.; Daum, G.; Coats, S.A.; Wright, M.B.; Seifert, R.A.; Bowen-Pope, D.F. Protein tyrosine phosphatase RQ is a phosphatidylinositol phosphatase that can regulate cell survival and proliferation. Proc. Natl. Acad. Sci. USA, 2003, 100(13), 7563-7568.
[http://dx.doi.org/10.1073/pnas.1336511100] [PMID: 12802008]
[16]
Oziębło, D.; Sarosiak, A.; Leja, M.L.; Budde, B.S.; Tacikowska, G.; Di Donato, N.; Bolz, H.J.; Nürnberg, P.; Skarżyński, H.; Ołdak, M. First confirmatory study on PTPRQ as an autosomal dominant non-syndromic hearing loss gene. J. Transl. Med., 2019, 17(1), 351.
[http://dx.doi.org/10.1186/s12967-019-2099-5] [PMID: 31655630]
[17]
Wu, X.; Wang, S.; Chen, S.; Wen, Y.Y.; Liu, B.; Xie, W.; Li, D.; Liu, L.; Huang, X.; Sun, Y.; Kong, W.J. Autosomal recessive congenital sensorineural hearing loss due to a novel compound heterozygous PTPRQ mutation in a Chinese family. Neural Plast., 2018, 2018, 9425725.
[http://dx.doi.org/10.1155/2018/9425725] [PMID: 29849575]
[18]
Shahin, H.; Rahil, M.; Abu Rayan, A.; Avraham, K.B.; King, M.C.; Kanaan, M.; Walsh, T. Nonsense mutation of the stereociliar membrane protein gene PTPRQ in human hearing loss DFNB84. J. Med. Genet., 2010, 47(9), 643-645.
[http://dx.doi.org/10.1136/jmg.2009.075697] [PMID: 20472657]
[19]
Denman-Johnson, K.; Forge, A. Establishment of hair bundle polarity and orientation in the developing vestibular system of the mouse. J. Neurocytol., 1999, 28(10-11), 821-835.
[http://dx.doi.org/10.1023/A:1007061819934] [PMID: 10900087]
[20]
Sakaguchi, H.; Tokita, J.; Naoz, M.; Bowen-Pope, D.; Gov, N.S.; Kachar, B. Dynamic compartmentalization of protein tyrosine phosphatase receptor Q at the proximal end of stereocilia: Implication of myosin VI-based transport. Cell Motil. Cytoskeleton, 2008, 65(7), 528-538.
[http://dx.doi.org/10.1002/cm.20275] [PMID: 18412156]
[21]
Sakuma, N.; Moteki, H.; Azaiez, H.; Booth, K.T.; Takahashi, M.; Arai, Y.; Shearer, A.E.; Sloan, C.M.; Nishio, S.Y.; Kolbe, D.L.; Iwasaki, S.; Oridate, N.; Smith, R.J.; Usami, S. Novel PTPRQ mutations identified in three congenital hearing loss patients with various types of hearing loss. Ann. Otol. Rhinol. Laryngol., 2015, 124(Suppl. 1), 184S-192S.
[http://dx.doi.org/10.1177/0003489415575041] [PMID: 25788564]
[22]
Sang, S.; Ling, J.; Liu, X.; Mei, L.; Cai, X.; Li, T.; Li, W.; Li, M.; Wen, J.; Liu, X.; Liu, J.; Liu, Y.; Chen, H.; He, C.; Feng, Y. Proband whole-exome sequencing identified genes responsible for autosomal recessive non-syndromic hearing loss in 33 Chinese nuclear families. Front. Genet., 2019, 10, 639.
[http://dx.doi.org/10.3389/fgene.2019.00639] [PMID: 31379920]
[23]
Yang, G.; Yin, Y.; Tan, Z.; Liu, J.; Deng, X.; Yang, Y. Whole-exome sequencing identified a novel heterozygous mutation of SALL1 and a new homozygous mutation of PTPRQ in a Chinese family with Townes-Brocks syndrome and hearing loss. BMC Med. Genom., 2021, 14(1), 24.
[http://dx.doi.org/10.1186/s12920-021-00871-9] [PMID: 33478437]
[24]
Schraders, M.; Oostrik, J.; Huygen, P.L.; Strom, T.M.; van Wijk, E.; Kunst, H.P.; Hoefsloot, L.H.; Cremers, C.W.; Admiraal, R.J.; Kremer, H. Mutations in PTPRQ are a cause of autosomal-recessive nonsyndromic hearing impairment DFNB84 and associated with vestibular dysfunction. Am. J. Hum. Genet., 2010, 86(4), 604-610.
[http://dx.doi.org/10.1016/j.ajhg.2010.02.015] [PMID: 20346435]
[25]
Sang, Q.; Mei, H.; Kuermanhan, A.; Feng, R.; Guo, L.; Qu, R.; Xu, Y.; Li, H.; Jin, L.; He, L.; Wang, L. Identification of a novel compound heterozygous mutation in PTPRQ in a DFNB84 family with prelingual sensorineural hearing impairment. Mol. Genet. Genomics, 2015, 290(3), 1135-1139.
[http://dx.doi.org/10.1007/s00438-014-0979-1] [PMID: 25557914]
[26]
Talebi, F.; Ghanbari Mardasi, F.; Mohammadi Asl, J.; Tizno, S.; Najafvand Zadeh, M. Identification of novel PTPRQ and MYO1A mutations in an Iranian Pedigree with autosomal recessive hearing loss. Cell J., 2018, 20(1), 127-131.
[http://dx.doi.org/10.22074/cellj.2018.4805] [PMID: 29308629]
[27]
Gao, X.; Su, Y.; Chen, Y.L.; Han, M.Y.; Yuan, Y.Y.; Xu, J.C.; Xin, F.; Zhang, M.G.; Huang, S.S.; Wang, G.J.; Kang, D.Y.; Guan, L.P.; Zhang, J.G.; Dai, P. Identification of two novel compound heterozygous PTPRQ mutations associated with autosomal recessive hearing loss in a Chinese family. PLoS One, 2015, 10(4), e0124757.
[http://dx.doi.org/10.1371/journal.pone.0124757] [PMID: 25919374]
[28]
Ammar-Khodja, F.; Bonnet, C.; Dahmani, M.; Ouhab, S.; Lefèvre, G.M.; Ibrahim, H.; Hardelin, J.P.; Weil, D.; Louha, M.; Petit, C. Diversity of the causal genes in hearing impaired Algerian individuals identified by whole exome sequencing. Mol. Genet. Genomic Med., 2015, 3(3), 189-196.
[http://dx.doi.org/10.1002/mgg3.131] [PMID: 26029705]
[29]
Eisenberger, T.; Di Donato, N.; Decker, C.; Delle Vedove, A.; Neuhaus, C.; Nürnberg, G.; Toliat, M.; Nürnberg, P.; Mürbe, D.; Bolz, H.J. A C-terminal nonsense mutation links PTPRQ with autosomal-dominant hearing loss, DFNA73. Genet. Med., 2018, 20(6), 614-621.
[http://dx.doi.org/10.1038/gim.2017.155] [PMID: 29309402]
[30]
Nagata, Y.; Bundo, M.; Sugiura, S.; Kamita, M.; Ono, M.; Hattori, K.; Yoshida, S.; Goto, Y.I.; Urakami, K.; Niida, S. PTPRQ as a potential biomarker for idiopathic normal pressure hydrocephalus. Mol. Med. Rep., 2017, 16(3), 3034-3040.
[http://dx.doi.org/10.3892/mmr.2017.7015] [PMID: 28714010]
[31]
Nakajima, M.; Rauramaa, T.; Mäkinen, P.M.; Hiltunen, M.; Herukka, S.K.; Kokki, M.; Musialowicz, T.; Jyrkkänen, H.K.; Danner, N.; Junkkari, A.; Koivisto, A.M.; Jääskeläinen, J.E.; Miyajima, M.; Ogino, I.; Furuta, A.; Akiba, C.; Kawamura, K.; Kamohara, C.; Sugano, H.; Tange, Y.; Karagiozov, K.; Leinonen, V.; Arai, H. Protein tyrosine phosphatase receptor type Q in cerebrospinal fluid reflects ependymal cell dysfunction and is a potential biomarker for adult chronic hydrocephalus. Eur. J. Neurol., 2021, 28(2), 389-400.
[http://dx.doi.org/10.1111/ene.14575] [PMID: 33035386]
[32]
Song, Y.; Zhao, M.; Zhang, H.; Yu, B. Double-edged roles of protein tyrosine phosphatase SHP2 in cancer and its inhibitors in clinical trials. Pharmacol. Ther., 2022, 230, 107966.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107966] [PMID: 34403682]
[33]
Walia, V.; Prickett, T.D.; Kim, J.S.; Gartner, J.J.; Lin, J.C.; Zhou, M.; Rosenberg, S.A.; Elble, R.C.; Solomon, D.A.; Waldman, T.; Samuels, Y. Mutational and functional analysis of the tumor-suppressor PTPRD in human melanoma. Hum. Mutat., 2014, 35(11), 1301-1310.
[http://dx.doi.org/10.1002/humu.22630] [PMID: 25113440]
[34]
Cheung, A.K.; Ip, J.C.; Chu, A.C.; Cheng, Y.; Leong, M.M.; Ko, J.M.; Shuen, W.H.; Lung, H.L.; Lung, M.L. PTPRG suppresses tumor growth and invasion via inhibition of Akt signaling in nasopharyngeal carcinoma. Oncotarget, 2015, 6(15), 13434-13447.
[http://dx.doi.org/10.18632/oncotarget.3876] [PMID: 25970784]
[35]
Sen, M.; Kindsfather, A.; Danilova, L.; Zhang, F.; Colombo, R.; LaPorte, M.G.; Kurland, B.F.; Huryn, D.M.; Wipf, P.; Herman, J.G. PTPRT epigenetic silencing defines lung cancer with STAT3 activation and can direct STAT3 targeted therapies. Epigenetics, 2020, 15(6-7), 604-617.
[http://dx.doi.org/10.1080/15592294.2019.1676597] [PMID: 31595832]
[36]
Dong, H.; Ma, L.; Gan, J.; Lin, W.; Chen, C.; Yao, Z.; Du, L.; Zheng, L.; Ke, C.; Huang, X.; Song, H.; Kumar, R.; Yeung, S.C.; Zhang, H. PTPRO represses ERBB2-driven breast oncogenesis by dephosphorylation and endosomal internalization of ERBB2. Oncogene, 2017, 36(3), 410-422.
[http://dx.doi.org/10.1038/onc.2016.213] [PMID: 27345410]
[37]
Koh, Y.; Kim, D-Y.; Yook, J.; Park, H.; Lee, C-S.; Ahn, K-S.; Lee, H-J. Whole exome sequencing of acute myeloid leukemia patients in Korea and its comparison with TCGA results: Dramatic difference of genomic signatures according to ethnicity; American Society of Hematology Washington: DC, 2014.
[38]
Laczmanska, I.; Karpinski, P.; Gil, J.; Laczmanski, L.; Bebenek, M.; Sasiadek, M.M. High PTPRQ expression and its relationship to expression of PTPRZ1 and the presence of KRAS mutations in colorectal cancer tissues. Anticancer Res., 2016, 36(2), 677-681.
[PMID: 26851024]
[39]
Sato, R.; Nakano, T.; Hosonaga, M.; Sampetrean, O.; Harigai, R.; Sasaki, T.; Koya, I.; Okano, H.; Kudoh, J.; Saya, H.; Arima, Y. RNA sequencing analysis reveals interactions between breast cancer or melanoma cells and the tissue microenvironment during brain metastasis. BioMed Res. Int., 2017, 2017, 8032910.
[http://dx.doi.org/10.1155/2017/8032910] [PMID: 28210624]
[40]
Yang, Q.; Chu, W.; Yang, W.; Cheng, Y.; Chu, C.; Pan, X.; Ye, J.; Cao, J.; Gan, S.; Cui, X. Identification of RNA transcript makers associated with prognosis of kidney renal clear cell carcinoma by a competing endogenous RNA network analysis. Front. Genet., 2020, 11, 540094.
[http://dx.doi.org/10.3389/fgene.2020.540094] [PMID: 33193613]
[41]
Jung, H.; Kim, W.K.; Kim, D.H.; Cho, Y.S.; Kim, S.J.; Park, S.G.; Park, B.C.; Lim, H.M.; Bae, K.H.; Lee, S.C. Involvement of PTP-RQ in differentiation during adipogenesis of human mesenchymal stem cells. Biochem. Biophys. Res. Commun., 2009, 383(2), 252-257.
[http://dx.doi.org/10.1016/j.bbrc.2009.04.001] [PMID: 19351528]
[42]
Park, H.; Yu, K.R.; Ku, B.; Kim, B.Y.; Kim, S.J. Identification of novel PTPRQ phosphatase inhibitors based on the virtual screening with docking simulations. Theor. Biol. Med. Model., 2013, 10(1), 49.
[http://dx.doi.org/10.1186/1742-4682-10-49] [PMID: 23981594]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy